Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al. Orchestrating single-cell analysis with bioconductor. Nat Methods. 2020;17:137–45. https://0-doi-org.brum.beds.ac.uk/10.1038/s41592-019-0654-x.
Article
CAS
PubMed
Google Scholar
Bekele Y, Lakshmikanth T, Chen Y, Mikes J, Nasi A, Petkov S, et al. Mass cytometry identifies distinct CD4+ T cell clusters distinguishing HIV-1-infected patients according to antiretroviral therapy initiation. JCI Insight. 2019;4:e125442.
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;P10008. https://0-doi-org.brum.beds.ac.uk/10.1088/1742-5468/2008/10/p10008.
Bossel Ben-Moshe N, Hen-Avivi S, Levitin N, Yehezkel D, Oosting M, Joosten LAB, et al. Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells. Nat Commun. 2019;10:3266. https://0-doi-org.brum.beds.ac.uk/10.1038/s41467-019-11257-y Gene expression omnibus (GEO) https://identifiers.org/geo:GSE122084 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Brisslert M, Bokarewa M, Larsson P, Wing K, Collins LV, Tarkowski A. Phenotypic and functional characterization of human CD25+ B cells. Immunology. 2006;117:548–57. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1365-2567.2006.02331.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée V-P, Mendoza A, et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell. 2019;179:846–863.e24. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2019.09.035 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE137710 (2019) and https://identifiers.org/geo:GSE130201 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Buttarello M, Plebani M. Automated blood cell counts: state of the art. Am J Clin Pathol. 2008;130:104–16. https://0-doi-org.brum.beds.ac.uk/10.1309/EK3C7CTDKNVPXVTN.
Article
PubMed
Google Scholar
Buus TB, Herrera A, Ivanova E, Mimitou E, Cheng A, Herati RS, et al. Improving oligo-conjugated antibody signal in multimodal single-cell analysis. Elife. 2021;10:e61973. https://0-doi-org.brum.beds.ac.uk/10.7554/eLife.61973 Figshare 10.6084/m9.figshare.c.5018987.v1, 2020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carr TM, Wheaton JD, Houtz GM, Ciofani M. JunB promotes Th17 cell identity and restrains alternative CD4(+) T-cell programs during inflammation. Nat Commun. 2017;8:301. https://0-doi-org.brum.beds.ac.uk/10.1038/s41467-017-00380-3 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE98414 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122:1661–74. https://0-doi-org.brum.beds.ac.uk/10.1161/CIRCRESAHA.117.312509 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE97310, 2018.
Article
CAS
PubMed
Google Scholar
Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res. 2018;114:1360–71. https://0-doi-org.brum.beds.ac.uk/10.1093/cvr/cvy109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, Newman RM, et al. Functional impairment of HIV-specific CD8(+) T cells precedes aborted spontaneous control of viremia. Immunity. 2021;54:2372–2384.e7. https://0-doi-org.brum.beds.ac.uk/10.1016/j.immuni.2021.08.007 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE168296 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity. 2019;50:1132–48. https://0-doi-org.brum.beds.ac.uk/10.1016/j.immuni.2019.04.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Damen MSMA, Popa CD, Netea MG, Dinarello CA, Joosten LAB. Interleukin-32 in chronic inflammatory conditions is associated with a higher risk of cardiovascular diseases. Atherosclerosis. 2017;264:83–91. https://0-doi-org.brum.beds.ac.uk/10.1016/j.atherosclerosis.2017.07.005.
Article
CAS
PubMed
Google Scholar
Edfeldt K, Swedenborg J, Hansson GK, Yan Z. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation. 2002;105:1158–61. https://0-doi-org.brum.beds.ac.uk/10.1161/01.CIR.0000012489.17433.31.
Article
CAS
PubMed
Google Scholar
Ehinger E, Ghosheh Y, Pramod AB, Lin J, Hanna DB, Mueller K, et al. Classical monocyte transcriptomes reveal significant anti-inflammatory statin effect in women with chronic HIV. Cardiovasc Res. 2021;117:1166–77. https://0-doi-org.brum.beds.ac.uk/10.1093/cvr/cvaa188.
Article
CAS
PubMed
Google Scholar
Fan HC, Fu GK, Fodor SPA. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347. https://0-doi-org.brum.beds.ac.uk/10.1126/science.1258367.
Fernandez DM, Giannarelli C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat Rev Cardiol. 2022;19:43–58. https://0-doi-org.brum.beds.ac.uk/10.1038/s41569-021-00589-2.
Article
PubMed
Google Scholar
Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir E-AD, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25:1576–88. https://0-doi-org.brum.beds.ac.uk/10.1038/s41591-019-0590-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funderburg NT, Zidar DA, Shive C, Lioi A, Mudd J, Musselwhite LW, et al. Shared monocyte subset phenotypes in HIV-1 infection and in uninfected subjects with acute coronary syndrome. Blood. 2012;120:4599–608. https://0-doi-org.brum.beds.ac.uk/10.1182/blood-2012-05-433946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gewaltig J, Kummer M, Koella C, Cathomas G, Biedermann BC. Requirements for CD8 T-cell migration into the human arterial wall. Hum Pathol. 2008;39:1756–62. https://0-doi-org.brum.beds.ac.uk/10.1016/j.humpath.2008.04.018.
Article
CAS
PubMed
Google Scholar
Golinski M-L, Demeules M, Derambure C, Riou G, Maho-Vaillant M, Boyer O, et al. CD11c(+) B cells are mainly memory cells, precursors of antibody secreting cells in healthy donors. Front Immunol. 2020;11:32. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2020.00032 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE112515 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, et al. Human monocyte heterogeneity as revealed by high-dimensional mass cytometry. Arterioscler Thromb Vasc Biol. 2019;39:25–36. https://0-doi-org.brum.beds.ac.uk/10.1161/ATVBAHA.118.311022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, Wang B, Han N, Zhao Y, Song C, Feng X, et al. CD14(high)CD16(+) rather than CD14(low)CD16(+) monocytes correlate with disease progression in chronic HIV-infected patients. J Acquir Immune Defic Syndr. 2009;52:553–9. https://0-doi-org.brum.beds.ac.uk/10.1097/qai.0b013e3181c1d4fe.
Article
CAS
PubMed
Google Scholar
Hanna DB, Post WS, Deal JA, Hodis HN, Jacobson LP, Mack WJ, et al. HIV infection is associated with progression of subclinical carotid atherosclerosis. Clin Infect Dis. 2015;61:640–50. https://0-doi-org.brum.beds.ac.uk/10.1093/cid/civ325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hearps AC, Maisa A, Cheng W-J, Angelovich TA, Lichtfuss GF, Palmer CS, et al. HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS. 2012;26:843–53. https://0-doi-org.brum.beds.ac.uk/10.1097/QAD.0b013e328351f756.
Article
CAS
PubMed
Google Scholar
Heine GH, Ulrich C, Seibert E, Seiler S, Marell J, Reichart B, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 2008;73:622–9. https://0-doi-org.brum.beds.ac.uk/10.1038/sj.ki.5002744.
Article
CAS
PubMed
Google Scholar
Hodis HN, Mack WJ, Lobo RA, Shoupe D, Sevanian A, Mahrer PR, et al. Estrogen in the prevention of atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2001;135:939–53. https://0-doi-org.brum.beds.ac.uk/10.7326/0003-4819-135-11-200112040-00005.
Article
CAS
PubMed
Google Scholar
Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ahmad F, Ballmaier M, et al. Phenotypically and functionally distinct subsets contribute to the expansion of CD56-/CD16+ natural killer cells in HIV infection. AIDS. 2010;24:1823–34. https://0-doi-org.brum.beds.ac.uk/10.1097/QAD.0b013e32833b556f.
Article
CAS
PubMed
Google Scholar
Hoppstädter J, Ammit AJ. Role of dual-specificity phosphatase 1 in glucocorticoid-driven anti-inflammatory responses. Front Immunol. 2019;10:1446. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2019.01446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol. 2012;3:302. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2012.00302.
Article
PubMed
PubMed Central
Google Scholar
Kaplan RC, Kingsley LA, Gange SJ, Benning L, Jacobson LP, Lazar J, et al. Low CD4+ T-cell count as a major atherosclerosis risk factor in HIV-infected women and men. AIDS. 2008;22:1615–24. https://0-doi-org.brum.beds.ac.uk/10.1097/QAD.0b013e328300581d.
Article
PubMed
Google Scholar
Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, Miao VN, et al. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat Med. 2020;26:511–8. https://0-doi-org.brum.beds.ac.uk/10.1038/s41591-020-0799-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S-H, Han S-Y, Azam T, Yoon D-Y, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity. 2005;22:131–42. https://0-doi-org.brum.beds.ac.uk/10.1016/j.immuni.2004.12.003.
Article
CAS
PubMed
Google Scholar
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx transcription factors in T cells-what is beyond thymic development? Front Immunol. 2021;12:701924. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2021.701924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotliarov Y, Sparks R, Martins AJ, Mule MP, Lu Y, Goswami M, et al. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nat Med. 2020:618–29. https://0-doi-org.brum.beds.ac.uk/10.1038/s41591-020-0769-8.
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26. https://0-doi-org.brum.beds.ac.uk/10.18637/jss.v028.i05.
Article
Google Scholar
Li W, Sun W, Liu L, Yang F, Li Y, Chen Y, et al. IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza a virus infection. J Immunol. 2010;185:5056–65. https://0-doi-org.brum.beds.ac.uk/10.4049/jimmunol.0902667.
Article
CAS
PubMed
Google Scholar
Liang H, Xie Z, Shen T. Monocyte activation and cardiovascular disease in HIV infection. Cell Mol Immunol. 2017;14:960–2. https://0-doi-org.brum.beds.ac.uk/10.1038/cmi.2017.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Google Scholar
Liechti T, Roederer M. OMIP-060: 30-parameter flow cytometry panel to assess T cell effector functions and regulatory T cells. Cytom A. 2019;95:1129–34. https://0-doi-org.brum.beds.ac.uk/10.1002/cyto.a.23853.
Article
CAS
Google Scholar
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–50. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2016.03.014.
Article
CAS
PubMed
Google Scholar
Londino JD, Gulick DL, Lear TB, Suber TL, Weathington NM, Masa LS, et al. Post-translational modification of the interferon-gamma receptor alters its stability and signaling. Biochem J. 2017;474:3543–57. https://0-doi-org.brum.beds.ac.uk/10.1042/BCJ20170548.
Article
CAS
PubMed
Google Scholar
Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol. 2010;6:450. https://0-doi-org.brum.beds.ac.uk/10.1038/msb.2010.106.
Article
PubMed
PubMed Central
Google Scholar
Mair F, Erickson JR, Voillet V, Simoni Y, Bi T, Tyznik AJ, et al. A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep. 2020;31:107499. https://0-doi-org.brum.beds.ac.uk/10.1016/j.celrep.2020.03.063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mair F, Prlic M. OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytom A. 2018;93:402–5. https://0-doi-org.brum.beds.ac.uk/10.1002/cyto.a.23331 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE135325 (2020).
Article
Google Scholar
Martin GE, Gouillou M, Hearps AC, Angelovich TA, Cheng AC, Lynch F, et al. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women. PLoS One. 2013;8:e55279. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0055279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178:1493–1508.e20. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2019.08.008 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE134809 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mullick AE, Soldau K, Kiosses WB, Bell TA 3rd, Tobias PS, Curtiss LK. Increased endothelial expression of toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med. 2008;205:373–83. https://0-doi-org.brum.beds.ac.uk/10.1084/jem.20071096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakayama M, Niki Y, Kawasaki T, Takeda Y, Ikegami H, Toyama Y, et al. IL-32-PAR2 axis is an innate immunity sensor providing alternative signaling for LPS-TRIF axis. Sci Rep. 2013;3:2960. https://0-doi-org.brum.beds.ac.uk/10.1038/srep02960.
Article
PubMed
PubMed Central
Google Scholar
Nettey L, Giles AJ, Chattopadhyay PK. OMIP-050: a 28-color/30-parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules. Cytom A. 2018;93:1094–6. https://0-doi-org.brum.beds.ac.uk/10.1002/cyto.a.23608.
Article
Google Scholar
Paul VSV, Paul CMP, Kuruvilla S. Quantification of various inflammatory cells in advanced atherosclerotic plaques. J Clin Diagn Res. 2016;10:EC35–8. https://0-doi-org.brum.beds.ac.uk/10.7860/JCDR/2016/19354.7879.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017;35:936–9. https://0-doi-org.brum.beds.ac.uk/10.1038/nbt.3973 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE100501 (2017).
Article
CAS
PubMed
Google Scholar
Pizzolato G, Kaminski H, Tosolini M, Franchini D-M, Pont F, Martins F, et al. Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVdelta1 and TCRVdelta2 gammadelta T lymphocytes. Proc Natl Acad Sci U S A. 2019;116:11906–15. https://0-doi-org.brum.beds.ac.uk/10.1073/pnas.1818488116 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE128223 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394–404. https://0-doi-org.brum.beds.ac.uk/10.1093/eurheartj/ehv044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasool ST, Tang H, Wu J, Li W, Mukhtar MM, Zhang J, et al. Increased level of IL-32 during human immunodeficiency virus infection suppresses HIV replication. Immunol Lett. 2008;117:161–7. https://0-doi-org.brum.beds.ac.uk/10.1016/j.imlet.2008.01.007.
Article
CAS
PubMed
Google Scholar
Reyes M, Vickers D, Billman K, Eisenhaure T, Hoover P, Browne EP, et al. Multiplexed enrichment and genomic profiling of peripheral blood cells reveal subset-specific immune signatures. Sci Adv. 2019;5:eaau9223. https://0-doi-org.brum.beds.ac.uk/10.1126/sciadv.aau9223 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE120442 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson MW, Jadlowsky J, Didigu CA, Doms RW, Riley JL. Kruppel-like factor 2 modulates CCR5 expression and susceptibility to HIV-1 infection. J Immunol. 2012;189:3815–21. https://0-doi-org.brum.beds.ac.uk/10.4049/jimmunol.1201431.
Article
CAS
PubMed
Google Scholar
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31. https://0-doi-org.brum.beds.ac.uk/10.1056/NEJMoa1707914.
Article
CAS
PubMed
Google Scholar
Robinson JP, Roederer M. History of science. Flow cytometry strikes gold. Science. 2015;350:739–40. https://0-doi-org.brum.beds.ac.uk/10.1126/science.aad6770.
Article
CAS
PubMed
Google Scholar
Rodriguez L, Pekkarinen PT, Lakshmikanth T, Tan Z, Consiglio CR, Pou C, et al. Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep Med. 2020;1:100078. https://0-doi-org.brum.beds.ac.uk/10.1016/j.xcrm.2020.100078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol. 2012;60:1512–20. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jacc.2012.07.019.
Article
CAS
PubMed
Google Scholar
Rogacev KS, Seiler S, Zawada AM, Reichart B, Herath E, Roth D, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J. 2011;32:84–92. https://0-doi-org.brum.beds.ac.uk/10.1093/eurheartj/ehq371.
Article
CAS
PubMed
Google Scholar
De Rosa SC, Brenchley JM, Roederer M. Beyond six colors: a new era in flow cytometry. Nat Med. 2003;9:112–7. https://0-doi-org.brum.beds.ac.uk/10.1038/nm0103-112.
Article
CAS
PubMed
Google Scholar
Rossmann A, Henderson B, Heidecker B, Seiler R, Fraedrich G, Singh M, et al. T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp Gerontol. 2008;43:229–37. https://0-doi-org.brum.beds.ac.uk/10.1016/j.exger.2007.11.009.
Article
CAS
PubMed
Google Scholar
Sahir F, Mateo JM, Steinhoff M, Siveen KS. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytom A. 2020. https://0-doi-org.brum.beds.ac.uk/10.1002/cyto.a.24288.
Saigusa R, Durant CP, Suryawanshi V, Ley K. Single-cell antibody sequencing in atherosclerosis research. Methods Mol Biol. 2022;2419:765–78. https://doi.org/10.1007/978-1-0716-1924-7_46.
Article
PubMed
Google Scholar
Schechter ME, Andrade BB, He T, Richter GH, Tosh KW, Policicchio BB, et al. Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy. Sci Transl Med. 2017;9. https://0-doi-org.brum.beds.ac.uk/10.1126/scitranslmed.aam5441.
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42. https://0-doi-org.brum.beds.ac.uk/10.1038/nature10098.
Article
CAS
PubMed
Google Scholar
Smith AJ, Toledo CM, Wietgrefe SW, Duan L, Schacker TW, Reilly CS, et al. The immunosuppressive role of IL-32 in lymphatic tissue during HIV-1 infection. J Immunol. 2011;186:6576–84. https://0-doi-org.brum.beds.ac.uk/10.4049/jimmunol.1100277 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE16363, 2009.
Article
CAS
PubMed
Google Scholar
Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165:780–91. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2016.04.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14:865–8. https://0-doi-org.brum.beds.ac.uk/10.1038/nmeth.4380 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE100866, 2017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e21. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2019.05.031 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE128639 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tapp LD, Shantsila E, Wrigley BJ, Pamukcu B, Lip GYH. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. J Thromb Haemost. 2012;10:1231–41. https://0-doi-org.brum.beds.ac.uk/10.1111/j.1538-7836.2011.04603.x.
Article
CAS
PubMed
Google Scholar
Thomas GD, Hamers AAJ, Nakao C, Marcovecchio P, Taylor AM, McSkimming C, et al. Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. Arterioscler Thromb Vasc Biol. 2017;37:1548–58. https://0-doi-org.brum.beds.ac.uk/10.1161/ATVBAHA.117.309145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uniken Venema WT, Voskuil MD, Vila AV, van der Vries G, Jansen BH, Jabri B, et al. Single-cell RNA sequencing of blood and ileal T cells from patients with Crohn’s disease reveals tissue-specific characteristics and drug targets. Gastroenterology. 2019;156:812–815.e22. https://0-doi-org.brum.beds.ac.uk/10.1053/j.gastro.2018.10.046.
Article
CAS
PubMed
Google Scholar
Vojdeman FJ, Gaardbo JC, Hartling HJ, Gelpi M, Hove-Skovsgaard M, Pedersen AE, et al. Brief report: CD52 expression on CD4+ T cells in HIV-positive individuals on cART. J Acquir Immune Defic Syndr. 2018;77:217–20. https://0-doi-org.brum.beds.ac.uk/10.1097/QAI.0000000000001568.
Article
CAS
PubMed
Google Scholar
Wildgruber M, Aschenbrenner T, Wendorff H, Czubba M, Glinzer A, Haller B, et al. The “intermediate” CD14(++)CD16(+) monocyte subset increases in severe peripheral artery disease in humans. Sci Rep. 2016;6:39483. https://0-doi-org.brum.beds.ac.uk/10.1038/srep39483.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams JW, Winkels H, Durant CP, Zaitsev K, Ghosheh Y, Ley K. Single cell RNA sequencing in atherosclerosis research. Circ Res. 2020;126:1112–26. https://0-doi-org.brum.beds.ac.uk/10.1161/CIRCRESAHA.119.315940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res. 2018;122:1675–88. https://0-doi-org.brum.beds.ac.uk/10.1161/CIRCRESAHA.117.312513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25:1280–9. https://0-doi-org.brum.beds.ac.uk/10.1038/s41591-019-0512-5 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE131780 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JQ, Dyer WB, Chrisp J, Belov L, Wang B, Saksena NK. Longitudinal microarray analysis of cell surface antigens on peripheral blood mononuclear cells from HIV+ individuals on highly active antiretroviral therapy. Retrovirology. 2008;5:24. https://0-doi-org.brum.beds.ac.uk/10.1186/1742-4690-5-24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ Res. 2020;127:402–26. https://0-doi-org.brum.beds.ac.uk/10.1161/CIRCRESAHA.120.316903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020;181:442–459.e29. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2020.03.048 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE146771 (2020).
Article
CAS
PubMed
Google Scholar
Zhang Y, Zheng L, Zhang L, Hu X, Ren X, Zhang Z. Deep single-cell RNA sequencing data of individual T cells from treatment-naive colorectal cancer patients. Sci Data. 2019;6:131. https://0-doi-org.brum.beds.ac.uk/10.1038/s41597-019-0131-5 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE108989 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y, Guo X, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017;169:1342–1356.e16. https://0-doi-org.brum.beds.ac.uk/10.1016/j.cell.2017.05.035 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE98638 (2017).
Article
CAS
PubMed
Google Scholar
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:1–12. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms14049 Gene expression omnibus (GEO) https://identifiers.org/geo:GSE93421 (2017).
Ley K, Kaplan RC, Hedrick C, Lanier LL, McNamara C, La Jolla Institute of Immunology. Combined protein and transcript single cell RNA sequencing in human peripheral blood mononuclear cells (human), NCBI GEO, 02.8, GSE205320. (2022).