Wu W, Jin Y, Bai F, Jin S. Chapter 41 Pseudomonas aeruginosa. Mol Med Microbiol. 2015:753–67. https://0-doi-org.brum.beds.ac.uk/10.1016/B978-0-12-397169-2.00041-X.
Bălăşoiu M, Bălăşoiu A, Mănescu R, Avramescu C, Ionete O. Pseudomonas aeruginosa resistance phenotypes and phenotypic highlighting methods. Curr Health Sci J. 2014;40(2):85–92.
PubMed
PubMed Central
Google Scholar
Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016;306(1):48–58.
Article
CAS
PubMed
Google Scholar
Migiyama Y, Yanagihara K, Kaku N, Harada Y, Yamada K, Nagaoka K, et al. Pseudomonas aeruginosa bacteremia among immunocompetent and immunocompromised patients: relation to initial antibiotic therapy and survival. Jpn J Infect Dis. 2016;69(2):91–6.
Article
CAS
PubMed
Google Scholar
Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351–68.
Article
CAS
PubMed
Google Scholar
Williams BJ, Dehnbostel J, Blackwell TS. Pseudomonas aeruginosa: host defence in lung diseases. Respirology. 2010;15(7):1037–56.
Article
PubMed
Google Scholar
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding pseudomonas aeruginosa–host interactions: the ongoing quest for an efficacious vaccine. Cells. 2020;9(12):2617.
Article
PubMed Central
Google Scholar
Zhang L-J, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26(1):R14–9.
Article
CAS
PubMed
Google Scholar
Geitani R, Moubareck CA, Xu Z, Karam Sarkis D, Touqui L. Expression and roles of antimicrobial peptides in innate defense of airway mucosa: potential implication in cystic fibrosis. Front Immunol. 2020;11. https://0-doi-org.brum.beds.ac.uk/10.3389/fimmu.2020.01198.
Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci U S A. 2019;116(52):26516–22.
Article
CAS
PubMed Central
Google Scholar
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11. https://0-doi-org.brum.beds.ac.uk/10.3389/fmicb.2020.582779.
Lavoie EG, Wangdi T, Kazmierczak BI. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect. 2011;13(14-15):1133–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14(12):796–810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smale ST, Tarakhovsky A, Natoli G. Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol. 2014;32:489–511.
Article
CAS
PubMed
Google Scholar
Perkins DJ, Patel MC, Blanco JC, Vogel SN. Epigenetic mechanisms governing innate inflammatory responses. J Interf Cytokine Res. 2016;36(7):454–61.
Article
CAS
Google Scholar
Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.
Article
CAS
PubMed
Google Scholar
Grewal SIS, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8(1):35–46.
Article
CAS
PubMed
Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 2001;20(18):5232–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakayama J-i, Rice JC, Strahl BD, Allis CD, Grewal SIS. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001;292(5514):110–3.
Article
CAS
PubMed
Google Scholar
Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116–20.
Article
CAS
PubMed
Google Scholar
Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001;410(6824):120–4.
Article
CAS
PubMed
Google Scholar
Chang C-W, Shen Y-C, Yan S-J. HP1a-mediated heterochromatin formation inhibits high dietary sugar-induced tumor progression. Cell Death Dis. 2021;12(12):1130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kilic S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, Vardanyan H, et al. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Nat Commun. 2018;9(1). https://0-doi-org.brum.beds.ac.uk/10.1038/s41467-017-02619-5.
Machida S, Takizawa Y, Ishimaru M, Sugita Y, Sekine S, Nakayama J-I, et al. Structural basis of heterochromatin formation by human HP1. Mol Cell. 2018;69(3):385–397.e388.
Article
CAS
PubMed
Google Scholar
Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, et al. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature. 2013;496(7445):377–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vermaak D, Malik HS. Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet. 2009;43(1):467–92.
Article
CAS
PubMed
Google Scholar
Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci. 2017;114(5):E751.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segura-Bayona S, Villamor-Payà M, Attolini CS, Koenig LM, Sanchiz-Calvo M, Boulton SJ, et al. Tousled-like kinases suppress innate immune signaling triggered by alternative lengthening of telomeres. Cell Rep. 2020;32(5):107983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saccani S, Natoli G. Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev. 2002;16(17):2219–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, et al. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol. 2015;16(10):1034–43.
Article
CAS
PubMed
Google Scholar
Jin J, Xie X, Xiao Y, Hu H, Zou Q, Cheng X, et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol. 2016;17(3):259–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.
Article
CAS
PubMed
Google Scholar
Kounatidis I, Ligoxygakis P. Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol. 2012;2(5):120075.
Article
PubMed
PubMed Central
Google Scholar
Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, et al. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A. 2011;108(42):17378–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW, et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A. 2005;102(7):2573–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzou P, Reichhart JM, Lemaitre B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci U S A. 2002;99(4):2152–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanson MA, Lemaitre B. New insights on Drosophila antimicrobial peptide function in host defense and beyond. Curr Opin Immunol. 2020;62:22–30.
Article
CAS
PubMed
Google Scholar
Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, et al. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet. 2012;8(1):e1002473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eissenberg JC, Morris GD, Reuter G, Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992;131(2):345–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim M-S, Blanot D, et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity. 2006;24(4):463–73.
Article
PubMed
Google Scholar
Roman G, Endo K, Zong L, Davis RL. P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2001;98(22):12602–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, et al. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc Natl Acad Sci. 2015;112(19):E2497–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imler J-L. Overview of Drosophila immunity: a historical perspective. Dev Comp Immunol. 2014;42(1):3–15.
Article
CAS
PubMed
Google Scholar
Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012;12(7):503–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva NC, Sarmento B, Pintado M. The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. Int J Antimicrob Agents. 2013;41(1):5–10.
Article
CAS
PubMed
Google Scholar
Hiemstra PS, Amatngalim GD, van der Does AM, Taube C. Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest. 2016;149(2):545–51.
Article
PubMed
Google Scholar
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol. 2021;12. https://0-doi-org.brum.beds.ac.uk/10.3389/fmicb.2021.616979.
Hanson MA, Dostálová A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife. 2019;8:e44341.
Article
PubMed
PubMed Central
Google Scholar
Unckless RL, Howick VM, Lazzaro BP. Convergent balancing selection on an antimicrobial peptide in Drosophila. Curr Biol. 2016;26(2):257–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen LB, Lindsay SA, Xu Y, Lin SJH, Wasserman SA. The Daisho peptides mediate Drosophila defense against a subset of filamentous fungi. Front Immunol. 2020;11:9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanson MA, Kondo S, Lemaitre B. Drosophila immunity: the Drosocin gene encodes two host defence peptides with pathogen-specific roles. Proc Biol Sci. 1977;2022(289):20220773.
Google Scholar
Shaka M, Arias-Rojas A, Hrdina A, Frahm D, Iatsenko I. Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLoS Pathog. 2022;18(9):e1010825.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guarner A, Morris R, Korenjak M, Boukhali M, Zappia MP, Van Rechem C, et al. E2F/DP prevents cell-cycle progression in endocycling fat body cells by suppressing dATM expression. Dev Cell. 2017;43(6):689–703.e685.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sher N, Von Stetina JR, Bell GW, Matsuura S, Ravid K, Orr-Weaver TL. Fundamental differences in endoreplication in mammals and <i>Drosophila</i> revealed by analysis of endocycling and endomitotic cells. Proc Natl Acad Sci. 2013;110(23):9368–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hines KA, Cryderman DE, Flannery KM, Yang H, Vitalini MW, Hazelrigg T, et al. Domains of heterochromatin protein 1 required for Drosophila melanogaster heterochromatin spreading. Genetics. 2009;182(4):967–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol. 2003;161(4):707–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryderman DE, Grade SK, Li Y, Fanti L, Pimpinelli S, Wallrath LL. Role of Drosophila HP1 in euchromatic gene expression. Dev Dyn. 2005;232(3):767–74.
Article
CAS
PubMed
Google Scholar
Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, et al. Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 2009;5(10):e1000670.
Article
PubMed
PubMed Central
Google Scholar
Schoelz JM, Feng JX, Riddle NC. The Drosophila HP1 family is associated with active gene expression across chromatin contexts. Genetics. 2021;219(1). https://0-doi-org.brum.beds.ac.uk/10.1093/genetics/iyab108.
Apidianakis Y, Rahme LG. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc. 2009;4(9):1285–94.
Article
CAS
PubMed
Google Scholar