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Shaping the dynamic mitochondrial network
Laura L Lackner
Abstract

In a majority of cell types, mitochondria form highly
dynamic, tubular networks. Maintaining the shape of
this complex network is critical for both mitochondrial
and cellular function and involves the activities of
mitochondrial division, fusion, motility, and tethering.
Recent studies have advanced our understanding of
the molecular mechanisms underlying these
conserved activities and their integration with cellular
needs.
Mitochondrial division and fusion: regulators of

Mitochondria are not discrete or autonomous but form
highly dynamic, interconnected networks whose biogen-
esis and structure are highly influenced by the needs of
the cell (Figure 1a,b). Mitochondria have a myriad of
functions in addition to cellular energy production and
play critical roles in cell cycle progression, differenti-
ation, development, immune responses, lipid and cal-
cium homeostasis, and apoptotic cell death (Figure 1c;
reviewed in [1]). These diverse roles of mitochondria are
intimately connected to the structure and cellular con-
text of the essential organelle. Thus, it is not surprising
that aberrant mitochondrial architecture has been asso-
ciated with an ever-increasing number of diseases.
The shape and cellular distribution of the mitochon-

drial network is maintained in large part by the
conserved activities of mitochondrial division, fusion,
motility and tethering (Figure 2). These conserved activ-
ities are coordinately regulated and fully integrated with
cellular physiology to respond to the rapidly changing
needs of the cell. For example, mitochondria elongate
during the G1/S transition, fragment at the onset of mi-
tosis and apoptosis, hyperfuse in response to nutrient
starvation and oxidative stress, and are recruited to and
maintained at active synapses [2-8]. This regulated re-
structuring of mitochondria is functionally significant as
disruption of these processes has negative effects on
overall cellular function.
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Great progress has been made in our understanding of
the molecular mechanisms that actively shape the dy-
namic mitochondrial network. However, we still have
much to learn regarding the coordinate regulation of the
activities that drive the context-specific changes in mito-
chondrial form and function. This review will highlight
recent advances in our understanding of the molecular
mechanisms that impact mitochondrial form and the in-
tegration of these mechanisms with one another and
with cellular function.
mitochondrial connectivity
The antagonistic activities of mitochondrial division and
fusion are required to maintain the form and function
of mitochondria (Figure 2). Mitochondrial fusion facili-
tates communication and sharing of contents between
mitochondrial compartments, which can buffer transient
defects in mitochondrial function [9]. Mitochondrial
division facilitates the transport, distribution, and quality
control-mediated degradation of the organelle [10].
The dynamic processes of mitochondrial division
and fusion are mediated by dynamin related proteins
(DRPs). DRPs are a family of large GTPases that harness
GTP-dependent self-assembly and subsequent GTP
hydrolysis-mediated conformational changes to remodel
membranes [11,12]. The DRP Dnm1/Drp1 (yeast/mam-
mals) drives the scission of mitochondrial membranes,
and the DRPs Fzo1/Mfn1/2 and Mgm1/Opa1 mediate
fusion of the mitochondrial outer and inner membranes
(MOM and MIM), respectively [13].
Mitochondrial division
The dynamin related GTPase Dnm1/Drp1 is a core com-
ponent of the mitochondrial division machine (Figure 3a)
[14-18]. Dnm1/Drp1 assembles into helical structures
that wrap around mitochondria and mediate the scission
of mitochondrial membranes [17,19-21]. GTP binding
drives Dnm1/Drp1 helix assembly, which in turn triggers
GTP hydrolysis via the formation of a catalytic interface
between the GTPase domains of molecules in adjacent
helical rungs [19,22-25]. Consequent GTP hydrolysis-
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Figure 1. The form and functions of mitochondria. (a) In yeast, mitochondria form a connected, tubular network that is evenly distributed at
the cell cortex. (b) Mitochondria also form well-distributed tubular networks in a majority of mammalian cell types. The mitochondrial network of
a mouse embryonic fibroblast is shown. Scale bar, 2 μ for (a,b). (c) Like their bacterial ancestors, mitochondria possess two structurally and func-
tionally distinct membranes, the mitochondrial outer and inner membranes (MOM and MIM, respectively). The MOM and MIM surround two com-
partments, the inner membrane space and matrix, respectively. The matrix houses the circular mitochondrial genome (mtDNA), which encodes
protein components of the respiratory complexes I to IV. The MIM, the most protein dense membrane in the cell, adopts elaborate folds called
cristae in which assembled respiratory complexes are housed. In addition to ATP production via oxidative phosphorylation, mitochondria play crit-
ical roles in phospholipid biosynthesis, metabolite exchange/buffering, β-oxidation of fatty acids, iron-sulfur cluster biogenesis, pyrimidine biosyn-
thesis and the storage and release of apoptotic factors (reviewed in [1]). TCA, tricarboxylic acid.
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driven conformational changes in the helix result in fur-
ther constriction and ultimate scission of the underlying
mitochondrial membranes [26,27].
Drp1-mediated membrane remodeling is subject to

regulation at various points in the division pathway, in-
cluding targeting of Drp1 to the MOM and modulation
of the GTP-regulated assembly, constriction, and disas-
sembly of the Drp1 helix. Post-translational modification
(PTM) of Drp1, which includes phosphorylation, sumoy-
lation, ubiquitination, nitrosylation and O-glycosylation,
can positively or negatively impact Drp1 activity (reviewed
in [28]), and alternative RNA splicing produces function-
ally distinct Drp1 isoforms, which themselves are subject
to differential PTM [29]. The activity of the mitochondrial
division DRP is also regulated by protein effectors
(adaptors): Mdv1 in yeast and Fis1, Mff, MiD49 and
MiD51 in mammals [30-36]. These effectors function to
target and/or regulate the assembly of the division DRP
on the mitochondrial surface, providing critical spatial and
temporal regulation [37-40].
Distinct combinations of Drp1 isoforms, effectors and

PTMs provide contextual regulation to Drp1 activity and
allow for the integration of mitochondrial division with
cellular needs. For example, site-specific phosphorylation
activates Drp1 activity during mitosis, which facilitates
segregation of mitochondria into daughter cells [3]. Dur-
ing nutrient starvation, the phosphorylation of one site
and dephosphorylation of another attenuate Drp1 activ-
ity, leading to mitochondrial elongation, which protects
mitochondria from autophagic degradation and sustains
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Figure 2. The conserved activities of mitochondrial division, fusion, motility and tethering shape and position the dynamic
mitochondrial network. The connectivity of the mitochondrial network is controlled by the antagonistic activities of mitochondrial division and
fusion. Mitochondrial division and fusion serve to create a compartment that is a connected conductor, able to mix its contents and have access
to mtDNA and its products, but able to be distributed to distant cellular destinations via motor-dependent transport on actin or microtubule net-
works. Once transported to areas of demand, tethers ensure mitochondria are retained at these cellular locations. In addition to creating trans-
portable mitochondrial compartments, mitochondrial division can produce functionally asymmetric daughter mitochondria. Dysfunctional
daughters (depicted in red) cannot re-fuse with the network and are flagged for autophagic degradation.
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cell viability [4,5]. Phosphorylation has recently been
shown to regulate the association of splice-specific iso-
forms of Drp1 with microtubules (MTs) [29]. MT-
associated Drp1 is a latent form of Drp1 that can be se-
lectively mobilized by cyclin-dependent kinase signaling,
providing a novel mechanism to integrate Drp1 activity
with the cell cycle. In addition, recent structural analyses
of the Drp1 effector MiD51 identified ADP as an unex-
pected regulator of mitochondrial division [38,41]. MiD51
adopts a nucleotidyltransferase fold that can bind ADP.
MiD51 mutants deficient in ADP binding are able to
recruit Drp1 to mitochondria [38,41] and support mito-
chondrial division under normal conditions [41]. However,
stress-induced mitochondrial division is attenuated in the
absence of ADP-binding [38], providing context-specific
regulation to the activity of the division effector.
While protein and PTM effectors can function to tar-

get the mitochondrial division DRP to the mitochondrial
surface, the amalgamation of recent studies indicates
that mitochondrial division site selection involves com-
munication between unexpected extramitochondrial fac-
tors and internal mitochondrial structures. The initial
observation that the ER physically wraps around mito-
chondria and facilitates mitochondrial constriction at
nascent division sites added a novel player to the mito-
chondrial division pathway [42]. ER-mediated mitochon-
drial constriction occurs upstream of Drp1 recruitment
and represents an early stage in mitochondrial division
[21,42]. In mammalian cells, an ER-associated formin,
INF2, has been functionally linked to this early stage
mitochondrial constriction [43]. Evidence indicates that
INF2 mediates actin polymerization and subsequent my-
osin recruitment to sites of ER-mitochondria contact,
providing a force-generating mechanism to drive the
constriction of mitochondria [44]. This initial constric-
tion likely generates a geometric hotspot that is more fa-
vorable for Drp1 helix assembly [42]. Evidence hints that
actin may play a similar role in mitochondrial division in
yeast. In yeast, the multi-subunit ER-mitochondria en-
counter structure (ERMES), which tethers the ER and
mitochondria, is both spatially and functionally linked to
sites of mitochondrial division [45]. The ERMES com-
plex has also been implicated as a bridge between mito-
chondria and the actinomyosin network and thus may
function at division sites to coordinate the recruitment
of cytoskeletal and motor proteins [46].
The spatial and functional link between ERMES and

mitochondrial division also place a matrix-localized fac-
tor, the mitochondrial nucleoid, at the site of mitochon-
drial division. The mitochondrial nucleoid is composed
of mitochondrial DNA (mtDNA) and proteins required
for its compaction and maintenance. A subset of mito-
chondrial nucleoids, specifically those that are actively
replicating, co-localize with the ERMES complex [47].
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Figure 3. Molecular models of mitochondrial division and fusion. (a) Mitochondrial division involves communication between extra-
mitochondrial division factors and internal mitochondrial structures. See text for details. (b) Mitochondrial fusion requires the sequential inter-
action of the MOM and MIM. MOM fusion is mediated by Mfn1/2, and MIM fusion is mediated by Opa1. Mfn2 is also localized to the ER and func-
tions to tether the ER and mitochondria.
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ERMES-associated nucleoids are present at a majority
of mitochondrial division sites, and nucleoids are often
found in both of the newly generated mitochondrial tips
following division [45]. As tips can go on to fuse with
other parts of the mitochondrial network, the placement
of nucleoids in newly generated mitochondrial tips pro-
vides a means to redistribute mtDNA within the network.
The spatial association of nucleoids with mitochondrial
division sites is conserved, and defects in mitochondrial
division lead to defects in nucleoid distribution in both
yeast and mammalian cells [48,49]. While homologs of the
core ERMES subunits are not found in higher eukaryotes,
the putative ERMES regulatory subunit Gem1 (Miro 1 and
2 in humans) is conserved [50,51]. Whether Miro associ-
ates with and regulates a functionally analogous ER-
mitochondria tether in higher eukaryotes is an outstanding
question. It is likely additional factors that mediate phys-
ical and functional interactions between matrix-localized
mitochondrial nucleoids and the MOM-associated division
machinery will be identified. Indeed, based on the recent
addition of novel, unexpected players to the mitochondrial
division pathway in both yeast and humans, it is clear that
our knowledge of the entire complement of proteins that
comprise and regulate the division complex is far from
complete.

Mitochondrial fusion
In comparison to the division DRPs, less is known about
the mechanism by which fusion DRPs harness GTP-
driven self-assembly and GTP hydrolysis-mediated con-
formational changes to fuse membranes. Current evidence
indicates that MOM and MIM fusion proceed via two
separable stages, membrane tethering and lipid content
mixing, both of which require fusion DRPs (Figure 3b)
[52-58]. Membrane tethering is mediated by fusion DRP
self-assembly, and subsequent GTP hydrolysis-induced
conformational changes are proposed to destabilize the
lipid bilayers of the tethered fusion partners to facilitate
lipid mixing and fusion. While assembled structures of the
fusion DRPs have been observed by electron microscopy,
it is not yet clear if and how these structures correlate to
active fusion complexes [59-62].
Like the mitochondrial division DRP, the mitochondrial

fusion DRPs are subject to various levels of regulation, in-
cluding alternative splicing, PTM, proteolytic processing,
and regulated protein degradation, all of which can link
mitochondrial fusion with cellular physiology. For example,
one of the peptidases responsible for Opa1 processing,
Oma1, has been shown to be activated in response to vari-
ous cellular stressors [63]. Under these conditions, en-
hanced Opa1 processing correlates with attenuated fusion
and stress-induced mitochondrial fragmentation. In con-
trast, OXPHOS-stimulated processing of Opa1 via the pep-
tidase Yme1L has been shown to stimulate MIM fusion
[64]. Recent work demonstrates that acetylation can also
regulate Opa1 activity. Acetylation of OPA1 reduces its ac-
tivity, and the acetylated state and thus function of OPA1
can be modulated by the mitochondrial deacetylase Sirt3
[65]. As the sirtuin is dependent on NAD+, its activity is
highly sensitive to the metabolic state of the cell. Thus,
context-specific processing and PTM of Opa1 link MIM
fusion to both cellular health and metabolism. Acetylation
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is also proposed to regulate MOM fusion under certain
stress conditions by promoting the ubiquitination and sub-
sequent degradation of Mfn1 [66]. Phosphorylation and
ubiquitination can also trigger Mfn1/2 degradation and
thus inhibit MOM fusion in response to specific stimuli
[67-69]. In addition to promoting degradation, site-specific
ubiquitination can stabilize MOM fusion DRPs, as has
been shown for Fzo1, and promote fusion, perhaps via the
stabilization of Fzo1 oligomers [70]. Regulation of the olig-
omeric state of Mfn2 via modification by oxidized glutathi-
one has also been proposed to promote mitochondrial
fusion [71]. Additionally, localization of Mfn2 to both the
MOM and ER raises the possibility that differential target-
ing of the protein can also be used as a means to regulate
fusion. As interactions between ER-associated Mfn2 and
mitochondrial-associated Mfn1/2 function to tether the
two organelles [72], ER-mitochondria contacts may also
play direct and/or regulatory roles in mitochondrial fusion.
Given the complex regulation of mitochondrial fusion at
the level of both the MOM and MIM, and the likelihood
that additional regulatory mechanisms will be identified,
we have a challenging road ahead in the pursuit of a
complete understanding of how mitochondrial fusion is
fully integrated with cellular needs.

The integration of mitochondrial division and fusion
The relative rates of mitochondrial division and fusion
modulate the connectivity of the mitochondrial network.
Under normal conditions, the rates of mitochondrial
division and fusion in yeast are balanced, suggesting that
there is coordinate regulation of the two processes [73].
A reported interaction between Drp1 and Mfn2 raises
the possibility that mitochondrial dynamics may be co-
ordinated via direct interactions between the division
and fusion machinery [74]. Further support of coordin-
ate regulation comes from recent work that both
spatially and functionally links the short form of Opa1
to mitochondrial division [75]. Non-processed forms of
Opa1 (long Opa1) are sufficient to mediate mitochon-
drial fusion, while the accumulation of processed forms
(short Opa1) correlate with mitochondrial fragmentation
without negatively effecting fusion rates, indicative of a
role for short Opa1 in division. Consistently, a catalytic-
ally inactive form of short Opa1 partially co-localizes
with Drp1 and sites of ER-mitochondria contact. This
functional and spatial association of short Opa1 with
mitochondrial division suggests that the processing of
Opa1 can function to balance mitochondrial division
and fusion dynamics.

Mitochondrial motility and tethering: regulators
of mitochondrial position
The activities of mitochondrial motility and tethering
impact the overall cellular distribution of mitochondria.
These activities are critical to ensure mitochondria are
trafficked to and maintained at the cellular locations
where they are needed.

Mitochondrial motility and tethering in yeast
In the simple polarized budding yeast cell, mitochondrial
motility and tethering are critical to ensure that the
daughter cell inherits and mother cell retains the essen-
tial mitochondrial compartment (Figure 4a). Mitochon-
dria are actively transported to the growing bud via
Myo2-driven transport along the actin cytoskeleton
[76-82]. While transport is critical to place mitochondria
in the bud, mother- and bud-specific mitochondrial
tethers ensure that both cells retain part of the essential
mitochondrial network [83-85]. Interestingly, daughters
are born with a constant mitochondrial content to cell
size ratio, suggesting that there is communication be-
tween mitochondrial transport and biogenesis and cell
growth pathways in yeast [86].
The yeast mitochondrial inheritance mechanism is also

harnessed to contribute to mother-daughter age asym-
metry, whereby daughter cells are born young despite
the age of the mother [87]. In yeast, mitochondria
retained in the mother cell have lower membrane and
redox potential and higher superoxide levels than those
inherited by the daughter [88]. How this asymmetry in
mitochondrial function is achieved is not clear; however,
selective transport and retention pathways likely play a
role. Indeed, in the absence of the Myo2-mitochondrial
adaptor/bud-specific tether Mmr1, mother-daughter age
asymmetry is disrupted [88]. Whether the mother-
specific tether also plays a role in the establishment of
mother-daughter age asymmetry and how the selective
transport and tethering of mitochondria are achieved are
at this point unclear.

Mitochondrial motility and tethering in neurons
In more complex polarized cells such as neurons and
immune cells, mitochondria must be actively transported
to and maintained in active synaptic regions (Figure 4b),
which have high demands for energy and Ca2+ buffering.
Disrupting the synaptic translocation of mitochondria
adversely affects both neuronal and immune cell func-
tion [6-8,89]. Due to the uniform, polarized arrangement
of MTs in axons and the critical importance of mito-
chondrial positioning to neuronal function, neurons
have proven to be an excellent model system to study
regulated mitochondrial transport and tethering (for in
depth review see [90,91]). In neurons, the kinesin Kif5 is
the main motor driving anterograde mitochondrial trans-
port, while the retrograde transport of mitochondria is
driven by dynein. Adaptor proteins mediate the interac-
tions between these cytoskeletal motors and mitochondria.
The adaptor protein Milton/TRAK bridges the interaction



- +

- +

Ca2+

Ca2+

Miro
Milton

Kinesin

Syntaphilin

Mmr1

MECA

mito

ER

PM

Mmr1/
Ypt11

ER

PM

mito

Myo2

(a) (b)

Figure 4. Molecular models of mitochondrial motility and tethering. (a) In yeast, mitochondria are actively transported to the growing bud
via Myo2-driven transport along the actin cytoskeleton. Myo2-driven transport requires either Mmr1 or Ypt11 [76-82]. Mother- and bud-specific
mitochondrial tethers ensure that both cells retain part of the essential mitochondrial compartment. The mother specific tether MECA (mitochon-
dria-ER-cortex anchor) is composed of three membranes, the plasma membrane (PM), ER and mitochondria, and at least two proteins, Num1 and
Mdm36 [84]. In addition to serving as a mitochondrial adaptor for Myo2, Mmr1 functions to tether mitochondria to ER sheets at the bud tip [83].
(b) A model for activity-dependent transport and tethering of mitochondria in axons. The conserved MOM Rho-like GTPase Miro and its binding
partner Milton function as a mitochondrial receptor for kinesin. In active synaptic regions, Ca2+-binding by Miro triggers a confirmation change
that disrupts kinesin-driven mitochondrial transport [98,99]. Ca2+-mediated confirmation changes have been proposed to disrupt the interaction
between Miro/Milton with kinesin (shown here) or kinesin with microtubules. In response to neuronal activity (elevated Ca2+), syntaphilin is also
recruited to mitochondria and functions as a static mitochondria-microtubule tether [100].
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between Kif5 and the MOM receptor Miro, a Rho-like
GTPase with two GTPase domains, two Ca2+-binding EF
hand motifs and two recently identified hidden EF-hand
motifs that bind a helix that structurally mimics an EF
hand ligand [92-94]. Miro likely also serves as the mito-
chondrial receptor for dynein as both anterograde and
retrograde mitochondrial transport are disrupted in the ab-
sence of Miro and Miro’s binding partner TRAK interacts
with both kinesin and dynein motors [95,96].
Miro has been proposed to function in activity-dependent

regulation of mitochondrial transport via its ability to sense
calcium [97-99]. A relatively small proportion of mitochon-
dria are motile in neurons, and this motile population is
further decreased in response to synaptic activity, which in-
creases local Ca2+ concentrations. Ca2+ binding by Miro is
proposed to trigger conformational changes that disrupt
the interaction between Kif5 and MTs or Milton/TRAK
and Kif5 and, consequently, disrupt mitochondrial trans-
port [98,99]. Interestingly, retrograde transport does not
take over in this circumstance, suggesting that dynein-
dependent transport is also altered in response to elevated
Ca2+ and/or a mitochondrial anchoring mechanism is
activated. A recent study has elegantly dissected an activity-
dependent anchoring mechanism [100]. The activity-
dependent immobilization of axonal mitochondria requires
the neuron-specific MOM protein syntaphilin [101]. In
response to neuronal activity, syntaphilin is recruited
to axonal mitochondria where it functions as an activity-
regulated brake to mitochondrial transport. Syntaphilin
competes with Milton/TRAK for Kif5 binding, and once
bound to Kif5, syntaphilin inhibits the activity of the motor
protein [100]. What mediates the activity-dependent re-
cruitment of syntaphilin to axonal mitochondria and how
the syntaphilin-mediated brake is released are outstanding
questions. Interestingly, syntaphilin is not required for the
activity-dependent immobilization of mitochondria in den-
drites, indicating that a dendrite-specific tethering mechan-
ism exists [100]. Consistently, mitochondrial motility in
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dendrites is primarily dynein-driven, supporting the need
for a kinesin-independent tethering mechanism [96]. With
the exception of the axonal-specific tether syntaphilin,
the same motor and adaptor proteins and regulatory mech-
anisms that govern neuronal mitochondrial transport ap-
pear to be employed for mitochondrial transport in non-
neuronal cell types [97,102].

The role of the ER in mitochondrial positioning
In yeast, the ER is a component of both the mother- and
bud-specific mitochondrial tethers [83,84]. Whether the
ER is a conserved component of positional mitochondrial
tethers in other cell types remains to be determined. In
activated T cells, both mitochondria and the ER are re-
cruited to and maintained at the immune synapse [8,103].
Thus, ER-mitochondria tethers, such as Mfn2, may play a
role in the synaptic translocation of mitochondria. Miro
has also been localized to ER-mitochondria contacts in
mammalian cells, raising the possibility that Miro-mediated
ER-mitochondria tethering may also function in the posi-
tioning of mitochondria [50].

Additional functions of mitochondrial tethers
Mitochondrial tethers are not only important for posi-
tioning mitochondria relative to overall cellular structure
but also play critical roles in positioning mitochondria
relative to other organelles. The juxtaposition of mem-
brane systems can facilitate the exchange of lipid, cal-
cium and/or other small molecules between tethered
compartments [104]. Indeed, the ER-mitochondria tether
ERMES has been functionally linked to lipid transport
between the ER and mitochondria in yeast [105], and
ER-mitochondrial tethering by Mfn2 functions in Ca2+

signaling and lipid synthesis/transport between the two
organelles [72,106]. In addition, Mfn2-mediated ER-
mitochondrial contact plays a role in autophagosome
biogenesis [107], and an ER-mitochondria tether com-
posed of the ER protein Bap31 and mitochondrial an-
chored Fis1 is functionally associated with apoptosis as
well as the removal of defective mitochondria by mito-
phagy [108,109]. Thus, mitochondrial tethers mediate
functional interactions between the ER and mitochon-
dria that are critical for many key cellular homeostatic
pathways.
In addition to physical and functional connections to

the ER, a recent study demonstrates that mitochondria
are physically and functionally tethered to melanosomes,
specialized lysosome-related organelles of pigment cells
[110]. Mitochondria-melanosome tethering is mediated
by Mfn2 and plays a role in melanosome biogenesis.
Mitochondria also have close physical association with
lipid droplets, although the molecular basis and func-
tional consequences of this association are not known
[111]. Given the number of ER-mitochondria contacts
predicted for a single yeast cell alone is approximately
100 [112], it is likely that many additional inter-organelle
tethers will be identified, many of which may be func-
tionally distinct.

Further integration of mitochondrial dynamics,
motility and tethering pathways
Growing evidence suggests the activities of mitochon-
drial division, fusion, motility and tethering are inter-
dependent and that the disruption of one activity can
have indirect consequences on another. Indeed, attenu-
ation of mitochondrial division disrupts the transport of
mitochondria to neuronal and immune synapses, ultim-
ately leading to detrimental effects on cellular function
[6-8,89]. Mitochondrial tethering defects can reduce the
rates of mitochondrial division [84,113,114], perhaps by
disrupting the membrane tension required for DRP-
mediated membrane scission [115]. In addition, mito-
chondrial transport is disrupted in the absence of the
MOM fusion DRP Mfn2 [116]. Therefore, in addition to
understanding each dynamic attribute in isolation, we
must carefully consider the complex relationships that
exist between the activities themselves and with the rest
of the cell.
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