Skip to main content
Fig. 6 | BMC Biology

Fig. 6

From: A multi-animal tracker for studying complex behaviors

Fig. 6

Worms integrate environmental information preferring richer environments. a Integration experiments were performed by comparing worms’ chemotaxis in three different assay plates. Two of the plates contained only one of the two cues each (e.g., diacetyl (DA) and isoamyl-alcohol (IAA)). The concentrations for the two cues were predetermined via dose-response assays and equipotential concentrations (i.e., attracting the worms to the same extent) were chosen. A third assay plate contained a mixture of both cues, each cue in a concentration that is half of what was used in the single cue assay plate. b Chemotaxis dynamics for the three assays. In the single chemoattractant experiments, we used a volumetric concentration of 0.75 × 10− 5 for DA, and 0.5 × 10− 4 for IAA. Accordingly, the mixture was composed of 0.37 × 10− 5 of DA and 0.25 × 10− 4 of IAA. We fitted a linear curve to the dynamic curves and estimated the linear coefficient (β1) to describe the potential of the cues to attract animals (DA: β1 = 0.5 ± 3.3 × 10–3; IAA: β1 = 0.5 ± 2.1 × 10–3). Chemotaxis towards each of the individual cues was very similar (as pre-calibrated by dose-response assays) indicating their equipotential attraction. The mixture, however, was significantly more attractive than each of cues alone. Shown is an example of a single experiment where approximately 100 worms were loaded on each plate. c The mean projection, the component of the movement towards the target, is significantly higher in the mixture compared to each of the cues alone (P < 2.5 × 10–5 and P < 0.007, compared to DA and IAA alone, respectively). Error bars denote SEM of all tracks together taken in a specific region of the experimental field. These data are composed of 92 run bouts for DA; 96  run bouts for IAA; and 159  run bouts for the mixture

Back to article page