Conner JK. Artificial Selection. In: Kliman R, editor. Encyclopedia of Evolutionary Biology. Oxford: Academic Press; 2016. p. 107–13.
Chapter
Google Scholar
Kukekova AV, Johnson JL, Xiang X, Feng S, Liu S, Rando HM, et al. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat Ecol Evol. 2018;2:1479–91.
Article
PubMed
PubMed Central
Google Scholar
Castro JP, Yancoskie MN, Marchini M, Belohlavy S, Hiramatsu L, Kučka M, et al. An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. Elife. 2019;8:e42014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulding EG. Experimental evolution: concepts, methods, and applications of selection experiments. 1st ed. Garland T, Rose MR, editors. Berkeley, CA: University of California Press; 2009.
Google Scholar
Schueler L. Mouse strain Fzt:DU and its use as model in animal breeding research. Arch für Tierzucht (Archives Anim Breeding). 1985;28:357–63.
Google Scholar
Dietl G, Langhammer M, Renne U. Model simulations for genetic random drift in the outbred strain Fzt: DU. Arch für Tierzucht (Archives Anim Breeding). 2004;47:595–604.
Article
Google Scholar
Langhammer M, Michaelis M, Hartmann MF, Wudy SA, Sobczak A, Nürnberg G, et al. Reproductive performance primarily depends on the female genotype in a two-factorial breeding experiment using high-fertility mouse lines. Reproduction. 2017;153:361–8.
Article
CAS
PubMed
Google Scholar
Renne U, Langhammer M, Brenmoehl J, Walz C, Zeissler A, Tuchscherer A, et al. Lifelong obesity in a polygenic mouse model prevents age- and diet-induced glucose intolerance– obesity is no road to late-onset diabetes in mice. PLoS One. 2013;8:e79788.
Article
PubMed
PubMed Central
Google Scholar
Brenmoehl J, Walz C, Renne U, Ponsuksili S, Wolf C, Langhammer M, et al. Metabolic adaptations in the liver of born long-distance running mice. Med Sci Sport Exerc. 2013;45:841–50.
Article
CAS
Google Scholar
Ohde D, Moeller M, Brenmoehl J, Walz C, Ponsuksili S, Schwerin M, et al. Advanced running performance by genetic predisposition in male Dummerstorf marathon mice (DUhTP) reveals higher sterol regulatory element-binding protein (SREBP) related mRNA expression in the liver and higher serum levels of progesterone. PLoS One. 2016;11:e0146748.
Article
PubMed
PubMed Central
Google Scholar
Holt M, Nicholas FW, James JW, Moran C, Martin ICA. Development of a highly fecund inbred strain of mice. Mamm Genome. 2004;15:951–9.
Article
PubMed
Google Scholar
Bayon Y, Fuente L, Primitivo FS. Selection for increased and decreased total number of young born in the first three parities in mice. Genet Sel Evol. 1988;20:259–66.
Article
CAS
Google Scholar
Joakimsen Ø, Baker RL. Selection for Litter Size in Mice. Acta Agric Scand. 1977;27:301–18.
Article
Google Scholar
Ribeiro EL, van Engelen MA, Nielsen MK. Embryonal survival to 6 days in mice selected on different criteria for litter size. J Anim Sci. 1996;74:610–5.
Article
CAS
PubMed
Google Scholar
Bünger L, Laidlaw A, Bulfield G, Eisen EJ, Medrano JF, Bradford GE, et al. Inbred lines of mice derived from long-term growth selected lines: unique resources for mapping growth genes. Mamm Genome. 2001;12:678–86.
Article
PubMed
Google Scholar
Chan YF, Jones FC, McConnell E, Bryk J, Bünger L, Tautz D. Parallel selection mapping using artificially selected mice reveals body weight control loci. Curr Biol. 2012;22:794–800.
Article
CAS
PubMed
Google Scholar
Schwartz NL, Patel BA, Garland T, Horner AM. Effects of selective breeding for high voluntary wheel-running behavior on femoral nutrient canal size and abundance in house mice. J Anat. 2018;233:193–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei J, Ramanathan P, Thomson PC, Martin IC, Moran C, Williamson P. An integrative genomic analysis of the superior fecundity phenotype in QSi5 mice. Mol Biotechnol. 2013;53:217–26.
Article
CAS
PubMed
Google Scholar
Hillis DA, Yadgary L, Weinstock GM, Pardo-Manuel de Villena F, Pomp D, Fowler AS, et al. Genetic basis of aerobically supported voluntary exercise: results from a selection experiment with house mice. Genetics. 2020;216:781–804.
Langhammer M, Wytrwat E, Michaelis M, Schön J, Tuchscherer A, Reinsch N, et al. Two mouse lines selected for large litter size display different lifetime fecundities. Reproduction. 2021;161:721–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller-Eigner A, Sanz-Moreno A, De-Diego I, Venkatasubramani AV, Langhammer M, Gerlini R, et al. Dietary intervention improves health metrics and life expectancy of the genetically obese DU6 (Titan) mouse. bioRxiv. 2021. https://0-doi-org.brum.beds.ac.uk/10.1101/2020.05.11.088625.
Langhammer M, Michaelis M, Hoeflich A, Sobczak A, Schoen J, Weitzel JM. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility. Reproduction. 2014;147:427–33.
Article
CAS
PubMed
Google Scholar
Michaelis M, Sobczak A, Koczan D, Langhammer M, Reinsch N, Schön J, et al. Testicular transcriptional signatures associated with high fertility. Reproduction. 2018;155:219–31.
Article
CAS
PubMed
Google Scholar
Meng J, Mayer M, Wytrwat E, Langhammer M, Reinsch N. Turning observed founder alleles into expected relationships in an intercross population. G3 Genes, Genomes. Genet. 2019;9:889–99.
Google Scholar
Bünger L, Renne U, Dietl G, Kuhla S. Long-term selection for protein amount over 70 generations in mice. Genet Res. 1998;72:93–109.
Article
PubMed
Google Scholar
Bünger L, Renne U, Buis RC. Body weight limits in mice - long term selection and single genes. In: Reeve ECR, editor. Chicago: Fitzroy Dearborn; 2001. p. 337–60.
Google Scholar
Falkenberg H, Langhammer M, Renne U. Comparison of biochemical blood traits after long-term selection on high or low locomotory activity in mice. Arch Anim Breed. 2000;43:513–22.
Article
CAS
Google Scholar
Ohde D, Brenmoehl J, Walz C, Tuchscherer A, Wirthgen E, Hoeflich A. Comparative analysis of hepatic miRNA levels in male marathon mice reveals a link between obesity and endurance exercise capacities. J Comp Physiol B Biochem Syst Environ Physiol. 2016;186:1067–78.
Article
CAS
Google Scholar
Brenmoehl J, Ohde D, Albrecht E, Walz C, Tuchscherer A, Hoeflich A. Browning of subcutaneous fat and higher surface temperature in response to phenotype selection for advanced endurance exercise performance in male DUhTP mice. J Comp Physiol B Biochem Syst Environ Physiol. 2017;187:361–73.
Article
CAS
Google Scholar
Brenmoehl J, Walz C, Spitschak M, Wirthgen E, Walz M, Langhammer M, et al. Partial phenotype conversion and differential trait response to conditions of husbandry in mice. J Comp Physiol B Biochem Syst Environ Physiol. 2018;188:527–39.
Article
CAS
Google Scholar
Brenmoehl J, Ohde D, Walz C, Langhammer M, Schultz J, Hoeflich A. Analysis of activity-dependent energy metabolism in mice reveals regulation of mitochondrial fission and fusion mRNA by voluntary physical exercise in subcutaneous fat from male marathon mice (DUhTP). Cells. 2020;9:2697.
Article
CAS
PubMed Central
Google Scholar
Walz C, Brenmoehl J, Trakooljul N, Noce A, Caffier C, Ohde D, et al. Control of protein and energy metabolism in the pituitary gland in response to three-week running training in adult male mice. Cells. 2021;10:736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walz M, Chau L, Walz C, Sawitzky M, Ohde D, Brenmoehl J, et al. Overlap of Peak Growth Activity and Peak IGF-1 to IGFBP Ratio: Delayed increase of IGFBPs versus IGF-1 in serum as a mechanism to speed up and down postnatal weight gain in mice. Cells. 2020;9:1516.
Article
CAS
PubMed Central
Google Scholar
Vanselow J, Kucia M, Langhammer M, Koczan D, Rehfeldt C, Metges CC. Hepatic expression of the GH/JAK/STAT/IGF pathway, acute-phase response signalling and complement system are affected in mouse offspring by prenatal and early postnatal exposure to maternal high-protein diet. Eur J Nutr. 2011;50:611–23.
Article
CAS
PubMed
Google Scholar
Kucia M, Langhammer M, Goers S, Albrecht E, Hammon HM, Nrnberg G, et al. High-protein diet during gestation and lactation affects mammary gland mRNA abundance, milk composition and pre-weaning litter growth in mice. Animal. 2011;5:268–77.
Article
CAS
PubMed
Google Scholar
Vanselow J, Kucia M, Langhammer M, Koczan D, Metges CC. Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring. Eur J Nutr. 2016;55:917–30.
Article
CAS
PubMed
Google Scholar
Schüler L, Renne U, Bünger L. Selection for litter weight on the 21st day after long-term selection for first litter performance in laboratory mice. J Anim Breed Genet. 1990;107:161–8.
Article
Google Scholar
Spitschak M, Langhammer M, Schneider F, Renne U, Vanselow J. Two high-fertility mouse lines show differences in component fertility traits after long-term selection. Reprod Fertil Dev. 2007;19:815.
Article
PubMed
Google Scholar
Vanselow J, Nurnberg G, Koczan D, Langhammer M, Thiesen H-JJ, Reinsch N, et al. Expression profiling of a high-fertility mouse line by microarray analysis and qPCR. BMC Genomics. 2008;9:307.
Article
PubMed
PubMed Central
Google Scholar
Alm H, Kuhlmann S, Langhammer M, Tuchscherer A, Torner H, Reinsch N. Occurrence of polyovular follicles in mouse lines selected for high fecundity. J Reprod Dev. 2010;56:449–53.
Article
PubMed
Google Scholar
Michaelis M, Langhammer M, Höflich A, Reinsch N, Schön J, Weitzel JM, et al. Initial characterization of an outbreed mouse model for male factor (in)fertility. Andrology. 2013;1:772–8.
Article
CAS
PubMed
Google Scholar
Hu J, Ng PC. Predicting the effects of frameshifting indels. Genome Biol. 2012;13:R9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartonicek N, Clark MB, Quek XC, Torpy JR, Pritchard AL, Maag JLV, et al. Intergenic disease-associated regions are abundant in novel transcripts. Genome Biol. 2017;18:241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17:19–32.
Article
CAS
PubMed
Google Scholar
Kim E-S, Cole JB, Huson H, Wiggans GR, Van Tassell CP, Crooker BA, et al. Effect of artificial selection on runs of homozygosity in US Holstein cattle. PLoS One. 2013;8:e80813.
Article
PubMed
PubMed Central
Google Scholar
Xue Y, Prado-Martinez J, Sudmant PH, Narasimhan V, Ayub Q, Szpak M, et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science (80- ). 2015;348:242–5.
Laurie CC, Nickerson DA, Anderson AD, Weir BS, Livingston RJ, Dean MD, et al. Linkage disequilibrium in wild mice. PLoS Genet. 2007;3:e144.
Article
PubMed
PubMed Central
Google Scholar
Davis BW, Williams FJ, Ostrander EA, Parker HG, Plassais J, Kim J, et al. Genetic selection of athletic success in sport-hunting dogs. Proc Natl Acad Sci. 2018;115:E7212–21.
PubMed
PubMed Central
Google Scholar
Kim H, Lee T, Park W, Lee JW, Kim J, Lee B-Y, et al. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res. 2013;20:287–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foote AD, Vijay N, Ávila-Arcos MC, Baird RW, Durban JW, Fumagalli M, et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat Commun. 2016;7:11693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gage JL, Jarquin D, Romay C, Lorenz A, Buckler ES, Kaeppler S, et al. The effect of artificial selection on phenotypic plasticity in maize. Nat Commun. 2017;8:1348.
Article
PubMed
PubMed Central
Google Scholar
Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55.
Article
CAS
PubMed
Google Scholar
Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet. 2013;14:125–38.
Article
CAS
PubMed
Google Scholar
Johnson ME, Viggiano L, Bailey JA, Abdul-Rauf M, Goodwin G, Rocchi M, et al. Positive selection of a gene family during the emergence of humans and African apes. Nature. 2001;413:514–9.
Article
CAS
PubMed
Google Scholar
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paudel Y, Madsen O, Megens HJ, Frantz LAF, Bosse M, Bastiaansen JWM, et al. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics. 2013;14:449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Jiang J, Yang S, Hou Y, Liu GE, Zhang S, et al. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genomics. 2017;18:265.
Article
PubMed
PubMed Central
Google Scholar
Zhang RQ, Wang JJ, Zhang T, Zhai HL, Shen W. Copy-number variation in goat genome sequence: a comparative analysis of the different litter size trait groups. Gene. 2019;696:40–6.
Article
CAS
PubMed
Google Scholar
Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, et al. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics. 2012;13:733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amsterdam A, Dantes A, Liscovitch M. Role of phospholipase-D and phosphatidic acid in mediating gonadotropin-releasing hormone-induced inhibition of preantral granulosa cell differentiation. Endocrinology. 1994;135:1205–11.
Article
CAS
PubMed
Google Scholar
Adhikari D, Zheng W, Shen Y, Gorre N, Hämäläinen T, Cooney AJ, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2009;19:397–410.
Article
PubMed
PubMed Central
Google Scholar
Tuppi M, Kehrloesser S, Coutandin DW, Rossi V, Luh LM, Strubel A, et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol. 2018;25:261–9.
Article
CAS
PubMed
Google Scholar
Böing M, Brand-Saberi B, Napirei M. Murine transcription factor Math6 is a regulator of placenta development. Sci Rep. 2018;8:14997.
Article
PubMed
PubMed Central
Google Scholar
Qiu Y, Sun S, Yu X, Zhou J, Cai W, Qian L. Carboxyl ester lipase is highly conserved in utilizing maternal supplied lipids during early development of zebrafish and human. Biochim Biophys Acta - Mol Cell Biol Lipids. 1865;2020:158663.
Google Scholar
Miller R, Lowe ME. Carboxyl ester lipase from either mother’s milk or the pancreas is required for efficient dietary triglyceride digestion in suckling mice. J Nutr. 2008;138:927–30.
Article
CAS
PubMed
Google Scholar
Kosova G, Scott NM, Niederberger C, Prins GS, Ober C. Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet. 2012;90:950–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coster A, Madsen O, Heuven HCM, Dibbits B, Groenen MAM, van Arendonk JAM, et al. The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS One. 2012;7:e31825.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magee DA, Berry DP, Berkowicz EW, Sikora KM, Howard DJ, Mullen MP, et al. Single nucleotide polymorphisms within the bovine DLK1-DIO3 imprinted domain are associated with economically important production traits in cattle. J Hered. 2011;102:94–101.
Article
CAS
PubMed
Google Scholar
Tao L, He XY, Jiang YT, Lan R, Li M, Li ZM, et al. Combined approaches to reveal genes associated with litter size in Yunshang black goats. Anim Genet. 2020;51:924–34.
Article
CAS
PubMed
Google Scholar
Morgan K, Harr B, White MA, Payseur BA, Turner LM. Disrupted gene networks in subfertile hybrid house mice. Mol Biol Evol. 2020;37:1547–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Osthold S, Veitinger S, et al. Characterization of the Olfactory receptors expressed in human spermatozoa. Front Mol Biosci. 2016;2:73.
Article
PubMed
PubMed Central
Google Scholar
Daei-Farshbaf N, Aflatoonian R, Amjadi FS, Taleahmad S, Ashrafi M, Bakhtiyari M. Expression pattern of olfactory receptor genes in human cumulus cells as an indicator for competent oocyte selection. Turkish J Biol. 2020;44:371–80.
Article
CAS
Google Scholar
Arck P, Hansen PJ, Jericevic BM, Piccinni MP, Szekeres-Bartho J. Progesterone during pregnancy: endocrine-immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol. 2007;58:268–79.
Article
CAS
PubMed
Google Scholar
Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94:8–16.
Article
CAS
PubMed
Google Scholar
Zeberg H, Kelso J, Pääbo S. The Neandertal Progesterone Receptor. Mol Biol Evol. 2020;37:2655–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv X, He C, Huang C, Wang H, Hua G, Wang Z, et al. Timely expression and activation of YAP1 in granulosa cells is essential for ovarian follicle development. FASEB J. 2019;33:10049–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anand-Ivell R, Ivell R. Regulation of the reproductive cycle and early pregnancy by relaxin family peptides. Mol Cell Endocrinol. 2014;382:472–9.
Article
CAS
PubMed
Google Scholar
Lei W, Feng XH, Deng WB, Ni H, Zhang ZR, Jia B, et al. Progesterone and DNA damage encourage uterine cell proliferation and decidualization through up-regulating ribonucleotide reductase 2 expression during early pregnancy in mice. J Biol Chem. 2012;287:15174–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuneki H, Wada T, Sasaoka T. Role of orexin in the regulation of glucose homeostasis. Acta Physiol. 2010;198:335–48.
Article
CAS
Google Scholar
Taussat S, Boussaha M, Ramayo-Caldas Y, Martin P, Venot E, Cantalapiedra-Hijar G, et al. Gene networks for three feed efficiency criteria reveal shared and specific biological processes. Genet Sel Evol. 2020;52:1–14.
Article
Google Scholar
Zhang Y, Kent JW, Olivier M, Ali O, Broeckel U, Abdou RM, et al. QTL-based association analyses reveal novel genes influencing pleiotropy of metabolic syndrome (MetS). Obesity. 2013;21:2099–111.
Article
CAS
PubMed
Google Scholar
Liu B, Mao N. Smad5: Signaling roles in hematopoiesis and osteogenesis. Int J Biochem Cell Biol. 2004;36:766–70.
Article
CAS
PubMed
Google Scholar
Taye M, Yoon J, Dessie T, Cho S, Oh SJ, Lee HK, et al. Deciphering signature of selection affecting beef quality traits in Angus cattle. Genes and Genomics. 2018;40:63–75.
Article
CAS
PubMed
Google Scholar
Jiao S, Maltecca C, Gray KA, Cassady JP. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association. J Anim Sci. 2014;92:2846–60.
Article
CAS
PubMed
Google Scholar
Xu H, Li H, Wang Z, Abudureyimu A, Yang J, Cao X, et al. A deletion downstream of the CHCHD7 gene is associated with growth traits in sheep. Animals. 2020;10:1–10.
Article
Google Scholar
An B, Xia J, Chang T, Wang X, Xu L, Zhang L, et al. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Anim Genet. 2019;50:386–90.
Article
CAS
PubMed
Google Scholar
Schrauwen I, Giese APJ, Aziz A, Lafont DT, Chakchouk I, Santos-Cortez RLP, et al. FAM92A underlies nonsyndromic postaxial polydactyly in humans and an abnormal limb and digit skeletal phenotype in mice. J Bone Miner Res. 2019;34:375–86.
Article
CAS
PubMed
Google Scholar
Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat Commun. 2018;9:1–15.
Article
Google Scholar
Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ, et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat Commun. 2017;8:1–11.
Article
CAS
Google Scholar
Göddeke S, Knebel B, Fahlbusch P, Hörbelt T, Poschmann G, Van De Velde F, et al. CDH13 abundance interferes with adipocyte differentiation and is a novel biomarker for adipose tissue health. Int J Obes. 2018;42:1039–50.
Article
Google Scholar
Teng MS, Wu S, Hsu LA, Chou HH, Ko YL. Differential associations between CDH13 genotypes, adiponectin levels, and circulating levels of cellular adhesive molecules. Mediators Inflamm. 2015;2015:635751.
Article
PubMed
PubMed Central
Google Scholar
Philippova M, Joshi MB, Kyriakakis E, Pfaff D, Erne P, Resink TJ. A guide and guard: the many faces of T-cadherin. Cell Signal. 2009;21:1035–44.
Article
CAS
PubMed
Google Scholar
Lin JC, Chi YL, Peng HY, Lu YH. RBM4–Nova1–SRSF6 splicing cascade modulates the development of brown adipocytes. Biochim Biophys Acta. 1859;2016:1368–79.
Google Scholar
Keller MA, Zander U, Fuchs JE, Kreutz C, Watschinger K, Mueller T, et al. A gatekeeper helix determines the substrate specificity of Sjögren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase. Nat Commun. 2014;5:1–12.
Article
Google Scholar
Loro E, Jang C, Quinn WJ, Baur JA, Arany ZP, Khurana TS. Effect of interleukin-15 receptor alpha ablation on the metabolic responses to moderate exercise simulated by in vivo isometric muscle contractions. Front Physiol. 2019;10:1439.
Article
PubMed
PubMed Central
Google Scholar
Jiao H, Kaaman M, Dungner E, Kere J, Arner P, Dahlman I. Association analysis of positional obesity candidate genes based on integrated data from transcriptomics and linkage analysis. Int J Obes. 2008;32:816–25.
Article
CAS
Google Scholar
Duran J, Navarro-Sabate A, Pujol A, Perales JC, Manzano A, Obach M, et al. Overexpression of ubiquitous 6-phosphofructo-2-kinase in the liver of transgenic mice results in weight gain. Biochem Biophys Res Commun. 2008;365:291–7.
Article
CAS
PubMed
Google Scholar
Sagara S, Osanai T, Itoh T, Izumiyama K, Shibutani S, Hanada K, et al. Overexpression of coupling factor 6 attenuates exercise-induced physiological cardiac hypertrophy by inhibiting PI3K/Akt signaling in mice. J Hypertens. 2012;30:778–86.
Article
CAS
PubMed
Google Scholar
Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science (80- ). 2021;372:eabf7117.
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12:966–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017;8:1–11.
Article
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122.
Article
PubMed
PubMed Central
Google Scholar
Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, et al. OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–11.
Article
CAS
PubMed
Google Scholar
Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered information at NCBI. Nucleic Acids Res. 2011;39:D52–7.
Article
CAS
PubMed
Google Scholar
Ge SX, Jung D, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.
Article
CAS
PubMed
Google Scholar
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9.
Article
Google Scholar
Walsh B, Lynch M. Evolution and selection of quantitative traits. 1st ed. Oxford: Oxford University Press; 2018.
Book
Google Scholar
Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975;31:423–47.
Article
CAS
PubMed
Google Scholar
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.
Article
CAS
PubMed
Google Scholar
Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD, et al. Wham: identifying structural variants of biological consequence. PLoS Comput Biol. 2015;11:e1004572.
Article
PubMed
PubMed Central
Google Scholar
Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15:R84.
Article
PubMed
PubMed Central
Google Scholar
Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 2019;20:1–18.
Article
Google Scholar
Pirooznia M, Goes F, Zandi PP. Whole-genome CNV analysis: advances in computational approaches. Front Genet. 2015;6:138.
Article
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
Article
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–62.
Article
CAS
PubMed
Google Scholar
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, et al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009;7:1000112.
Article
Google Scholar
Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Ridwan Amode M, et al. Ensembl 2021. Nucleic Acids Res. 2021;49:D884–91.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Broad Institute. Picard Toolkit. http://broadinstitute.github.io/picard/.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auwera GA, Carneiro MO, Hartl C, Poplin R, Angel G, Levy-Moonshine A. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43:11.10.1–11.10.33.
Article
Google Scholar
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017. https://0-doi-org.brum.beds.ac.uk/10.1101/201178.
Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 2020;48:D682–8.
CAS
PubMed
Google Scholar
Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477:289–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avvaru AK, Sharma D, Verma A, Mishra RK, Sowpati DT. MSDB: a comprehensive, annotated database of microsatellites. Nucleic Acids Res. 2020;48:D155–9.
Article
PubMed
Google Scholar
Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang LLL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12:363–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–8.
Article
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
Article
PubMed
PubMed Central
Google Scholar
Purcell S, Chang C. PLINK 2. http://www.cog-genomics.org/plink/2.0/. Accessed 2 Mai 2019.
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFtools/RoH: A hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016;32:1749–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frayer ME, Payseur BA. Demographic history shapes genomic ancestry in hybrid zones. Ecol Evol. 2021;11:10290–302.
Article
PubMed
PubMed Central
Google Scholar
Cox A, Ackert-Bicknell CL, Dumont BL, Yueming D, Bell JT, Brockmann GA, et al. A new standard genetic map for the laboratory mouse. Genetics. 2009;182:1335–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weir BS, Cockerham CC. Estimating F-Statistics for the analysis of population structure. Evolution (N Y). 1984;38:1358–70.
CAS
Google Scholar
Lai FN, Zhai HL, Cheng M, Ma JY, Cheng SF, Ge W, et al. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci Rep. 2016;6:1–12.
Article
Google Scholar
Wang GD, Zhai W, Yang HC, Fan RX, Cao X, Zhong L, et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat Commun. 2013;4:1860.
Article
PubMed
Google Scholar
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979;76:5269–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9:e1003118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.
CAS
PubMed
Google Scholar
The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47:D330.
Article
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545.
Article
CAS
PubMed
Google Scholar
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:W77–83.
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33:W741–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mouse Genome Informatics. http://www.informatics.jax.org/downloads/reports/mgi_mrk_coord.rpt. Accessed 22 Feb 2021.
Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE, Anagnostopoulos A, et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 2019;47:D801–6.
Article
CAS
PubMed
Google Scholar
Core R. Team. R: a language and environment for statistical computing http://www.r-project.org/. Vienna, Austria: R Foundation for Statistical. Computing. 2020.
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.
Article
Google Scholar
Whole Genome Sequencing outbred mouse lines selected for high fertility, body size and endurance. The European Nucleotide Archive. 2021. http://www.ebi.ac.uk/ena/browser/view/prjeb44248.
Genomic characterization of world’s longest selection experiment in mouse reveals the complexity of polygenic traits. The European Variation Archive. 2021. http://www.ebi.ac.uk/eva/?eva-study=prjeb45961.
WGS analysis of the Dummerstorf mouse lines. GitHub. 2021. http://www.github.com/sosfert/mmu_dummerstorf_wgs.