Skip to main content
Fig. 1 | BMC Biology

Fig. 1

From: Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress

Fig. 1

REDD1 deletion exacerbates energetic stress. a AMPK phosphorylation, b glycogen content, and c muscle weight of gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) in 6-month-old WT and REDD1 KO mice exposed to 2 weeks of hypobaric hypoxia (6500 m) relative to normoxic controls (n = 7 per group, except for b KO n = 6). d AMPK phosphorylation, e glycogen content, and f weight of gastrocnemius (GAS), tibialis anterior (TA), and perigonadal white adipose tissue (WAT) in 6-month-old WT and REDD1 KO mice in response to food deprivation for 16 h (d and e) or 48 h (f) relative to fed controls (n = 8 per group except for f WT n = 6 and KO n = 7). g AMPK phosphorylation (n = 6 per group) and h glycogen content (WT n = 8 and KO n = 7) in skeletal muscle after a 90-min running exercise by 6-month-old WT and REDD1 KO mice relative to sedentary controls. i Maximum aerobic velocity (MAV) in 6-month-old WT and REDD1 KO mice (n = 11 per group). For clarity, we presented here only data normalized to their respective controls. All non-normalized values are available in Additional file 2: Figure S1. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. corresponding WT group, and $p < 0.05, $$p < 0.01, and $$$p < 0.001 vs. corresponding to control group (same genotype) by two-way ANOVA and Fisher post-hoc test (a–h) or unpaired t-test (i). GAS gastrocnemius, KO knockout, MAV maximum aerobic velocity, SOL soleus, TA tibialis anterior, WAT white adipose tissue, WT wild type

Back to article page