Shekhawat K, Almeida-Trapp M, García-Ramírez GX, Hirt H. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends Plant Sci. 2022;27:802–13.
Article
CAS
PubMed
Google Scholar
Li B, Gao K, Ren H, Tang W. Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol. 2018;60:757–79.
Article
PubMed
Google Scholar
Howarth CJ. Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC, editors. abiotic stresses: plant resistance through breeding and molecular approaches. New York: Howarth Press; 2005. p. 277–300.
Google Scholar
Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, et al. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci U S A. 2010;107:8569–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi A, Wang T, Wang G, Zhang L, Wassie M, Amee M, et al. Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue. Plant Physiol. 2021;187:1163–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Tang J, Srivastava R, Bassham DC, Howell SH. The transcription factor bzip60 links the unfolded protein response to the heat stress response in maize. Plant Cell. 2020;32:3559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebeaud ME, Mallik S, Goloubinoff P, Tawfik DS. On the evolution of chaperones and cochaperones and the expansion of proteomes across the tree of life. Proc Natl Acad Sci U S A. 2021;118:e2020885118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Siri S, Hurst A, Qiu H. Heat Shock Protein 22 in physiological and pathological hearts: small molecule, large potentials. Cells. 2021;11:114–23.
Article
PubMed
PubMed Central
Google Scholar
Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003;112:41–50.
Article
CAS
PubMed
Google Scholar
Reinle K, Mogk A, Bukau B. The Diverse functions of small heat shock proteins in the proteostasis network. J Mol Biol. 2022;434:167157. https://0-doi-org.brum.beds.ac.uk/10.1016/j.jmb.2021.167157.
Article
CAS
PubMed
Google Scholar
Li SJ, Liu SC, Lin XH, Grierson D, Yin XR, Chen KS. Citrus heat shock transcription factor CitHsfA7-mediated citric acid degradation in response to heat stress. Plant Cell Environ. 2022;45:95–104.
Article
CAS
PubMed
Google Scholar
Liu X, Meng P, Yang G, Zhang M, Peng S, Zhai MZ. Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC Genomics. 2020;21:474. https://0-doi-org.brum.beds.ac.uk/10.1186/s12864-020-06879-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 2020;32:295–318.
Article
CAS
PubMed
Google Scholar
Wei Z, Li J. Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant. 2016;9:86–100.
Article
CAS
PubMed
Google Scholar
Krishna P. Brassinosteroid-mediated stress responses. J Plant Growth Regul. 2013;22:289–97.
Article
Google Scholar
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development. 2019;146:151894. https://0-doi-org.brum.beds.ac.uk/10.1242/dev.151894.
Article
CAS
Google Scholar
Kim TW, Guan SH, Sun Y, Deng ZP, Tang WQ, Shang JX, et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol. 2019;11:1254–60.
Article
Google Scholar
Kim EJ, Russinova E. Brassinosteroid signalling. Curr Biol. 2020;30:294–8.
Article
Google Scholar
Wang ZY, Nakano T, Gendron J, He JX, Chen M, Vafeados D, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell. 2002;2:505–13.
Article
CAS
PubMed
Google Scholar
Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, et al. Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell. 2010;19:872–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Yan B, Dong H, He G, Zhou Y, Sun J. BIC1 acts as a transcriptional coactivator to promote brassinosteroid signaling and plant growth. EMBO J. 2021;40:e104615.
Article
CAS
PubMed
Google Scholar
Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, Lippmann R, et al. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr Biol. 2018;28:303–10.
Article
PubMed
Google Scholar
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140:411–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Licausi F, Ohme-Takagi M, Perata P. APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013;199:639–49.
Cheng MC, Liao PM, Kuo WW, Lin TP. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013;162:1566–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, et al. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 2017;213:1667–81.
Article
CAS
PubMed
Google Scholar
Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol. 1999;40:333–42.
Article
CAS
PubMed
Google Scholar
Sateesh K, Uday KD, Joan EK, Wilfred AK, Priti K. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007;225:353–64.
Google Scholar
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819:86–96.
Article
CAS
PubMed
Google Scholar
Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell. 2013;25:1126–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot. 2009;60:3781–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002;290:998–1009.
Article
CAS
PubMed
Google Scholar
Li XS, Zhang DY, Li HY, Wang YC, Zhang YM, Wood AJ. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. Plant Biol. 2014;14:1471–2229.
Google Scholar
Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 2003;34:733–9.
Article
CAS
PubMed
Google Scholar
Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun. 2004;321:172–8.
Article
CAS
PubMed
Google Scholar
He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science. 2005;307:1634–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell. 2005;120:249–59.
Article
CAS
PubMed
Google Scholar
Li JM, Nagpal P, Vitart V, McMorris TC, Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996;272:398–401.
Article
CAS
PubMed
Google Scholar
Zhou XY, Li S, Xue HW. Brassinosteroids regulate the differential growth of arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Mol Plant. 2013;6:887–904.
Article
CAS
PubMed
Google Scholar
Darriere T, Jobet E, Zavala D, Escande ML, Durut N, de Bures A, et al. Upon heat stress processing of ribosomal RNA precursors into mature rRNAs is compromised after cleavage at primary P site in Arabidopsis thaliana. RNA Biol. 2022;19:719–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark NM, Nolan TM, Wang P, Song G, Montes C, Valentine CT, et al. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat Commun. 2021;12:5858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren H, Wu X, Zhao W, Wang Y, Sun D, Gao K, et al. Heat shock-induced accumulation of the glycogen synthase kinase 3-like kinase BRASSINOSTEROID INSENSITIVE 2 promotes early flowering but reduces thermotolerance in Arabidopsis. Front Plant Sci. 2022;13:838062. https://0-doi-org.brum.beds.ac.uk/10.3389/fpls.2022.838062.
Article
PubMed
PubMed Central
Google Scholar
Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, Sieberer T, et al. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO J. 2022;41:e108664. https://0-doi-org.brum.beds.ac.uk/10.15252/embj.2021108664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 2006;18:1292–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng X, Ma X, Fan W, Su M, Cheng L, Iftekhar A, et al. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep. 2011;30:1493–502.
Article
CAS
Google Scholar
Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 2008;53:264–74.
Article
CAS
PubMed
Google Scholar
Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun. 2008;368:515–21.
Article
CAS
PubMed
Google Scholar
Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, et al. Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem Biophys Res Commun. 2007;362:431–6.
Article
CAS
PubMed
Google Scholar
Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res Commun. 2010;401:238–44.
Article
CAS
PubMed
Google Scholar
Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, et al. DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol. 2010;153:716–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, et al. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun. 2021;12:3426. https://0-doi-org.brum.beds.ac.uk/10.1038/s41467-021-23786-6.
Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, et al. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res. 2019;29:379–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye H, Li L, Guo H, Yin Y. MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109:20142–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solano R, Stepanova A, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 1998;12:3703–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Lease KA, Tax FE, Walker JC. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2001;98:5916–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartley JL, Temple GF, Brasch MA. DNA cloning using in vitro site-specific recombination. Genome Res. 2000;10:1788–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
PubMed
Google Scholar
Jefferson RA, Kavanagh TA, Bevan M. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2:1565–72.
Article
CAS
PubMed
Google Scholar
Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science. 2007;318:1302–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Z, Xu G, Jing Y, Tang W, Lin R. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat Commun. 2016;7:12377. https://0-doi-org.brum.beds.ac.uk/10.1038/ncomms12377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Liu Y, Wang H, Ma X, Wang B, Wu G, et al. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun. 2017;8:348. https://0-doi-org.brum.beds.ac.uk/10.1038/s41467-017-00404-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol. 2011;13:616–22.
Article
CAS
PubMed
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007;2:e718. https://0-doi-org.brum.beds.ac.uk/10.1371/journal.pone.0000718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2017;45:122–9.
Article
Google Scholar