Skip to main content
Fig. 6 | BMC Biology

Fig. 6

From: Evolutionary dynamics and structural consequences of de novo beneficial mutations and mutant lineages arising in a constant environment

Fig. 6

Recurrent mutations in lamB regulators malT and malK. a Location and frequency of malT mutations on the primary structure. Circles represent alleles from chemostat 1, triangles represent alleles from chemostat 2, and squares represent alleles from chemostat 3. Scale bar (0–100) indicates frequency attained by a particular mutant in an experimental population. The MalT protein consists of four structural domains (DT1–4) that function in nucleotide binding, effector sensing, and interaction with MalK (see text for details). b Crystal structure of MalT DT3 with residues identified by Richet et al. [71] as important for MalT/MalK interaction are colored. Asn637 and Arg634 were mutated in our data set and are colored green and blue, respectively. Residues that are part of the MalK contact site but were not mutated are colored yellow. c Location and frequency of malK mutations on the primary structure. The N-terminal nucleotide-binding domain is colored white, and the C-terminal regulatory domain is shown in stipple. d Location of mutations on the 3D structure of a single MalK monomer. The C-terminal regulatory domain is colored light gray, and the N-terminal nucleotide-binding domain is colored dark gray. Observed nonsense mutations (blue, aa 339, 352), missense mutations observed here and reported to cause constitutive mal expression (purple, aa 267 and 297), missense mutations observed here but not reported elsewhere (cyan, aa 51, 225, 231, 253, 286, 296, 298, 349), and missense mutations reported to cause increased mal expression but not seen in this study (orange, aa 72, 248, 250, 251, 262, 268, 291, 346, 350) all occur in the same region of the C-terminal regulatory domain. e View of a MalK monomer with domains and mutations as in b rotated 180° along the y-axis

Back to article page