Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 2016;6:28333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miga KH. Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosom Res. 2015;23:421–6.
Article
CAS
Google Scholar
Martín-Peciña M, Ruiz-Ruano FJ, Camacho JPM, Dodsworth S. Phylogenetic signal of genomic repeat abundances can be distorted by random homoplasy: a case study from hominid primates. Zool J Linn Soc. 2019;185:543–54.
Article
Google Scholar
Dover GA. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet. 1986;2C:159–65.
Article
Google Scholar
Fry K, Salser W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell. 1977;12:1069–84.
Article
CAS
PubMed
Google Scholar
Meštrović N, Plohl M, Mravinac B, Ugarković Ð. Evolution of satellite DNAs from the genus Palorus-experimental evidence for the ‘Library’ hypothesis. Mol Biol Evol. 1998;15:1062–8.
Article
PubMed
Google Scholar
Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA, et al. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol. 2022;20:1–24.
Google Scholar
Hall SE, Kettler G, Preuss D. Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res. 2003;13:195–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosandić M, Paar V, Basar I, Glunčić M, Pavin N, Pilaš I. CENP-B box and pJα sequence distribution in human alpha satellite higher-order repeats (HOR). Chromosom Res. 2006;14:735–53.
Article
Google Scholar
Meštrović N, Pavlek M, Car A, Castagnone-Sereno P, Abad P, Plohl M. Conserved DNA motifs, including the CENP-B Box-like, Are possible promoters of satellite DNA array rearrangements in nematodes. PLoS One. 2013;8:e67328.
Article
PubMed
PubMed Central
Google Scholar
Meštrović N, Castagnone-Sereno P, Plohl M. High conservation of the differentially amplified MPA2 satellite DNA family in parthenogenetic root-knot nematodes. Gene. 2006;376:260–7.
Article
PubMed
Google Scholar
Meštrović N, Castagnone-Sereno P, Plohl M. Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. Mol Biol Evol. 2006;23:2316–25.
Article
PubMed
Google Scholar
Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T. A Human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989;109:1963–73.
Article
CAS
PubMed
Google Scholar
Fachinetti D, Han JS, McMahon MA, Ly P, Abdullah A, Wong AJ, et al. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev Cell. 2015;33:314–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plohl M, Meštrović N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma. 2014;123:313–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blattes R, Monod C, Susbielle G, Cuvier O, Wu JH, Hsieh TS, et al. Displacement of D1, HP1 and topoisomerase II from satellite heterochromatin by a specific polyamide. EMBO J. 2006;25:2397–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aldrup-MacDonald ME, Kuo ME, Sullivan LL, Chew K, Sullivan BA. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Res. 2016;26:1301–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:1–20.
Article
Google Scholar
Bayes JJ, Malik HS. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science. 2009;326:1538–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jagannathan M, Yamashita YM. Defective Satellite DNA Clustering into Chromocenters Underlies Hybrid Incompatibility in Drosophila. Mol Biol Evol. 2021;38:4977–86. https://0-doi-org.brum.beds.ac.uk/10.1093/molbev/msab221.
Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 2015;8:1–17.
Article
Google Scholar
Rošić S, Köhler F, Erhardt S. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol. 2014;207:335–49.
Article
PubMed
PubMed Central
Google Scholar
Joshi SS, Meller VH. Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr Biol. 2017;27:1393–1402.e2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;593(February):593–7.
Article
Google Scholar
Bersani F, Lee E, Kharchenko PV, Xu AW, Liu M, Xega K, et al. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A. 2015;112:15148–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
García LE, Sánchez-Puerta MV. Comparative and evolutionary analyses of Meloidogyne spp. based on mitochondrial genome sequences. PLoS One. 2015;10:e0121142.
Article
PubMed
PubMed Central
Google Scholar
Hugall A, Stanton J, Moritz C. Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Mol Biol Evol. 1999;16:157–64.
Article
CAS
PubMed
Google Scholar
Blanc-Mathieu R, Perfus-Barbeoch L, Aury JM, Da Rocha M, Gouzy J, Sallet E, et al. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet. 2017;13:e1006777.
Article
PubMed
PubMed Central
Google Scholar
Szitenberg A, Salazar-Jaramillo L, Blok VC, Laetsch DR, Joseph S, Williamson VM, et al. Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change. Genome Biol Evol. 2017;9:2844–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castagnone-Sereno P. Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity (Edinb). 2006;96:282–9.
Article
CAS
Google Scholar
Piotte C, Castagnone-Sereno P, Bongiovanni M, Dalmasso A, Abad P. Cloning and characterization of two satellite DNAs in the low-C-value genome of the nematode Meloidogyne spp. Gene. 1994;138:175–80.
Article
CAS
PubMed
Google Scholar
Castagnone-Sereno P, Semblat JP, Leroy F, Abad P. A new AluI satellite DNA in the root-knot nematode Meloidogyne fallax: relationships with satellites from the sympatric species M. hapla and M. chitwoodi. Mol Biol Evol. 1998;15:1115–22.
Article
CAS
PubMed
Google Scholar
Meštrović N, Plohl M, Castagnone-Sereno P. Relevance of satellite DNA genomic distribution in phylogenetic analysis: a case study with root-knot nematodes of the genus Meloidogyne. Mol Phylogenet Evol. 2009;50:204–8.
Article
PubMed
Google Scholar
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–3.
Article
PubMed
Google Scholar
Macas J, Novak P, Pellicer J, Cizkova J, Koblizkova A, Neumann P, et al. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One. 2015;10:1–23.
Article
Google Scholar
Janssen T, Karssen G, Verhaeven M, Coyne D, Bert W. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Sci Rep. 2016;6:22591.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ. 2014;2014:1–25.
Google Scholar
Castagnone-Sereno P, Leroy F, Abad P. Cloning and characterization of an extremely conserved satellite DNA family from the root-knot nematode Meloidogyne arenaria. Genome. 2000;43:346–53.
Article
CAS
PubMed
Google Scholar
Meštrović N, Randig O, Abad P, Plohl M, Castagnone-Sereno P. Conserved and variable domains in satellite DNAs of mitotic parthenogenetic root-knot nematode species. Gene. 2005;362:44–50.
Article
PubMed
Google Scholar
Sato K, Kadota Y, Gan P, Bino T, Uehara T, Yamaguchi K, et al. High-quality genome sequence of the root-knot nematode Meloidogyne arenaria genotype A2-O. Genome Announc. 2018;6:2–3.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ, Deleury E, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol. 2008;26:909–15.
Article
CAS
PubMed
Google Scholar
Triantaphyllou AC. Oogenesis and the chromosomes of the parthenogenetic root-knot nematode Meloidogyne incognita. J Nematol. 1981;13:95–104.
CAS
PubMed
PubMed Central
Google Scholar
Benetta ED, Akbari OS, Ferree PM. Sequence expression of supernumerary B chromosomes: function or fluff? Genes (Basel). 2019;10(2):123.
Article
CAS
Google Scholar
Jehan Z, Vallinayagam S, Tiwari S, Pradhan S, Singh L, Suresh A, et al. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res. 2007;17:433–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferree PM. Sex differences: satellite DNA directs male-specific gene expression. Curr Biol. 2017;27:R378–80.
Article
CAS
PubMed
Google Scholar
Halbach R, Miesen P, Joosten J, Taşköprü E, Rondeel I, Pennings B, et al. A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature. 2020;580:274–7. https://0-doi-org.brum.beds.ac.uk/10.1038/s41586-020-2159-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subirana JA, Albà MM, Messeguer X. High evolutionary turnover of satellite families in Caenorhabditis. BMC Evol Biol. 2015;15:1–13.
Article
Google Scholar
Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–50.
Article
CAS
PubMed
Google Scholar
Plohl M, Meštrovic N, Mravinac B. Satellite DNA evolution. Repetitive DNA. 2012;7:126–52.
Article
CAS
Google Scholar
Jagannathan M, Cummings R, Yamashita YM. A conserved function for pericentromeric satellite DNA. Elife. 2018;7:1–19.
Article
Google Scholar
Masumoto H, Yoda K, Ikeno M, Kitagawa K, Muro Y, Okazaki T. Properties of CENP-B and its target sequence in a satellite DNA. In: Chromosome segregation and aneuploidy. Berlin, Heidelberg: Springer Berlin Heidelberg; 1993. p. 31–43.
Chapter
Google Scholar
Alkan C, Cardone MF, Catacchio CR, Antonacci F, O’Brien SJ, Ryder OA, et al. Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res. 2011;21:137–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casola C, Hucks D, Feschotte C. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol. 2008;25:29–41.
Article
CAS
PubMed
Google Scholar
Mateo L, González J. Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins. Genome Biol Evol. 2014;6:2008–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaco I, Canela A, Vera E, Blasco MA. Centromere mitotic recombination in mammalian cells. J Cell Biol. 2008;181:885–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Despot-Slade E, Mravinac B, Širca S, Castagnone-Sereno P, Plohl M, Meštrović N. The centromere histone is conserved and associated with tandem repeats sharing a conserved 19-bp box in the holocentromere of Meloidogyne nematodes. Mol Biol Evol. 2021;38:1943–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonen L. Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J. 1993;7:40–6.
Article
CAS
PubMed
Google Scholar
Blumenthal T. Trans-splicing and operons. WormBook. 2005:1–9. https://0-doi-org.brum.beds.ac.uk/10.1895/wormbook.1.5.1.
Nelson DW, Honda BM. Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans. Gene. 1985;38:245–51.
Article
CAS
PubMed
Google Scholar
Danchin EGJ, Arguel MJ, Campan-Fournier A, Perfus-Barbeoch L, Magliano M, Rosso MN, et al. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLoS Pathog. 2013;9:e1003745.
Article
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Google Scholar
Novák P, Robledillo LÁ, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45(12):e111.
Article
PubMed
PubMed Central
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, DiGennaro PM. Identification of suitable Meloidogyne spp. housekeeping genes. J Nematol. 2019;51:1–11.
CAS
Google Scholar
Bushnell B. BBMap: a fast, accurate, splice-aware aligner: United States; 2014. https://www.osti.gov/servlets/purl/1241166
Google Scholar