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Abstract
Background: Humans die at an increasing rate until late in life, when mortality rates level off. The
causes of the late-life mortality plateau have been debated extensively over the past few years.
Here, I examine mortality patterns separately for each of the leading causes of death. The different
causes of death show distinct mortality patterns, providing some clues about the varying
acceleration of mortality at different ages.

Results: I examine mortality patterns by first plotting the data of mortality rate versus age on a
log-log scale. The slope of the age-specific mortality rate at each age is the age-specific acceleration
of mortality. About one-half of total deaths have causes with similar shapes for the age-specific
acceleration of mortality: a steady rise in acceleration from midlife until a well-defined peak at 80
years, followed by a nearly linear decline in acceleration. This first group of causes includes heart
disease, cerebrovascular disease, and accidental deaths. A second group, accounting for about one-
third of all deaths, follows a different pattern of age-specific acceleration. These diseases show an
approximately linear rise in acceleration to a peak at 35–45 years of age, followed by a steep and
steady decline in acceleration for the remainder of life. This second group includes cancer, chronic
respiratory diseases, and liver disease. I develop a multistage model of disease progression to
explain the observed patterns of mortality acceleration.

Conclusions: A multistage model of disease progression can explain both the early-life increase
and late-life decrease in mortality acceleration. An early-life rise in acceleration may be caused by
increasing rates of transition between stages as individuals grow older. The late-life decline in
acceleration may be caused by progression through earlier stages, leaving only a few stages
remaining for older individuals.

Background
Humans die at an increasing rate until late in life, when
mortality rates level off. The causes of the late-life mortal-
ity plateau have been debated extensively over the past
few years [1-6]. Here, I examine mortality patterns sepa-
rately for each of the leading causes of death. The different
causes of death show distinct mortality patterns, provid-
ing some clues about the varying acceleration of mortality
at different ages [2,7].

For most causes of death, the acceleration in mortality
rises until middle or late life, and then declines rapidly at
older ages. I interpret these patterns in light of a multi-
stage theory of aging, developed by analogy with multi-
stage models of cancer progression [8-11]. In the
multistage model, disease develops by progression
through a series of intermediate physiological or somatic
conditions. I show that the late-life decline in acceleration
(mortality plateau) is an inevitable consequence of
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multistage disease progression [12]. The midlife rise in
acceleration may also be explained by a multistage theory
if the rates of progression between stages rise slowly dur-
ing midlife [12].

Results and Discussion
Acceleration of mortality for leading causes of death
Figure 1 illustrates mortality patterns for non-Hispanic
white females in the United States for the years 1999 and
2000. The top row of panels shows the age-specific death
rate per 100,000 individuals on a log-log scale. The col-

Age-specific female mortality patternsFigure 1
Age-specific female mortality patterns. Data averaged for the years 1999 and 2000 for non-Hispanic white females in the 
United States from statistics distributed by the National Center for Health Statistics [17], Worktable Orig291. The top row of 
panels shows the age-specific death rate per 100,000 individuals on a log-log scale. The columns plot all causes of death, death 
by heart disease, and death by cancer. The second row of panels shows the same data, but plots the age-specific acceleration of 
death instead of the age-specific rate of death. Acceleration is the derivative (slope) of the rate curves in the top row. The bot-
tom row takes the plots in the row above, transforms the age axis to a linear scale to spread the ages more evenly, and applies 
a mild smoothing algorithm that retains the same shape but smooths the jagged curves.
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umns plot all causes of death, death by heart disease, and
death by cancer.

The curves for death rate in the top row have different
shapes. However, the quantitative characteristics of death
rate at different ages can be difficult to discern visually.
The second row of panels shows the same data, but plots
the age-specific acceleration of death instead of the age-
specific rate of death (see Methods). The acceleration is
simply the slope of the rate curve in the top panel at each
age. Plots of acceleration emphasize how changes in the
rate of mortality vary with age.

The bottom row of panels shows one final plotting trans-
formation to aid in visual inspection of mortality patterns.
The bottom row takes the plots in the row above, trans-
forms the age axis to a linear scale to spread the ages more
evenly, and applies a mild smoothing algorithm that
retains the same shape but smooths the jagged curves.
These methods of plotting transformations in Figure 1 are
used to plot mortality patterns for the leading causes of
death in Figure 2, using the style of plot in the bottom row
of Figure 1.

Figure 2 illustrates the mortality patterns for non-His-
panic white males in the United States for the years 1999
and 2000. Each plot shows a different cause of death and
the percentage of deaths associated with that cause.

The left column of panels shows causes that account for
about one-half of all deaths. Each of those causes shares
two attributes of age-specific acceleration. From early life
until about age 80, the acceleration in mortality increases
in an approximately linear way. After age 80, acceleration
declines sharply and linearly for the remainder of life.
Some of the causes of death also have a lower peak
between 30 and 40 years.

The upper-right column of panels shows causes that
account for about one-third of all deaths. These causes
show steep, linear rises in mortality acceleration up to 40–
50 years, and then steep, nearly linear declines in acceler-
ation for the remainder of life. The bottom-right column
of panels shows two minor causes of mortality that are
intermediate between the left and upper-right columns.

What can we conclude from these mortality curves? The
patterns by themselves do not reveal the underlying proc-
esses. However, the patterns do constrain the possible
explanations for changes in age-specific mortality and
suggest some interesting hypotheses. With regard to con-
straint, we can rule out a single underlying cause of all
human mortality acceleration because the two leading
causes of death, heart disease and cancer, show markedly
different patterns. In addition, any plausible explanation

Age-specific male mortality patternsFigure 2
Age-specific male mortality patterns. Data averaged for 
the years 1999 and 2000 for non-Hispanic white males in the 
United States from statistics distributed by the National 
Center for Health Statistics [17], Worktable Orig291. The 
causes of mortality are based on the International Classifica-
tion of Diseases, Tenth Revision [18]. Heart, diseases of the 
heart; CerVas, cerebrovascular diseases; Accid, accidents 
(unintentional injuries); Infl, influenza and pneumonia; Suic, 
intentional self-harm (suicide); Nephr, nephritis, nephrotic 
syndrome and nephrosis; Sept, septicemia; Canc, malignant 
neoplasms; ChrRsp, chronic lower respiratory diseases; 
Liver, chronic liver diseases and cirrhosis; Diab, diabetes mel-
litus; Alzh, Alzheimer's disease.
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must satisfy the constraint of generating an early-life rise
in acceleration and a late-life decline in acceleration, with
the rise and fall being nearly linear in most cases. A refined
explanation would also account for the minor peak in
acceleration before age 40 for certain causes.

One point of this paper is to reiterate the puzzles revealed
by the age-specific acceleration plots for different causes
of mortality [2,7]. The clarity of those patterns sets the
stage for more focused work on this topic and for new
hypotheses.

Multistage theory of disease progression and mortality
Four attributes of the mortality patterns must be
explained: early-life rise in acceleration, late-life decline in
acceleration, a peak near 80 for some causes and a peak
near 40–50 for other causes, and a minor peak near 40 for
a few causes.

I favor the multistage model of disease progression that
has been used widely in analyzing cancer incidence and
mortality [8]. A multistage model readily explains the late-
life decline in acceleration [12]. Suppose, for example,
that there are n stages in progression before death, and the
transitions between stages happen at constant rates. It is
well known that this sort of multistage progress yields a
linear increase in incidence with age when measured on a
log-log scale, in the style of the plots shown in the top row
of Figure 1[8]. (I provide a full mathematical description
of the multistage model and its properties of acceleration
in the Methods section.)

If n stages remain before death, then the predicted slope
of the log-log plot is n-1. In a paper on cancer incidence
[12], I pointed out that as individuals age, they tend to
progress through the early stages. If there are n stages
remaining at birth, then later in life the typical individual
will have progressed through some of the early stages, say
a of those stages. Then, at that later age, there are n-a stages
remaining and the slope of the log-log plot (acceleration)
is n-a-1. As time continues, a rises and the acceleration
declines.

Gavrilov and Gavrilova [13] made roughly the same argu-
ment for the late-life decline in acceleration of human
mortality. They argued that individuals at birth have
redundant systems of protection against mortality, say n
redundant systems. As one ages, some of those n systems
fail, say a, fail. Then with n-a systems operating, the accel-
eration is n-1-a. Mathematically, this is essentially the
same argument that I gave for cancer. However, I empha-
sized a multistage model of progression based on the idea
that cancer develops in stages, partly driven by the accu-
mulation over time of key somatic mutations in cell
lineages. With regard to Gavrilov and Gavrilova's

argument, it is not clear biologically what sort of redun-
dancy exists in systems that protect against mortality.

The multistage model can also explain the early-life
increase in acceleration. Such increase occurs when the
transition rate between stages increases slowly over time
[12]. In cancer, a slow clonal expansion of a precancerous
population of cells increases the number of cells at risk for
passage through the next stage of progression, and thus
causes a slow increase in the acceleration of cancer inci-
dence [9,10]. Any slow rise in the transition rates between
stages of progression will also cause a slow rise in acceler-
ation. Figure 3 provides some numerical illustrations of
how the multistage model may explain a midlife rise in
acceleration and a late-life decline in acceleration.

In the multistage model, the different acceleration peaks
in heart disease and cancer may arise from different num-
bers of stages in progression or different transition rates
between stages.

The minor peak in acceleration early in life for male heart
disease and a few other causes could be explained by het-
erogeneity in predisposition. Strongly predisposed indi-
viduals would go through the same multistage process,
but with perhaps fewer steps to pass. That would cause the
early-predisposition group to follow the same pattern of a
rise and fall in acceleration, but to do so at an early age.
That group would dominate the death statistics of early
life, and thus would be seen as an early-life minor peak in
acceleration.

The multistage model is widely used in the analysis of can-
cer incidence and mortality [9,10]. Could there be a differ-
ent multistage progression for heart disease and other
causes of death? Certainly, there are morphological and
physiological stages of artery disease. First, depositions on
the artery walls constrict blood flow. Second, various
types of lesions may form, such as a fatty streak or fibrous
plaque. Finally, lesion growth may trigger the initial stages
of cardiovascular diseases. Andreassi et al. [14] have
argued that plaque formation may actually develop
through a process of accumulating somatic mutations in
cell lineages. Stages follow as mutations accumulate
sequentially in those cell lineages, just as cancer may arise
by mutations accumulating in the stem cell lineages that
renew epithelial tissues.

Multistage models can be tested by identifying the stages
in progression and measuring how many stages healthy
individuals have passed at different ages. Although the
stages of cancer progression have not been fully worked
out yet for any particular type of cancer, much research is
focusing on this problem. Within a few years, we may
know more about how particular somatic mutations affect
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progression. Then, with high-throughput genomics, one
could screen cell lineages in healthy individuals to meas-
ure how individuals of different ages pass through the
early stages of progression. Those data could then be
linked to the acceleration patterns for disease at different
ages. Similarly, better understanding of and diagnostics
for cardiovascular disease progression will allow measure-

ment of early stage progression in individuals of different
ages. Again, those measurements of progression could be
used to test particular models for the acceleration of mor-
tality at different stages in life.

Predicted patterns of mortality from a multistage modelFigure 3
Predicted patterns of mortality from a multistage model. I calculated the curves based on the mathematical analyses 
and assumptions described in the Methods section (see Midlife rise in acceleration caused by increasing transition rates). The plots 
show that a multistage model can generate mortality patterns similar to those observed for various causes of death. There are 
not enough data on stages in disease progression to attempt a fit between observations and the model. Instead, the plots illus-
trate how various assumptions affect acceleration in a multistage model. I chose parameters for panels A and B to provide a 
rough match to the observations for heart disease in Figures 1D and 1F: the parameters are n = 4, u = 0.02, F = 20, a = 8.5, b 
= 1.5, T = 100, where n is the number of stages, u is the baseline transition rate between stages, F is the upper bound on tran-
sition rates, a and b set the shape of the function that determines how transition rates rise with age, and T is maximum age. I 
chose parameters for panels C and D to provide a rough match to the observations for cancer in Figures 1G and I: the param-
eters are n = 4, u = 0.012, F = 5, a = 5, b = 5, T = 100. I did not attempt to fine-tune the fit to the data; about ten trial and error 
choices for parameters gave the rough matches shown. The model is sufficiently flexible to generate a wide variety of shapes 
for different values of n. Therefore, the rough matches here mean little with regard to whether a multistage model is a good 
explanation for the observations. Tests of the model will require better understanding of stages in disease progression and 
rates of transition between stages.
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Conclusions
The acceleration plots for the leading causes of death
show several striking patterns that must be explained by
any theory of aging and mortality [2,7]. The late-life
decline in mortality acceleration has been widely dis-
cussed. However, the analyses here demonstrate different
patterns of midlife rise and late-life decline in acceleration
for different causes of death. These analyses also put the
late-life decline in a broader context by emphasizing vari-
ous universal and particular features of mortality acceler-
ation at different ages and across the different major
causes of death.

I developed a multistage model of disease progression
that can explain the observed patterns of mortality accel-
eration. An early-life rise in acceleration may be caused by
increasing rates of transition between stages as individuals
grow older. The late-life decline in acceleration may be
caused by progression through earlier stages, leaving only
a few stages remaining for older individuals.

Methods
Multistage model
A multistage model with n stages can be written as:

where i = 1,...,n-1, xj(t) is the frequency of individuals
born at time 0 that are in stage j at time t, uj(t) is the rate
at which individuals move from stage j to stage j+1, dj(t) is
the death rate from other causes for individuals in stage j,
and the dot is the derivative with respect to age. An indi-
vidual dies when it arrives in the nth stage, thus xn(t) is the
cumulative probability that an individual dies from the
final stage of disease progression between ages 0 and t.
The probability interpretation arises by letting x0(0) = 1,
xk(0) = 0 for k = 1,...,n, and accumulating deaths by other

causes in a class,  with D(0) = 0.

Age-specific incidence and acceleration
The cumulative probability of death from the final stage
of a particular disease from age 0 to age t is xn(t). The rate
of change in the cumulative probability of death at age t is

, which is the probability of death per

year at age t. (Here, t is continuous, and  is the

probability density at the point t.) Data on death are often
presented as age-specific incidence, which is the probabil-
ity of death per year at age t from a particular disease

divided by the probability of surviving to age t. In the
notation here, the age-specific incidence is

, where survival is

. The age-specific incidence has

dimensions 1/t. Age-specific acceleration is the derivative
of age-specific incidence, dI(t)/dt, which has dimensions
1/t2.

Interpretation of log-log acceleration
Use of logarithms provides a scale-free measure of change.
In other words, differences on a logarithmic scale summa-
rize percentage change in a variable independently of the
value of the variable. This can be seen by examining the
derivative of the logarithm for a variable x, which is:

The right side is the change in x divided by x, which meas-
ures the fractional change in x independently of how large
or small x is.

For example, if we wanted to measure the percentage
increase in the age-specific incidence for a given percent-
age increase in age, then we need to measure in a scale-free
way changes in both age-specific incidence and age. We
obtain a scale-free measure by defining the log-log accel-
eration (LLA) at age t as:

The previous section showed that dI(t)/dt is the age-spe-
cific acceleration, so LLA is just a normalized (nondimen-
sional) measure of age-specific acceleration.

Log-log acceleration in the multistage model
The simplest models assume that the uj values do not
change with age [8]. If nearly all members of a cohort at
birth (age 0) concentrate in stage 0, then newborns mostly
have n steps remaining. Later, as long as most of the prob-
ability among those alive remains concentrated in stage 0,
the cumulative probability of death is xn(t) ≈ Utn, where U
depends on the various constant transition rates, uj (see
below).

The first derivative with respect to age is the age-specific

mortality rate, , and so I(t) = Untn-1/S(t). Tak-
ing the logarithm of both sides yields log(I) ≈ log(Un) +
(n-1)log(t) - log(S(t)). Thus, with constant transition
rates, the log-log plot of age-specific incidence is approxi-
mately linear with age and has a slope of n-1. This can be
seen from the log-log acceleration, which is d log (I)/d
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log(t) ≈ n-1, as long as the total number of surviving indi-
viduals, S(t), does not change too fast.

To sum up so far, with the simple model of constant tran-
sition rates between stages, the standard approximation
for the multistage model that has been applied to cancer
[8] yields a constant log-log acceleration of n-1 that is
independent of age. The standard approximation is not a
proper analysis – the point here is to show how one might
conclude that a multistage model with n steps yields a log-
log plot of incidence versus age that is linear with a slope
of n-1.

I pointed out that as individuals age, they are no longer
concentrated mostly in stage 0 [12]. If at age t, most indi-
viduals had passed to stage a, then the log-log acceleration
at age t would be n-a-1. The actual acceleration at age t
depends on the distribution of individuals over stages at
that age, that is, the values of the xi(t).

As individuals grow older, they move through the early
stages and become concentrated in the later stages. This
causes acceleration to decline with age [12]. Among old
individuals, most will have only one or few stages remain-
ing, and the acceleration drops toward zero.

The analysis of acceleration in this section assumes that
the transition rates, uj (t), do not change with time. Below,
I consider the case in which the uj rise with time, causing
acceleration to rise with age over the middle years of life
[12].

Solution of a multistage model with equal transition rates
If the transitions rates are constant and equal, uj = u for all
j, and the nonspecific death rates are constant and equal,
dj = d for all j, then we can obtain an explicit solution for
the multistage model. This provides a special case that
helps to interpret more complex assumptions that must
be evaluated numerically. The solution is xi(t) = e-(u+d)t

(ut)i/i! for i = 0,...,n-1, with the initial condition that x0(0)
= 1 and xi(0) = 0 for i > 0.

In the multistage model given above, the derivative of
xn(t), which is the age-specific mortality rate, is

. From the solution for xn-1(t), we have

Age-specific incidence is:

Log-log acceleration is:

where .

If transition rates between steps vary, all steps influence
acceleration early in life, whereas the slowest steps domi-
nate the number of remaining steps and the acceleration
later in life.

If the transition rates, u, rise with age, then many older
individuals will have passed through the early stages,
causing a strong decline in acceleration later in life.

Midlife rise in acceleration caused by increasing transition 
rates
An increase in transition rates, uj(t), with advancing age
causes a midlife rise in acceleration. And, as mentioned in
the preceding paragraph, faster transitions move more
older individuals into later stages, causing a late-life
decline in acceleration.

To provide a simple model of changes in transition rates,
let uj(t) = uf(t), where f is a function that describes changes
in transition rates over different ages. We will usually want
f to be a nondecreasing function that changes little in early
life, rises in midlife, and perhaps levels off late in life. In
numerical work, one commonly uses the cumulative dis-
tribution function (CDF) of the beta distribution to
obtain various curve shapes that have these characteristics.
Following this tradition, I use:

where T is maximum age so that t/T varies over the inter-
val [0,1], and the parameters a and b control the shape of
the curve.

We need f to vary over [1,F], where the lower bound arises
when f has no effect, and F sets the upper bound. So, let
f(t) = 1+(F-1)β(t). See Figure 3 for an example.

The lifetable aging rate
Previous work on aging has studied acceleration in mor-
tality by using the lifetable aging rate measure [2,7,15,16].
The classical measure of mortality rate in the standard life-
table is m(x), the rate of death at age x. Although m(x) is
usually calculated from data, it has roughly the same
meaning as I(t) in the multistage analysis above.
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The lifetable aging rate (LAR) is defined as the slope of the
mortality rate at age x normalized by the mortality rate at
that age [2,7,15,16], that is:

This measure analyzes scale-free changes in mortality rel-
ative to scale-specific changes in age. For example, one
may wish to know by what percentage mortality changes
in a particular year of life. By contrast, log-log acceleration
measures percentage change in mortality relative to per-
centage change in age.

Both measures provide a picture of mortality acceleration.
If one does not have an underlying model of the processes
that influence aging, then the LAR measure provides a rea-
sonable approach because it arises from analysis of the
statistics of life and death at particular ages. In the context
of a multistage model of the aging process, the log-log
acceleration gives a weighted measure of the number of
stages remaining at a particular age. Extensions to the
multistage model can also be incorporated – for example,
changes in the transition rates, as mentioned above. Also,
to the extent that aging rates change exponentially with
age, logarithmic scaling of age may provide a more natural
measure.
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