Nanoimaging of EVs from gram-positive bacteria
We first investigated whether EVs could be observed in gram-positive bacteria using super-resolution STORM. We chose Staphylococcus aureus and Staphylococcus epidermidis because they are common members of the normal human microbiota. S. aureus and S. epidermidis were first labeled with Nile red dye to observe their membrane structures and then imaged using 3D STORM imaging. From the single-molecule localization distribution analysis and the xy-cross-section images of Nile red-stained bacteria, we confirmed the nanoscale resolution of this imaging method (Additional file 1: Fig. S1). From the STORM images of Nile red-stained S. aureus, we also observed the septum structure in the dividing bacteria, implying successful membrane labeling of the bacteria by Nile red dye molecules (Additional file 1: Fig. S2). As shown in Fig. 1A, Additional file 2: movie 1, and Additional file 3: movie 2, most S. aureus isolates (~90%) did not have EVs with spherical shapes. In contrast, ~10% of S. aureus isolates were shown to have EVs on their surfaces, which has not been previously observed by diffraction-limited LM owing to their small size (~60–150 nm in diameter).
To investigate whether they are Nile red precipitates or real EVs, we performed a single-molecule distribution analysis of the Nile red-only sample without EVs under our experimental conditions (Additional file 1: Fig. S1B). Any precipitate would result in noticeable changes in the single-molecule distribution, such as large positional variations with large FWHM values or an asymmetric distribution. However, the positional variation statistics within each nanocluster resulted in an FWHM (localization uncertainties) of 26–28 nm, in agreement with what is typically achieved for a single Nile red molecule in STORM, implying that aggregation was prevented under our optimized conditions and the observed nanoclusters were real EVs, not Nile red precipitates. We also tested other membrane dyes, including CellMask and CellBrite. As shown in Additional file 1: Fig. S3, we observed EVs from the staining of CellMask and CellBrite similar to Nile red-stained EVs. From the quantitative analysis of EV diameter measurement, they showed spherical shapes with a similar diameter (99–108 nm), regardless of the type of membrane dye.
To further confirm that the observed small-sized spherical particles were indeed EVs, we purified the EVs from cultured S. aureus and then performed STORM imaging after Nile red labeling. As shown in Additional file 1: Fig. S4, the Nile red-labeled EVs from purified samples also exhibited a spherical shape with a size similar to that of the observed nanoparticles in Fig. 1A, confirming that the observed small nanoparticles on the bacteria are real EVs. Thus, it suggests that our super-resolution imaging method can be useful in identifying EVs by confirming both the particle morphology and membrane composition, which have not been simultaneously analyzed at the single EV level from any conventional EV detection methods, such as nanoparticle tracking analysis, SEM/TEM imaging, or proteomic analysis. We also found that EVs were also observed in the STORM images of the Nile red-stained S. epidermidis (Additional file 1: Fig. S5). However, only a few S. epidermidis (~2.5%) were observed to have EVs on their surfaces compared to S. aureus (~10%), which may imply the distinct roles of EVs in different strains.
Next, we investigated whether EVs could also be observed in the cell wall of S. aureus after staining. We used wheat germ agglutinin (WGA) and anti-protein A to label the bacterial cell wall. WGA binds to N-acetylglucosamine in the outer peptidoglycan layer of gram-positive bacteria [20], and protein A is known to be a cell wall-associated protein [21, 22]. Since WGA can bind only to the peptidoglycan layer, hollow and spherical shapes of bacteria were observed from 3D STORM images, whereas the septum in the dividing bacteria was not observable in the cell wall images (Fig. 1A, Additional file 1: Fig. S2). Interestingly, we also observed EVs in the STORM images of the surface of S. aureus labeled with WGA and anti-protein A; these EVs were not resolved in the diffraction-limited fluorescence images. Next, we immunolabelled enterotoxin B in S. aureus. Enterotoxins are known to be one of the most common causes of food poisoning due to uncontrolled T cell activation, followed by toxic shock and death [23]. Since it has been reported that enterotoxin A and B are bound to microvillus membrane vesicles in vitro, we expected to observe EVs from bacterial enterotoxin images [23]. As shown in Fig. 1A, EVs were observed on the surface of S. aureus in the corresponding enterotoxin B-stained STORM images. The observed staining patterns in bacteria were similar to those of the peptidoglycan layer rather than the cytoplasmic membrane because the septum in the dividing bacteria was not stained with the enterotoxin B immunolabel, implying that the immunolabeled-enterotoxin B was located in the cell wall of gram-positive bacteria. This observation is also supported by a previous study demonstrating that enterotoxin B is associated with the cell wall after its precursor form is processed and released from the membrane [24]. This previous study also reported that the cell wall-associated enterotoxin B level decreased proportionately as the extracellular fraction of enterotoxin B increased during a pulse-chase experiment [24]. The observations of our STORM images and the findings of this previous study suggest that enterotoxin B appears to be released into the extracellular environment in the form of EV. Thus, this secreted virulence factor may be transferred from the cell wall of gram-positive bacteria to EVs. We also performed SEM and TEM imaging to observe EVs released from S. aureus. As shown in Fig. 1B, some S. aureus cells were observed to have EVs on their surfaces in the SEM and TEM images, similar to the STORM images.
Using the various EV images, we analyzed the size of the observed EVs. First, we compared the membrane diameters measured from the STORM images of EVs secreted from bacteria and the purified EVs. The average membrane diameters measured from EVs on bacteria and the purified EVs were ~113 and ~107 nm, respectively, confirming that the observed small nanoparticles on bacteria are real EVs (Additional file 1: Fig. S4B). From the diameter measurement of EVs, we found that the averaged diameters of EVs observed from STORM images of a membrane and a peptidoglycan layer range between 100 and 110 nm, which is within the reported EV size range [5] (Fig. 1C). As expected, the EVs observed in the SEM and TEM images appeared smaller than those observed in the STORM images owing to the absence of a tag and the shrinkage effect during the dehydration step in EM. Interestingly, we observed at least two populations based on the size in the STORM images, SEM images, and TEM images, implying the heterogeneity of EVs generated from different biogenesis mechanisms (Additional file 1: Fig. S6). Next, we analyzed the EV production rates of S. aureus from each type of image. Interestingly, the STORM images of the bacterial membrane exhibited a higher rate of EV production (~10%) than the STORM images of the cell wall (~1 and ~2% from WGA and protein A images, respectively) (Fig. 1D). Furthermore, the STORM images of enterotoxin B-labeling exhibited a higher rate of EV production (~4%) than the STORM images of the cell wall. These results suggest various compositions of EV for the membrane and peptidoglycan layers. Such variations in the composition of EV have not been resolved at a single EV level with conventional EV analysis techniques, emphasizing the importance of our nanoscale imaging-based analysis technique. Meanwhile, it was noted that fewer EVs were observed from the SEM images compared with the STORM images of the bacterial membrane. This could be because some EVs observed from membrane images had not yet budded out to the outside of the bacterial outer surface and were still located inside the peptidoglycan layer. Thus, they were not observable in the topography of the SEM images. The different production rates observed from various images prompted us to investigate the composition and location of EVs.
To confirm the composition of EVs, we performed recently developed correlative STORM and SEM imaging (Fig. 1E, Additional file 1: Fig. S7) [25, 26]. We performed SEM imaging after STORM imaging and EM sample preparation, similarly to a previously reported method [25]. Interestingly, most EVs (~82%) observed in the SEM images do not show the peptidoglycan layers, whereas only a small number of EVs (~18%) showed peptidoglycan layers (Fig. 1F). We also observed Nile red-stained membrane vesicles located inside the peptidoglycan layer in bacteria, which are not shown in the SEM images (Fig. 1E). As they appear to wait for the subsequent budding process through the cell wall, we refer to them as EV precursors. We found that its population changed in the same way as the EV production rate under various stresses such as temperature, osmotic stress, and the bacterial growth phase. For example, more membrane vesicles located inside the peptidoglycan layer were observed in the cultures incubated at 30 °C, under low salt conditions, or in a division state, in a similar fashion to the released EVs (Additional file 1: Fig. S8). Since it is difficult to imagine other bacterial organelles in a spherical shape located between the peptidoglycan layer and the cytoplasmic membrane (i.e., IWZ: inner wall zone), the observed membranous particles inside the peptidoglycan layer appear to be EV precursors. Furthermore, some bacteria with EVs on their surface showed a lower labeling density of WGA or protein A, implying a degraded cell wall structure during the EV release process. A weakened cell wall structure has been reported to be often observed in gram-positive bacteria during the division phase [27, 28]. Thus, we next quantified the EV production rate depending on the bacterial division phase. Interestingly, we found that bacteria in the division phase with septum formation showed a higher rate of EV production (Fig. 1G). Collectively, EV biogenesis appears to involve the cell wall lysis process for bacteria to release budding EVs.
Composition of EVs generated from gram-positive bacteria
We successfully used specific labeling methods for cell membranes and cell walls of gram-positive bacteria to perform multi-color STORM imaging for observing the cell membrane and cell wall simultaneously during the EV biogenesis process. Although several proteomic analyses of membrane vesicles from purified EV samples have been previously used to identify the composition of EVs, there is a chance of contamination by cell fragments or debris, such as protein aggregates, using these methods [29]. However, this limitation can be overcome by multi-color STORM imaging of EV-producing gram-positive bacteria because this method can be used to observe EVs in situ. This imaging method also allows us to observe the composition of individual EVs without contamination problems as opposed to previous ensemble measurements.
Using multi-color STORM imaging for various combinations of proteins, we observed the nanostructures of the inner plasma membrane and outer peptidoglycan layers in S. aureus, as shown in Fig. 2A and Additional file 1: Fig. S9. Interestingly, most EVs only showed a membrane layer, whereas a few EVs showed a double layer of WGA (or protein A) and membrane, as shown in Fig. 2B,C. This is consistent with the population ratios observed from the correlative single-color STORM and SEM images shown in Fig. 1F. This is also consistent with the size heterogeneity shown in Additional file 1: Fig. S6, implying the existence of various mechanisms for EV biogenesis. Interestingly, enterotoxin B exhibits different localization from WGA and protein A. Although we demonstrated that enterotoxin B is the cell wall-associated protein in S. aureus, its density did not decrease in the EV-producing bacteria, which is different from WGA and protein A (Fig. 2D). This implies that enterotoxin B remains the outermost layer of bacteria during cell wall lysis and is then transferred to the released EVs as a virulence factor.
Next, the correlative multi-color STORM and SEM imaging was performed to differentiate the EV precursors located inside the peptidoglycan layer in bacteria from the released EVs. The results showed that the EV precursors were located inside the peptidoglycan layer in bacteria, different from the location of finalized EVs (Fig. 2E, Additional file 1: Fig. S10). These EV precursors are likely resulted from the membrane blebbing, as known for the OMV released from gram-negative bacteria. As expected, the EV precursors observed in the multi-color STORM images were not observed in the SEM images, most likely due to still being encapsulated by the outermost cell wall. These EV precursors located in the IWZ were also observed from the TEM images (Fig. 2F). These EV precursors resulted from the membrane blebbing appear to wait for the subsequent budding process through the cell wall. We also observed an explosive cell lysis event in bacteria, which is known to act as a mechanism for EV production in gram-negative bacteria [30]. Interestingly, a relatively large amount of membrane fragments were spread over a wide area, whereas the cell wall fragments were observed to scatter after the explosive cell lysis (Fig. 2G). As EVs consisting of the membrane were often observed within these cell debris, the secreted membrane fragments appeared to form EVs rapidly, similar to the formation in gram-negative bacteria. EV formation after cell lysis was also observed in the TEM images (Fig. 2H). Interestingly, enterotoxin B exhibited higher labeling rate for EVs produced by explosive cell lysis, in contrast to the protein A and WGA patterns (Fig. 2I). This suggests that enterotoxin B can be transferred to EVs with membrane fragments as a major virulence factor after the explosive cell lysis event. Collectively, these findings highlight the variety of EV compositions produced by different mechanisms, as observed in the multi-color STORM images.
EV biogenesis mechanisms for gram-positive bacteria
Based on the observation and measurement of EVs in multi-color STORM and TEM images, EV biogenesis in gram-positive bacteria appeared to occur either through membrane blebbing or explosive cell lysis, similar to the occurrence in gram-negative bacteria (Fig. 3A).
Membrane blebbing was observed in the STORM images of Nile red-stained EVs (Fig. 3B, Additional file 1: Fig. S11). Interestingly, a vacuole-like structure composed of a high-density lipid was often observed in Nile red images immediately below the budding site inside the cytoplasmic membrane, most likely acting as a readily available membrane source (Fig. 2A,B). Such a vacuole generation has been reported to frequently occur during the bacterial cell enlargement inside the cytoplasm of gram-positive bacteria [31]. Then, the blebs seemed to first remain between the cytoplasmic membrane and peptidoglycan layer as EV precursors after being pinched off from the plasma membrane, in contrast to previously suggested EV biogenesis models for gram-positive and gram-negative bacteria. In previous studies, the cytoplasmic membrane has been described to extrude through the hole in the peptidoglycan layer for EV generation in gram-positive bacteria without the precursor state, based on the observation of membrane blebbing after lysin treatment [32]. In contrast, these extruding membrane bubbles were not observed through the thick peptidoglycan layer in our STORM and TEM images. Instead, many membrane vesicles remained in the IWZ, which is the region between the cytoplasmic membrane and the peptidoglycan layer, after being pinched off from the cytoplasmic membrane. Such membrane vesicles were not observed in the SEM images of correlative STORM and SEM imaging as shown in Fig. 1E because they were still encapsulated inside the peptidoglycan layer. This discrepancy between previously reported observations and the observations in this study is most likely due to the different cell wall conditions arising from the lysin treatment used in the previous study. Removal of the outer cell wall zone upon lysin treatment in the previous study allowed the membrane bleb to extrude easily through the peptidoglycan layer. In contrast, the native bacteria without lysin treatment in the present study seemed to have a relatively thicker peptidoglycan layer as a barrier, preventing membrane bleb from extruding before being pinched off from the membrane. The EV precursors located in the IWZ appeared to wait for the degradation of the peptidoglycan layer. The IWZ is composed mostly of soluble low-density constituents, allowing vesicles to expand within it [33]. We found that most of the EV precursors were released after local cell wall lysis (mechanism 1), whereas a few of them were released by being encapsulated by the remaining peptidoglycan layer (mechanism 2) (Fig. 3B,C). Since the latter is occasionally observed (~11% from STORM images), this mechanism may have been difficult to observe in previous studies. Because these two mechanisms appear to involve the cell wall lysis step, the cell wall contrast near the EV-releasing area was analyzed in the STORM and TEM images. As shown in Fig. 3D, local cell wall degradation was observed near the EV-locating area for mechanisms 1 and 2 in both the STORM and TEM images. Although cell wall density was slightly higher at the budding site in mechanism 2, the surrounding cell wall appeared to degrade to aid in the release of EV from the cell wall via this mechanism.
EV biogenesis through explosive cell lysis has also been frequently observed in multi-color STORM images (mechanism 3). In relation to this mechanism, expanded IWZ was observed in the corresponding TEM images, most likely due to the increased osmotic pressure in this zone (Fig. 3B, Additional file 1: Fig. S12). The turgor pressure exerted from this zone pushes the cell wall, resulting in low-curvature blebbing of the peptidoglycan layer. At this point, the turgor pressure exerted from inside the membrane appeared to be larger than the osmotic pressure in the IWZ, resulting in the bending of the peptidoglycan layer instead of the cytoplasmic membrane at the budding site. When we analyzed the density (contrast) and curvature of the cell wall at this budding site, relatively higher contrast and a lower curvature of the cell wall were observed in mechanism 3 compared to mechanisms 1 and 2, implying that less cell wall lysis occurred in mechanism 3 by allowing the expansion of the IWZ (Fig. 3E). This expanded IWZ ultimately ruptured due to cell wall damage and increased turgor pressure, as observed in the STORM and TEM images. During this explosive cell lysis, the formation of multiple EVs was observed in both the STORM and TEM images. EVs in this mechanism seemed to be composed of a membrane without the peptidoglycan layer as shown in Fig. 2I, although cell wall fragments were also secreted during the cell lysis process. This suggests that the amount of cell wall fragments released by explosive cell lysis is insufficient for forming the peptidoglycan layer for EVs since the cell wall was already degraded prior to the explosive cell lysis event. Interestingly, we also found that the EVs produced after cell lysis process were hardly observed from SEM images because they were covered by the released cell debris during explosive cell lysis (Additional file 1: Fig. S13). Although the EVs produced by mechanism 3 were not directly observed from the SEM images, the spherical membrane vesicles observed after explosive cell lysis in STORM images are highly likely to be real EVs as EVs produced after explosive cell lysis were frequently observed not only from gram-negative bacteria in previous studies, but also from our TEM images. This suggests that our STORM imaging method can be a better tool for observing EVs produced by explosive cell lysis than SEM imaging.
Among these, mechanisms 1 and 3 were found to be the major mechanisms for EV biogenesis in gram-positive bacteria (Fig. 3F). Although mechanism 2 occurred rarely, the EVs produced by this mechanism were observed in both the STORM and TEM images. As expected, the EVs produced by mechanism 2 were larger than those produced by mechanism 1 (Fig. 3G). Interestingly, the EVs produced by mechanism 3 also exhibited a relatively larger size than those produced by mechanism 1. This could be due to the growth of EV precursors within the IWZ in mechanism 1 being limited by the width of the expanded IWZ. In contrast, the growth volume for EV production is not limited during the explosive cell lysis in mechanism 3, as the EVs are formed after secretion from the IWZ region. Therefore, we could confirm that the size heterogeneity of EVs is resulted from various EV biogenesis mechanisms in gram-positive bacteria, as expected. Collectively, various EV biogenesis mechanisms in gram-positive bacteria could be investigated by using the multi-color STORM images.