Gunawardena J. Models in biology: 'accurate descriptions of our pathetic thinking'. BMC Biol. 2014;12:29. doi:10.1186/1741-7007-12-29.
Article
PubMed Central
PubMed
Google Scholar
Murray AW, Kirschner MW. Dominoes and clocks: the union of two views of the cell cycle. Science. 1989;246:614–21.
Article
CAS
PubMed
Google Scholar
Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990;344:503–8.
Article
CAS
PubMed
Google Scholar
Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971;177:129–45.
Article
CAS
PubMed
Google Scholar
Gerhart J, Wu M, Kirschner M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol. 1984;98:1247–55.
Article
CAS
PubMed
Google Scholar
Murray AW, Kirschner MW. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989;339:275–80.
Article
CAS
PubMed
Google Scholar
Murray AW, Solomon MJ, Kirschner MW. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature. 1989;339:280–6.
Article
CAS
PubMed
Google Scholar
Lohka MJ, Hayes MK, Maller JL. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci U S A. 1988;85:3009–13.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL. Cyclin is a component of maturation-promoting factor from Xenopus. Cell. 1990;60:487–94.
Article
CAS
PubMed
Google Scholar
Gautier J, Norbury C, Lohka M, Nurse P, Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell. 1988;54:433–9.
Article
CAS
PubMed
Google Scholar
Dunphy WG, Brizuela L, Beach D, Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 1988;54:423–31.
Article
CAS
PubMed
Google Scholar
Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW. Cyclin activation of p34cdc2. Cell. 1990;63:1013–24.
Article
CAS
PubMed
Google Scholar
Felix MA, Labbe JC, Doree M, Hunt T, Karsenti E. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. Nature. 1990;346:379–82. doi:10.1038/346379a0.
Article
CAS
PubMed
Google Scholar
Norel R, Agur Z. A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science. 1991;251:1076–8.
Article
CAS
PubMed
Google Scholar
Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci U S A. 1991;88:9107–11.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tyson JJ. Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A. 1991;88:7328–32.
Article
CAS
PubMed Central
PubMed
Google Scholar
Goldbeter A, Koshland Jr DE. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci U S A. 1981;78:6840–4.
Article
CAS
PubMed Central
PubMed
Google Scholar
Novak B, Tyson JJ. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci. 1993;106:1153–68.
CAS
PubMed
Google Scholar
Novak B, Tyson JJ. Modeling the cell division cycle: M-phase trigger, oscillations and size control. J Theor Biol. 1993;165:101–34.
Article
Google Scholar
Novak B, Tyson JJ. Quantitative analysis of a molecular model of mitotic control in fission yeast. J Theor Biol. 1995;173:283–305.
Article
CAS
Google Scholar
Sha W, Moore J, Chen K, Lassaletta AD, Yi CS, Tyson JJ, et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci U S A. 2003;100:975–80.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pomerening JR, Sontag ED, Ferrell Jr JE. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol. 2003;5:346–51.
Article
CAS
PubMed
Google Scholar
Novak B, Tyson JJ. Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci U S A. 1997;94:9147–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell. 2000;11:369–91.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kumagai A, Dunphy WG. Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol Biol Cell. 1995;6:199–213.
Article
CAS
PubMed Central
PubMed
Google Scholar
Marlovits G, Tyson CJ, Novak B, Tyson JJ. Modeling M-phase control in Xenopus oocyte extracts: the surveillance mechanism for unreplicated DNA. Biophys Chem. 1998;72:169–84.
Article
CAS
PubMed
Google Scholar
Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A. Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol. 2007;9:724–8.
Article
CAS
PubMed
Google Scholar
Cross FR, Archambault V, Miller M, Klovstad M. Testing a mathematical model of the yeast cell cycle. Mol Biol Cell. 2002;13:52–70.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lopez-Aviles S, Kapuy O, Novak B, Uhlmann F. Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature. 2009;459:592–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mirchenko L, Uhlmann F. Sli15(INCENP) dephosphorylation prevents mitotic checkpoint reengagement due to loss of tension at anaphase onset. Curr Biol. 2010;20:1396–401.
Article
CAS
PubMed Central
PubMed
Google Scholar
Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol. 2010;12:185–92.
Article
CAS
PubMed Central
PubMed
Google Scholar
Haskins EF. Stemonitis flavogenita (Myxomycetes) plasmodial phase (aphanoplasmodium). In: Institut Wissenschaftlichen Film. Göttingen: Film E; 2000. 1974.
Google Scholar
Chang JB, Ferrell Jr JE. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature. 2013;500:603–7. doi:10.1038/nature12321.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mochida S, Maslen SL, Skehel M, Hunt T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science. 2010;330:1670–3.
Article
CAS
PubMed
Google Scholar
Gharbi-Ayachi A, Labbe JC, Burgess A, Vigneron S, Strub JM, Brioudes E, et al. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science. 2010;330:1673–7.
Article
CAS
PubMed
Google Scholar
Yu J, Zhao Y, Li Z, Galas S, Goldberg ML. Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. Mol Cell. 2006;22:83–91.
Article
CAS
PubMed
Google Scholar
Vernieri C, Chiroli E, Francia V, Gross F, Ciliberto A. Adaptation to the spindle checkpoint is regulated by the interplay between Cdc28/Clbs and PP2ACdc55. J Cell Biol. 2013;202:765–78. doi:10.1083/jcb.201303033.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang T, Tyson JJ, Novak B. Role for regulated phosphatase activity in generating mitotic oscillations in Xenopus cell-free extracts. Proc Natl Acad Sci U S A. 2013;110:20539–44. doi:10.1073/pnas.1318065110.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cundell MJ, Bastos RN, Zhang T, Holder J, Gruneberg U, Novak B, et al. The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation. Mol Cell. 2013;52:393–405. doi:10.1016/j.molcel.2013.09.005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang Q, Ferrell Jr JE. The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat Cell Biol. 2013;15:519–25. doi:10.1038/ncb2737.
Article
PubMed Central
PubMed
Google Scholar
Alvarez-Fernandez M, Sanchez-Martinez R, Sanz-Castillo B, Gan PP, Sanz-Flores M, Trakala M, et al. Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals. Proc Natl Acad Sci U S A. 2013;110:17374–9. doi:10.1073/pnas.1310745110.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vigneron S, Brioudes E, Burgess A, Labbe JC, Lorca T, Castro A. Greatwall maintains mitosis through regulation of PP2A. EMBO J. 2009;28:2786–93.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tyson JJ, Novak B. Bistability, oscillations, and traveling waves in frog egg extracts. Bull Math Biol. 2015;77:796–816. doi:10.1007/s11538-014-0009-9.
Article
CAS
PubMed
Google Scholar