Dolezel J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51:127–8.
CAS
PubMed
Google Scholar
Dufresne F, Jeffery N. A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res. 2011;19(7):925–38.
Article
CAS
PubMed
Google Scholar
Elliott TA, Gregory TR. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc Lond B Biol Sci. 2015;370(1678):20140331.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell. 2021;184(5):1362–76. e18.
Article
CAS
PubMed
Google Scholar
Sun C, López Arriaza JR, Mueller RL. Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol. 2012;4(12):1340–8.
Article
PubMed
PubMed Central
Google Scholar
Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AW, Pippel M, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018;554(7690):50–5.
Article
CAS
PubMed
Google Scholar
Rees DJ, Dufresne F, Glemet H, Belzile C. Amphipod genome sizes: first estimates for Arctic species reveal genomic giants. Genome. 2007;50(2):151–8.
Article
CAS
PubMed
Google Scholar
Yuan J, Zhang X, Kou Q, Sun Y, Liu C, Li S, et al. Genome of a giant isopod, Bathynomus jamesi, provides insights into body size evolution and adaptation to deep-sea environment. BMC Biol. 2022;20(1):1–17.
Article
CAS
Google Scholar
Mao Y, Zhang N, Nie Y, Zhang X, Li X, Huang Y. Genome size of 17 species from Caelifera (Orthoptera) and determination of internal standards with very large genome size in insecta. Front Physiol. 2020;11:567125.
Yuan H, Huang Y, Mao Y, Zhang N, Nie Y, Zhang X, et al. The Evolutionary Patterns of Genome Size in Ensifera (Insecta: Orthoptera). Front Genet. 2021;12:693541.
Kapusta A, Suh A, Feschotte C. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A. 2017;114(8):E1460–E9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naville M, Henriet S, Warren I, Sumic S, Reeve M, Volff J-N, et al. Massive changes of genome size driven by expansions of non-autonomous transposable elements. Curr Biol. 2019;29(7):1161–8. e6.
Article
CAS
PubMed
Google Scholar
Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16(10):1262–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. BMC Biol. 2022;20(1):1–19.
Article
Google Scholar
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res. 2015;147(4):217–39.
Article
PubMed
Google Scholar
Schubert I, Vu GT. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 2016;21(9):749–57.
Article
CAS
PubMed
Google Scholar
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, et al. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol. 2021;19(1):1–28.
Article
Google Scholar
Charlesworth B, Charlesworth D. The population dynamics of transposable elements. Genet Res (Camb). 1983;42(1):1–27.
Article
Google Scholar
Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature. 1980;284(5757):604–7.
Article
CAS
PubMed
Google Scholar
Nowell RW, Wilson CG, Almeida P, Schiffer PH, Fontaneto D, Becks L, et al. Evolutionary dynamics of transposable elements in bdelloid rotifers. Elife. 2021;10:e63194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980;284(5757):601–3.
Article
CAS
PubMed
Google Scholar
Nuzhdin SV. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica. 1999;107(1-3):129–37.
Article
CAS
PubMed
Google Scholar
Moon S, Cassani M, Lin YA, Wang L, Dou K, Zhang ZZ. A robust transposon-endogenizing response from germline stem cells. Dev Cell. 2018;47(5):660–71. e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth B, Langley CH, Stephan W. The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics. 1986;112(4):947–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. Genet Res (Camb). 1988;52(3):223–35.
Article
CAS
Google Scholar
Hedges D, Deininger P. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res. 2007;616(1-2):46–59.
Article
CAS
PubMed
Google Scholar
Lynch M, Conery JS. The origins of genome complexity. Cience. 2003;302(5649):1401–4.
CAS
Google Scholar
Lynch M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci U S A. 2007;104(suppl 1):8597–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelleher ES, Lama J, Wang L. Uninvited guests: how transposable elements take advantage of Drosophila germline stem cells, and how stem cells fight back. Curr Opin Insect Sci. 2020;37:49–56.
Article
PubMed
Google Scholar
Kelleher ES, Barbash DA. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense. Mol Biol Evol. 2013;30(8):1816–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007;318(5851):761–4.
Article
CAS
PubMed
Google Scholar
Blumenstiel JP. Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet. 2011;27(1):23–31.
Article
CAS
PubMed
Google Scholar
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128(6):1089–103.
Article
CAS
PubMed
Google Scholar
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science. 2007;315(5818):1587–90.
Article
CAS
PubMed
Google Scholar
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151(5):964–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohn F, Handler D, Brennecke J. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science. 2015;348(6236):812–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalmykova AI, Klenov MS, Gvozdev VA. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res. 2005;33(6):2052–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell. 2007;26(5):611–23.
Article
CAS
PubMed
Google Scholar
Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature. 2009;461(7268):1296–9.
Article
CAS
PubMed
Google Scholar
Mohn F, Sienski G, Handler D, Brennecke J. The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell. 2014;157(6):1364–79.
Article
CAS
PubMed
Google Scholar
de Jong D, Eitel M, Jakob W, Osigus H-J, Hadrys H, DeSalle R, et al. Multiple dicer genes in the early-diverging metazoa. Mol Biol Evol. 2009;26(6):1333–40.
Article
PubMed
Google Scholar
Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 2013;27(4):390–9.
Article
PubMed
PubMed Central
Google Scholar
Darricarrère N, Liu N, Watanabe T, Lin H. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity. Proc Natl Acad Sci U S A. 2013;110(4):1297–302.
Article
PubMed
PubMed Central
Google Scholar
Said I, McGurk MP, Clark AG, Barbash DA. Patterns of piRNA regulation in Drosophila revealed through transposable element clade inference. Mol Biol Evol. 2022;39(1):msab336.
Article
CAS
PubMed
Google Scholar
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, et al. piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet. 2018;52:131–57.
Article
CAS
PubMed
Google Scholar
Le Thomas A, Stuwe E, Li S, Du J, Marinov G, Rozhkov N, et al. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev. 2014;28(15):1667–80.
Article
PubMed
PubMed Central
Google Scholar
Huang X, Tóth KF, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet. 2017;33(11):882–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 2016;41(4):324–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth B, Langley C. The evolution of self-regulated transposition of transposable elements. Genetics. 1986;112(2):359–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.
Article
CAS
PubMed
Google Scholar
Liu S, Yeh C-T, Ji T, Ying K, Wu H, Tang HM, et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet. 2009;5(11):e1000733.
Article
PubMed
PubMed Central
Google Scholar
Wierzbicki F, Kofler R, Signor S. Evolutionary dynamics of piRNA clusters in Drosophila. Mol Ecol. 2021;00:1–17. https://0-doi-org.brum.beds.ac.uk/10.1111/mec.16311.
Alfsnes K, Leinaas HP, Hessen DO. Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans. Ecol Evol. 2017;7(15):5939–47.
Article
PubMed
PubMed Central
Google Scholar
Chalopin D, Naville M, Plard F, Galiana D, Volff J-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7(2):567–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao F, Han M, Peng Z. Evolution and diversity of transposable elements in fish genomes. Sci Rep. 2019;9(1):1–8.
Article
Google Scholar
Kapusta A, Suh A. Evolution of bird genomes—a transposon's-eye view. Ann N Y Acad Sci. 2017;1389(1):164–85.
Article
PubMed
Google Scholar
Palacios-Gimenez OM, Koelman J, Palmada-Flores M, Bradford TM, Jones KK, Cooper SJ, et al. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. BMC Biol. 2020;18(1):1–21.
Article
Google Scholar
Senti K-A, Jurczak D, Sachidanandam R, Brennecke J. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev. 2015;29(16):1747–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 2009;137(3):509–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, et al. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009;138(6):1137–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, et al. Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. Mol Cell. 2011;44(4):572–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamparini AL, Davis MY, Malone CD, Vieira E, Zavadil J, Sachidanandam R, et al. Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development. 2011;138(18):4039–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Izumi N, Shoji K, Suzuki Y, Katsuma S, Tomari Y. Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature. 2020;578(7794):311–6.
Article
CAS
PubMed
Google Scholar
Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling A-L, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;11(10):e1005620.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014;5(1):1–9.
Google Scholar
Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, et al. First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Res. 2020;9:775.
Sproul JS, Hotaling S, Heckenhauer J, Powell A, Larracuente AM, Kelley JL, et al. Repetitive elements in the era of biodiversity genomics: insights from 600+ insect genomes. bioRxiv. 2022. https://0-doi-org.brum.beds.ac.uk/10.1101/2022.06.02.494618.
Negm S, Greenberg A, Larracuente AM, Sproul JS. RepeatProfiler: a pipeline for visualization and comparative analysis of repetitive DNA profiles. Mol Ecol Resour. 2021;21(3):969–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kofler R, Nolte V, Schlötterer C. Tempo and mode of transposable element activity in Drosophila. PLoS Genet. 2015;11(7):e1005406.
Article
PubMed
PubMed Central
Google Scholar
Rahman R, Chirn G-w, Kanodia A, Sytnikova YA, Brembs B, Bergman CM, et al. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res. 2015;43(22):10655–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong Y, Xiao H, Li F. Progress in research on insect genome size and evolution. Ying Yong Kun Chong Xue Bao. 2019;56(6):1216–23.
Google Scholar
Liu Q, Jiang F, Zhang J, Li X, Kang L. Transcription initiation of distant core promoters in a large-sized genome of an insect. BMC Biol. 2021;19(1):1–21.
Article
Google Scholar
He K, Lin K, Wang G, Li F. Genome sizes of nine insect species determined by flow cytometry and k-mer analysis. Front Physiol. 2016;7:569.
Article
PubMed
PubMed Central
Google Scholar
Cornette R, Gusev O, Nakahara Y, Shimura S, Kikawada T, Okuda T. Chironomid midges (Diptera, Chironomidae) show extremely small genome sizes. Zoolog Sci. 2015;32(3):248–54.
Article
PubMed
Google Scholar
Thomas CA Jr. The genetic organization of chromosomes. Annu Rev Genet. 1971;5(1):237–56.
Article
CAS
PubMed
Google Scholar
Ardila-Garcia A, Umphrey G, Gregory T. An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints. Insect Mol Biol. 2010;19(3):337–46.
Article
CAS
PubMed
Google Scholar
Johnston J, Ross L, Beani L, Hughes D, Kathirithamby J. Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol. 2004;13(6):581–5.
Article
CAS
PubMed
Google Scholar
Koshikawa S, Miyazaki S, Cornette R, Matsumoto T, Miura T. Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). Naturwissenschaften. 2008;95(9):859–67.
Article
CAS
PubMed
Google Scholar
Heckenhauer J, Frandsen PB, Sproul JS, Li Z, Paule J, Larracuente AM, et al. Genome size evolution in the diverse insect order Trichoptera. Gigascience. 2022;11:giac011.
Kidwell MG, Novy JB. Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonadal dysgenesis in the P-M system. Genetics. 1979;92(4):1127–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haig D. Transposable elements: self-seekers of the germline, team-players of the soma. Bioessays. 2016;38(11):1158–66.
Article
CAS
PubMed
Google Scholar
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):1–12.
Article
Google Scholar
Saint-Leandre B, Capy P, Hua-Van A, Filée J. pi RNA and Transposon Dynamics in Drosophila: A Female Story. Genome Biol Evol. 2020;12(6):931–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, O'Shea KS, et al. LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet. 2007;16(13):1569–77.
Article
CAS
PubMed
Google Scholar
Klawitter S, Fuchs NV, Upton KR, Munoz-Lopez M, Shukla R, Wang J, et al. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun. 2016;7(1):1–14.
Article
Google Scholar
Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell. 2010;141(7):1253–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ III, et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337(6097):967–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tubio JM, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science. 2014;345(6196):1251343.
Article
PubMed
PubMed Central
Google Scholar
Suh A. Genome size evolution: small transposons with large consequences. Curr Biol. 2019;29(7):R241–R3.
Article
CAS
PubMed
Google Scholar
Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. Nat Rev Genet. 2002;3(5):329–41.
Article
CAS
PubMed
Google Scholar
Bergman CM, Quesneville H, Anxolabéhère D, Ashburner M. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol. 2006;7(11):1–21.
Article
Google Scholar
Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell. 2009;136(4):656–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.
Article
CAS
PubMed
Google Scholar
Senti K-A, Brennecke J. The piRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet. 2010;26(12):499–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008;135(1):3–9.
Article
CAS
PubMed
Google Scholar
Luo S, Zhang H, Duan Y, Yao X, Clark AG, Lu J. The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster. BMC Evol Biol. 2020;20(1):1–18.
Article
Google Scholar
Castañeda J, Genzor P, Bortvin A. piRNAs, transposon silencing, and germline genome integrity. Mutat Res. 2011;714(1-2):95–104.
Article
PubMed
Google Scholar
Lu J, Clark AG. Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res. 2010;20(2):212–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelleher ES, Azevedo RB, Zheng Y. The evolution of small-RNA-mediated silencing of an invading transposable element. Genome Biol Evol. 2018;10(11):3038–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kofler R. Dynamics of transposable element invasions with piRNA clusters. Mol Biol Evol. 2019;36(7):1457–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, Hahn MW, et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 2007;5(11):e310.
Article
PubMed
PubMed Central
Google Scholar
Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, et al. Evolution of protein-coding genes in Drosophila. Trends Genet. 2008;24(3):114–23.
Article
CAS
PubMed
Google Scholar
Kolaczkowski B, Hupalo DN, Kern AD. Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Mol Biol Evol. 2011;28(2):1033–42.
Article
CAS
PubMed
Google Scholar
Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, et al. The Drosophila melanogaster genetic reference panel. Nature. 2012;482(7384):173–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in Candida albicans is driven by long repeat sequences. Elife. 2019;8:e45954.
Article
PubMed
PubMed Central
Google Scholar
Brown J, Lambert G, Ghanim M, Czosnek H, Galbraith D. Nuclear DNA content of the whitefly Bemisia tabaci (Aleyrodidae: Hemiptera) estimated by flow cytometry. Bull Entomol Res. 2005;95(4):309–12.
Article
CAS
PubMed
Google Scholar
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2(9):2233–44.
Article
PubMed
Google Scholar
Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol. 2015;7(4):1192–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–D9.
Article
CAS
PubMed
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
Article
CAS
PubMed
Google Scholar
Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science. 2004;303(5664):1626–32.
Article
CAS
PubMed
Google Scholar
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10(1):1–17.
Article
PubMed
PubMed Central
Google Scholar
Bae Y-A, Moon S-Y, Kong Y, Cho S-Y, Rhyu M-G. CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol. 2001;18(8):1474–83.
Article
CAS
PubMed
Google Scholar
Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993;72(4):595–605.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.
Article
Google Scholar
Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021;49(D1):D192–200.
Article
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):1–10.
Article
Google Scholar
Wei Y, Chen S, Yang P, Ma Z, Kang L. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol. 2009;10(1):1–18.
Article
Google Scholar
Wang Y, Jiang F, Wang H, Song T, Wei Y, Yang M, et al. Evidence for the expression of abundant microRNAs in the locust genome. Sci Rep. 2015;5(1):1–14.
Google Scholar
Liu AM, Chen WJ, Huang CW, Qian CY, Liang Y, Li S, et al. MicroRNA evolution provides new evidence for a close relationship of Diplura to Insecta. Syst Entomol. 2020;45(2):365–77.
Article
Google Scholar
Wen J, Mohammed J, Bortolamiol-Becet D, Tsai H, Robine N, Westholm JO, et al. Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines. Genome Res. 2014;24(7):1236–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genomic raw data of Angaracris rhodopa species. NCBI. (2022). https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/sra/SRR19352342. Accessed 23 May 2022.
RNA-seq and Small RNA-seq data of Acrididae species. NCBI. 2022. https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/bioproject/PRJNA842094. Accessed 13 Oct 2022.
Locusta migratoria Genome sequencing and assembly. NCBI. (2015). https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/sra/SRX245287. Accessed 22 July 2022.
Liu XZ, Huang Y. Transposon consensus sequence, transcriptome assembly, and annotation information of Locusta migratoria manilensis and Angaracris rhodopa. figshare; 2022. https://0-doi-org.brum.beds.ac.uk/10.6084/m9.figshare.21256878.
Book
Google Scholar