Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
Article
PubMed
CAS
Google Scholar
Wang W, Feng B, Zhou JM, Tang D. Plant immune signaling: advancing on two frontiers. J Integr Plant Biol. 2020;62(1):2–24.
Article
PubMed
CAS
Google Scholar
Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7(8):1267–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. New Phytol. 2022;233(3):1051-66.
Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front Plant Sci. 2015;6:677.
Article
PubMed
PubMed Central
Google Scholar
Guo Q, Major IT, Howe GA. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. Curr Opin Plant Biol. 2018;44:72–81.
Article
PubMed
CAS
Google Scholar
Howe GA, Major IT, Koo AJ. Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol. 2018;69:387–415.
Article
PubMed
CAS
Google Scholar
Kimberlin A, Holtsclaw RE, Koo AJ. Differential regulation of the ribosomal association of mRNA transcripts in an Arabidopsis mutant defective in jasmonate-dependent wound response. Front Plant Sci. 2021;12:637959.
Article
PubMed
PubMed Central
Google Scholar
Ying BW, Honda T, Tsuru S, Seno S, Matsuda H, Kazuta Y, Yomo T. Evolutionary Consequence of a trade-off between growth and maintenance along with ribosomal damages. PLoS ONE. 2015;10(8):e0135639.
Article
PubMed
PubMed Central
Google Scholar
Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A. 2007;104(47):18842–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, Dong X. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun. 2016;7:13099.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol. 2012;53(12):2060–72.
Article
PubMed
CAS
Google Scholar
Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav. 2013;8(6):e24260.
Article
PubMed
PubMed Central
Google Scholar
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32(1):42–56.
Article
PubMed
CAS
Google Scholar
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for plant RNAPII transcription. Trends Plant Sci. 2020;25(8):744–64.
Article
PubMed
CAS
Google Scholar
Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4):258–64.
Article
PubMed
CAS
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
Article
PubMed
CAS
Google Scholar
Scheid R, Chen J, Zhong X. Biological role and mechanism of chromatin readers in plants. Curr Opin Plant Biol. 2021;61:102008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.
Article
PubMed
CAS
Google Scholar
Yun M, Wu J, Workman JL, Li B. Readers of histone modifications. Cell Res. 2011;21(4):564–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389(6649):349–52.
Article
PubMed
CAS
Google Scholar
Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149(1):214–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao S, Zhang B, Yang M, Zhu J, Li H. Systematic profiling of histone readers in Arabidopsis thaliana. Cell Rep. 2018;22(4):1090–102.
Article
PubMed
CAS
Google Scholar
Gong F, Chiu LY, Miller KM. Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet. 2016;12(9):e1006272.
Article
PubMed
PubMed Central
Google Scholar
Shao Z, Zhang R, Khodadadi-Jamayran A, Chen B, Crowley MR, Festok MA, Crossman DK, Townes TM, Hu K. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nat Commun. 2016;7:10869.
Article
PubMed
PubMed Central
CAS
Google Scholar
Misra A, McKnight TD, Mandadi KK. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana. Plant Mol Biol. 2018;96(4–5):393–402.
Article
PubMed
CAS
Google Scholar
Petretich M, Demont EH, Grandi P. Domain-selective targeting of BET proteins in cancer and immunological diseases. Curr Opin Chem Biol. 2020;57:184–93.
Article
PubMed
CAS
Google Scholar
Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, et al. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog. 2020;16(3):e1008429.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stanlie A, Yousif AS, Akiyama H, Honjo T, Begum NA. Chromatin reader Brd4 functions in Ig class switching as a repair complex adaptor of nonhomologous end-joining. Mol Cell. 2014;55(1):97–110.
Article
PubMed
CAS
Google Scholar
Wu SY, Lee CF, Lai HT, Yu CT, Lee JE, Zuo H, Tsai SY, Tsai MJ, Ge K, Wan Y, et al. Opposing functions of BRD4 isoforms in breast cancer. Mol Cell. 2020;78(6):1114-1132 e1110.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang S, Chen Y, Tian C, He Y, Tian Z, Wan Y, Liu T. Dual-target inhibitors based on BRD4: novel therapeutic approaches for cancer. Curr Med Chem. 2021;28(9):1775–95.
Article
PubMed
CAS
Google Scholar
Yu Y, Fu W, Xu J, Lei Y, Song X, Liang Z, Zhu T, Liang Y, Hao Y, Yuan L, et al. Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis. Mol Plant. 2021;14(6):888–904.
Article
PubMed
CAS
Google Scholar
Jaronczyk K, Sosnowska K, Zaborowski A, Pupel P, Bucholc M, Malecka E, Siwirykow N, Stachula P, Iwanicka-Nowicka R, Koblowska M, et al. Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for proper functioning of SWI/SNF complexes in Arabidopsis. Plant Commun. 2021;2(4):100174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nie WF, Lei M, Zhang M, Tang K, Huang H, Zhang C, Miki D, Liu P, Yang Y, Wang X, et al. Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis. Proc Natl Acad Sci U S A. 2019;116(33):16641–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang CJ, Hou XM, Tan LM, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun. 2016;7:11715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Airoldi CA, Rovere FD, Falasca G, Marino G, Kooiker M, Altamura MM, Citterio S, Kater MM. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiol. 2010;152(3):1320–34.
Article
PubMed
CAS
Google Scholar
Della Rovere F, Airoldi CA, Falasca G, Ghiani A, Fattorini L, Citterio S, Kater M, Altamura MM. The Arabidopsis BET bromodomain factor GTE4 regulates the mitotic cell cycle. Plant Signal Behav. 2010;5(6):677–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chua YL, Channeliere S, Mott E, Gray JC. The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Dev. 2005;19(18):2245–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duque P, Chua NH. IMB1, a bromodomain protein induced during seed imbibition, regulates ABA- and phyA-mediated responses of germination in Arabidopsis. Plant J. 2003;35(6):787–99.
Article
PubMed
CAS
Google Scholar
Hallmark HT, Rashotte AM. Review - Cytokinin response factors: responding to more than cytokinin. Plant Sci. 2019;289:110251.
Article
PubMed
CAS
Google Scholar
Lee WK, Yun JH, Lee W, Cho MH. DNA-binding domain of AtTRB2 reveals unique features of a single Myb histone protein family that binds to both Arabidopsis- and human-type telomeric DNA sequences. Mol Plant. 2012;5(6):1406–8.
Article
PubMed
CAS
Google Scholar
Hofr C, Sultesova P, Zimmermann M, Mozgova I, ProchazkovaSchrumpfova P, Wimmerova M, Fajkus J. Single-Myb-histone proteins from Arabidopsis thaliana: a quantitative study of telomere-binding specificity and kinetics. Biochem J. 2009;419(1):221–8 222 p following 228.
Article
PubMed
CAS
Google Scholar
Schrumpfova PP, Vychodilova I, Hapala J, Schorova S, Dvoracek V, Fajkus J. Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Mol Biol. 2016;90(1–2):189–206.
Article
PubMed
CAS
Google Scholar
Zhou Y, Wang Y, Krause K, Yang T, Dongus JA, Zhang Y, Turck F. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat Genet. 2018;50(5):638–44.
Article
PubMed
CAS
Google Scholar
Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005;37(5):501–6.
Article
PubMed
CAS
Google Scholar
Noir S, Bomer M, Takahashi N, Ishida T, Tsui TL, Balbi V, Shanahan H, Sugimoto K, Devoto A. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol. 2013;161(4):1930–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot. 2017;68(6):1371–85.
PubMed
PubMed Central
CAS
Google Scholar
Ali MS, Baek KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci. 2020;21(2):621.
Article
PubMed Central
CAS
Google Scholar
Wang H, Li Y, Pan J, Lou D, Hu Y, Yu D. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis. Mol Plant. 2017;10(11):1461–4.
Article
PubMed
CAS
Google Scholar
Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell. 2015;27(10):2814–28.
PubMed
PubMed Central
CAS
Google Scholar
Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A. 2000;97(19):10625–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell. 2006;18(5):1121–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24(11):437–40.
Article
PubMed
CAS
Google Scholar
Martinez C, Pons E, Prats G, Leon J. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. 2004;37(2):209–17.
Article
PubMed
CAS
Google Scholar
Tan LM, Zhang CJ, Hou XM, Shao CR, Lu YJ, Zhou JX, Li YQ, Li L, Chen S, He XJ. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing. EMBO J. 2018;37(19):e98770.
Article
PubMed
PubMed Central
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH. Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol. 2010;51(10):1694–706.
Article
PubMed
CAS
Google Scholar
Chen X, Lu L, Mayer KS, Scalf M, Qian S, Lomax A, Smith LM, Zhong X. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. Elife. 2016;5:e17214.
Article
PubMed
PubMed Central
Google Scholar