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Abstract

Background: Does the C. elegans nervous system contain multi-neuron computational modules
that perform stereotypical functions? We attempt to answer this question by searching for
recurring multi-neuron inter-connectivity patterns in the C. elegans nervous system's wiring

diagram.

Results: Our statistical analysis reveals that some inter-connectivity patterns containing two, three
and four (but not five) neurons are significantly over-represented relative to the expectations based
on the statistics of smaller inter-connectivity patterns.

Conclusions: Over-represented patterns (or motifs) are candidates for computational modules
that may perform stereotypical functions in the C. elegans nervous system. These modules may
appear in other species and need to be investigated further.

Background

There is little doubt that neurons are elementary building
blocks of the nervous system [1]. It is less clear, however,
whether multi-neuron modules (smaller than inverte-
brate ganglia or vertebrate nuclei and cortical columns)
can be meaningfully defined, either anatomically [2] or
physiologically [3]. The existence of such multi-neuron
modules would greatly simplify the description of nerv-
ous system structure and function. An example of such
simplification can be found in electrical engineering. An
electronic circuit is often represented in terms of modules
such as operational amplifiers, logical gates and memory
registers rather than as a wiring diagram showing each
transistor, resistor and diode. However, unlike electrical
engineers who designed these modules themselves, neu-
robiologists did not design the brain, and evolution rarely
leaves records of its experimentation. Therefore, if multi-

neuron modules have indeed evolved they need to be dis-
covered.

In this paper, we search for anatomically defined multi-
neuron modules in the Caenorhabditis elegans nervous sys-
tem. We choose C. elegans as a model organism because its
wiring diagram is largely known, including the identities
of all 302 neurons and most synapses between them [4-
6]. Our approach follows the reasoning developed previ-
ously in the context of gene regulation and other networks
[7,8]. If a certain multi-neuron module performs some
stereotypical function it may appear in the nervous system
repeatedly. Therefore, search for multi-neuron connectiv-
ity patterns that appear more often than by "chance"
(compared with the expectations as defined below) may
yield these multi-neuron modules. Of course, there may
be functionally important modules that appear infre-
quently and would be missed by our analysis. In the elec-
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tronic circuit analogy, our approach would discover
logical gates in a processor wiring diagram but not a recti-
fier in a power supply, which is essential but appears only
once.

To search for N-neuron modules, we sort all N-neuron
combinations into classes defined by their inter-connec-
tivity pattern and count the number of combinations in
each class. By comparing these counts with the mean
counts from random networks, constructed based on our
expectations, we detect significantly over-represented pat-
terns, or motifs. In order to avoid assigning significance to
a N-neuron pattern just because it contains N-1-neuron
motifs we incorporate the N-1-neuron statistics into the
expectations used to search for N-neuron motifs [8]. To do
this, we perform our search sequentially, by starting with
doublets (or neuronal pairs, N = 2) and then increasing
the number N of neurons included in the pattern sequen-
tially up to quintuplets (N = 5).

We look for motifs in the wiring diagram of the C. elegans
nerve ring (a large fraction of the nervous system) assem-
bled in two datasets [6]. Datasets 1 and 2 were obtained
from serial-sections electron microscopic (EM) recon-
structions of two different animals [4]; for details see
Methods. The datasets contain the numbers of synapses
formed in a subset of C. elegans neurons. Two given neu-
rons may be connected by more than one synapse, which
we call the multiplicity of connection. However, the small
size of the dataset compels us to use the binary represen-
tation of these connections (connected or unconnected).
In order to obtain binary connectivity matrices, we thresh-
old the multiplicity of connections at various values ©:
Pairs having less than ® synapses are considered uncon-
nected while those having at least ® synapses are consid-
ered connected. Such procedure is justified because more
than a single synaptic contact may be necessary for an
observable physiological effect of one neuron on another.
Since we do not know the physiologically relevant count
of synapses, we repeat our calculation for 1 <@ < 7.

Unfortunately, datasets 1 and 2 contain a caveat of synap-
tic ambiguities, which arises from the limitations of EM in
C. elegans. When one pre-synaptic neuron makes contact
with two adjacent processes of different neurons
(send_joint in Durbin notation [6]), it is not known
which of these processes acts as a post-synaptic terminal;
both might be involved. We address this ambiguity by
performing our analysis in two ways. In the main text we
present the results obtained on the datasets that include
both send and send_joint synaptic connections. We
repeated the analysis on the datasets where send_joint
synapses were split equally between the two potential
post-synaptic partners. Specifically, we calculated multi-
plicity of connections by adding send_joint synapses at
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Doublet counts in the C. elegans network compared
to the random matrix ensemble. Bi-directionally con-
nected doublets are over-represented in the C. elegans net-
work. Counts shown are for dataset |, threshold ® = 3,
number of random matrices n = 1000. Other datasets and
thresholds give similar results.

50% synaptic strength. In the limit of high multiplicity,
this is equivalent to assigning the post-synaptic neuron by
chance. We find essentially the same results for this con-
nectivity dataset (see Supplementary Information [Addi-
tional file 1]).

Results

Bi-directionally connected doublets (N = 2) are over-
represented

We classify all possible doublets (or pairs) of the C. ele-
gans neurons into three classes: unconnected, uni-direc-
tionally connected and bi-directionally connected, and
compare the number of doublets in each class to that
expected in a random network (Figure 1). The random
network ensemble consists of connectivity matrices that
preserve the numbers of incoming and outgoing synapses
for each neuron but not the identities of the partners
[9,10]. The motivation behind this choice of the random
matrix ensemble and the details of the algorithm are
explained in Methods.

We find that the number of doublets in each class deviates
from the mean of the random matrix counts, as shown in
Figure 1 for a representative threshold ® = 3. For the pur-
poses of module search, the most interesting finding is the
over-representation of the reciprocally connected dou-
blets (pattern #3), for two reasons. First, if a set of neurons
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were to function as a module it should not consist of two
(or more) disconnected subsets. This consideration rules
out pattern #1. Second, since our search for modules is
aimed at identifying over-represented inter-connectivity
patterns we are less interested in under-represented ones.
This consideration rules out pattern #2. We note that pat-
tern counts are not independent, but are subject to sum
rules. For example, the number of neurons in the network
fixes the total doublet count. Also, the total number of
connections is equal to the count of pattern #2 plus twice
the count of pattern #3. These sum rules place stringent
constraints on possible combinations of doublet counts.
Yet, for patterns with greater number of neurons (N>2),
these constraints become less stringent because the
number of patterns increases (see below).

We repeat the above calculations for other datasets and
threshold values and consistently find the significant
over-representation of bi-directionally connected dou-
blets (data not shown). In C. elegans, such over-represen-
tation was reported previously on a qualitative level [4].
Interestingly, an over-representation of bi-directionally
connected doublets was also found for pyramidal neurons
in mammalian neocortex [11-13]. This suggests that
motifs may represent evolutionary conservation or con-
vergence driven by similar computational constraints.
Next, we discuss whether C. elegans can provide a clue to
the functional significance of the over-representation of
reciprocally connected doublets.

Can bilateral (left-right) symmetry of the C. elegans neuro-
nal network account for the over-representation of the
reciprocally connected doublets? Indeed, about two thirds
of C. elegans neurons have a bilaterally symmetric partner.
If connections between these pairs obeyed bilateral sym-
metry then they could not be uni-directional, creating a
bias in favor of bi-directional connections. To see whether
this is the case, we calculate the percentage of bi-direc-
tional connected doublets, which consist of a bilateral
neuron pair. We find that these percentages are small:
7.1% and 5.5% in datasets 1 and 2, respectively. There-
fore, bilateral symmetry is not sufficient to explain the
observed result.

The over-representation of reciprocally connected dou-
blets in C. elegans has been explained [6] as a consequence
of correlation between adjacency and connectivity of neu-
rons. The argument is that, if there is a synapse from neu-
ron A to neuron B, they must be adjacent. If neurons A
and B are adjacent then a synapse from B to A is more
likely than chance, increasing the probability of a recipro-
cal connection. Analysis of original EM reconstructions
[4] supports this argument [6,14]. Adjacency in this case
does not refer to the nearby placement of cell bodies but
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to the number of EM sections (divided by five) in which
the processes of the two neurons are in contact [6,14].

Although correlation between adjacency and connectivity
may account for the over-representation of reciprocally
connected doublets, why such correlation would exist in
C. elegans remains unclear. It could be that the number of
neuronal pairs, which can be adjacent, is limited by phys-
ical constraints. This would restrict the adjacent pairs only
to the ones that need to connect for functional reasons.
Indeed, volume exclusion explains neuron dimensions in
the cortical column ([15] and references therein). In the
C. elegans network, however, the small number of neurons
should in principle allow a contact between any pair of
neurons. This argument is supported by the observation
that many neuronal processes are longer than the distance
between the corresponding cell bodies, suggesting that the
connection can be made. However, processes tend to run
in bundles and make synapses only in their (often vary-
ing) neighborhoods [14]. This suggests that other (e.g.
developmental) constraints may restrict the number of
adjacent neurons. Alternatively, it could be that network
functionality requires over-representation of reciprocal
connections (or clustering). These issues must be explored
in the future.

Several triplet classes (N = 3) are over-represented

We classify all connected triplets in the C. elegans wiring
diagram into 13 classes and count the number of triplets
in each class. We compare the actual number of triplets in
each class to the null-hypothesis random matrix ensemble
defined as follows. In order to include the observed over-
representation of reciprocally connected doublets, we
construct random networks that preserve the numbers of
bi-directional and uni-directional connections for each
neuron. Figure 2 shows triplet counts for each class rela-
tive to the mean of the random matrix ensemble. For
threshold ® = 2 we find that several triplet counts are
noticeably different from the mean of the random matrix
ensemble, e.g. patterns #10, #12, #14 and, possibly, #15
and/or #16 in Figure 2. Similar results were found for
other values of the threshold (within the biologically
plausible range, ©® = 1 to 7).

Are these differences between triplet counts in actual and
random networks significant? One might answer this
question by calculating, for each class, a significance p-
value, i.e. the probability of finding a random matrix with
deviation from the mean exceeding or equal to that for the
actual network. Although such an approach would be cor-
rect if over-representation of a single class were examined,
it would over-estimate the true significance (i.e. under-
estimate the p-value) when many different classes are eval-
uated simultaneously. This situation is known as multiple
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Figure 2
Triplet counts in the C. elegans network compared to
the random matrix ensemble. Blue squares show triplet
counts for the actual network (dataset |, threshold ® = 2),
red crosses show counts for each random connectivity
matrix relative to the mean count for the whole random
matrix ensemble. Three framed motifs are discussed in the
main text. All matrices in this ensemble (n = 1000) preserve
the counts of uni- and bi-directional connections for each
neuron. A count for a given pattern is often the same in many
matrices resulting in few crosses (e.g. there are only 25
crosses for pattern |12 because the count of this pattern in
the random matrix ensemble varies between 6 and 32; 29
and 3| were not observed).

hypothesis testing and requires an adjustment of the raw
p-values (see Methods).

We chose to perform multiple hypothesis testing adjust-
ment by controlling the family-wise error rate, i.e. the
probability of mistakenly reporting at least one non-over-
represented pattern, by using the single-step min P proce-
dure [16,17]. The adjusted p-values for every class and
threshold represent the probability of finding a random
matrix R, in which at least one class i has smaller (or
equal) raw p-value than that found for a given class and
threshold in the actual network. This measure can be cal-
culated by counting the number of random matrices,
which have a smaller (or equal) raw p-value (in at least
one class) than that in the actual network for a given class
and threshold. By dividing this number of matrices by the
total size of the random matrix ensemble, we estimate the
multiple hypotheses testing corrected significance meas-
ure P, for each class and threshold, Figure 3 (see Meth-
ods).

According to the significance measure, P,,, one of the most
consistently over-represented motifs is the feedforward
loop (triplet pattern #10), previously noticed in C. elegans
[5,18] and other networks [7,8]. For the full list of feedfor-
ward loops see Supplementary Information [Additional
files 2 and 3]. Could some known feature of neuronal
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Figure 3
Significance measure P,, of triplet over-representa-
tion for different thresholds. The multiple hypothesis
testing corrected p-values for triplet patterns show signifi-
cant over-representation of patterns 10, 12 and |4 (datasets
I and 2, n = 1000). The significance measure P, represent the
probability of finding a random matrix R, in which at least one

class has smaller (or equal) raw p-value than that found for a
given class in the actual network.

organization account for the observed over-representation
of the feedforward loop? We consider two hypotheses:

i. The three-layered feedforward neuronal network is not sufficient to
account for over-representation of the feedforward loop

If one views the C. elegans nervous system as a three-layer
feedforward network, where sensory neurons synapse
mostly on interneurons, and interneurons synapse on
other interneurons or motorneurons, this could explain
the over-representation of the feedforward loop. We argue
that this is not the case for two reasons. First, the feedfor-
ward loop is also over-represented among interneurons
(Figure 4). Second, the three-layer model of the C. elegans
nervous system is overly simplified. For example, there are
feedback connections from interneurons to sensory neu-
rons and from motorneurons to interneurons. To evaluate
whether detected feedforward loops fit the three-layer
feedforward network, we analyze the function of the neu-
rons in these loops. About 40% of the detected feedfor-
ward loops either contain all neurons from the same
functional group or at least one connection goes from a
neuron in a lower layer to a neuron in a higher layer, Table
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Significance measure P, of triplet over-representa-
tion among interneurons shows that pattern #10 is
significantly over-represented. Multiple hypothesis test-
ing corrected p-values for the triplet over-representation in
datasets | and 2 (n = 1000). The figure shows that motif #10
is significantly over-represented within interneurons.

Table |: Feedforward loops that do not fit into consideration of a
3-layer feedforward network.

Theta =
| 2 3 4 5
Dataset | 49 % 39 % 33% 38% 34 %

2 47% 40 % 41 % 39% 29 %

The table shows the percentages of feedforward loops in which all
three neurons belong to the same functional group or at least one of
the three connections is made from an interneuron to a sensory
neuron or from a motor neuron to an interneuron.

1. These loops do not fit into this three-layer model,
undermining the hypothesis.

ii. The likelihood of connectivity between nearby neurons may
partially account for over-representation of the feedforward loop
Since connectivity and adjacency are correlated in C. ele-
gans and other nervous systems one could argue the fol-
lowing [4]. If two neurons have a common synaptic
partner, then they are likely to be adjacent to that com-
mon partner, and hence to each other. If the two neurons
are adjacent they are likely to be connected to each other.

http://www.biomedcentral.com/1741-7007/2/25

Again, adjacency cannot refer to the cell body position:
The fraction of over-represented triplets that consist of
neurons belonging to the same ganglia is typically less
than 30%. Yet this argument could be valid if the adja-
cency refers to the contacts between neuronal processes
(see above) and needs to be verified using original EM
reconstructions [4]. The problem with this argument is
that it would also predict an over-representation of all
strongly connected patterns (#10 to #16), as opposed to
the weakly connected patterns (#4 to #9). Yet, strongly
connected triplet classes #13 and #11 (the feedback loop)
are not over-represented (Figure 3) so further explanation
is required.

It is possible that the over-representation of the feedfor-
ward loop is a consequence of other factors or their com-
binations (such as feedforwardness and locality of
connectivity combined). But even if these factors are
found, the characterization of the network in terms of
over-represented motifs remains valid. The over-represen-
tation of the feedforward loop still requires a functional
explanation just as the bi-directionally connected doublet
does. In gene transcription regulation networks, the feed-
forward loop was proposed to carry out information
processing functions such as filtering out fluctuations and
responding only to persistent stimuli [7]. Feedforward
loop can also carry out other functions [5,18], depending
on the polarity of synapses involved and the dynamic
response of neurons. Once these factors are established
experimentally, motif function can be analyzed theoreti-
cally.

In addition to the feedforward loop, we find that two
other (both symmetric) patterns are consistently over-rep-
resented: pattern #12 and pattern #14 (Figure 3). For the
full list of these patterns see Supplementary information
[Additional files 2 and 3]. Previous work [8] did not iden-
tify these patterns as motifs because of their low absolute
count at the only threshold considered (® = 5). Again, we
ask whether this could be a consequence of the bilateral
symmetry of the C. elegans nervous system. Indeed, the
bilateral symmetry implies that pairs of bilaterally sym-
metric neurons are also connected symmetrically, mean-
ing that triplets containing such a pair are likely to be
symmetric. However, we find that the fraction of triplets
#12 and #14 containing a bilaterally symmetric pair of
neurons and an unpaired neuron is rather small (between
10% and 20% in datasets 1 and 2). This suggests that the
bilateral symmetry of the nervous system is not sufficient
to explain the over-representation of pattern #12 and #14.

Just like in any other screening algorithm, our criteria for
outliers are somewhat subjective and the goal is to draw
attention to interesting candidates. We limit our discus-
sion to over-represented patterns #10, #12 and #14
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because in our judgment they are most robust outliers
based on the several criteria used. The reader may judge
that some other patterns are over-represented as well. For
example, patterns #15 and #16 are significantly over-rep-
resented for small thresholds (Figure 3). Because the abso-
lute counts of these patterns in the C. elegans network are
small, we cannot verify that they are consistently over-rep-
resented. Further work on larger datasets will show
whether these patterns may be viewed as motifs.

Several quadruplet classes (N = 4) are over-represented
We classify all connected quadruplets into 199 classes and
count the number of quadruplets in each class. Then we
compare the actual counts of quadruplets in each class to
the mean counts of quadruplets in a random matrix
ensemble. In this case, random matrices preserve the
numbers of uni-directional and bi-directional connec-
tions for each neuron and, in addition, the numbers of tri-
plets (see Methods). Because of the large number of
quadruplet classes, we show results (Figure 5) only for
patterns selected according to the following criteria: the
multiple hypothesis testing corrected significance values
P,, must be less than 0.1 for at least one threshold per pat-
tern, while the number of quadruplets in the actual net-
work must be at least 5. The last condition excludes
patterns that may appear as over-represented due to very
small quadruplet counts.

We find that quadruplet pattern #45 is consistently over-
represented [8]. Can we explain this observation by some
other known factor? We consider the following two
hypotheses:

i. Bilateral symmetry of the nervous system is not sufficient to explain
the over-representation of the quadruplet pattern #45

One could propose that symmetric patterns should be
over-represented because of the bilateral symmetry of the
nervous system. We think that this argument by itself can-
not explain the observed over-representation for two rea-
sons. First, the fraction of feedforward quadruplets
containing two bilaterally symmetric neuron pairs in
motif 45 is rather small (less than 10% in dataset 1 and
less than 14.3% in dataset 2). Second, many symmetric
patterns are not over-represented, such as, for example,
patterns 25, 30, 31, 35, 43, 44 and 65 (Figure 6).

ii. Feedforward structure of the nervous system may partially explain
the over-representation of the feedforward quadruplet

One could propose that the feedforward three-layer struc-
ture of the nervous system could account for this observa-
tion (see over-represented triplets). We find that 14% to
37% of the feedforward quadruplets do not fit into this
proposition because either they contain a feedback con-
nection or all neurons belong to the same layer (Table 2).
After comparing these percentages to the relative excess
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Significance measure P, of selected quadruplet over-
representation for different thresholds. Multiple hypo-
thesis testing corrected p-values for the quadruplet over-rep-
resentation in datasets | and 2 (n = 1000). The patterns
shown satisfy the following selection criteria: There must be
a significant value P, < 0.1 for at least one ® and the count of
this pattern in C. elegans must be at least 5. All random matri-
ces in the ensemble (n = 1000) preserve the number of uni-
and bi-directional connections for each neuron as well as the
count in all triplet classes for the whole network.

values we conclude that the feedforward structure may
explain over-representation for some threshold values but
not for others.

It is possible that some other factors (in addition to feed-
forwardness) account for the reported quadruplet over-
representation. Just as argued in case of triplets, discover-
ing these factors would be complementary to the charac-
terization of the over-represented motif. It would be
particularly interesting to determine the functional role of
these motifs. Again, we arbitrarily limit our discussion of
over-represented quadruplets to pattern #45. The reader
may judge that some other patterns are over-represented
and deserve attention (e.g. patterns #36, 50). This is why
in Figure 5 we show all the outliers satisfying relatively
weak criteria.

We find no over-represented quintuplet classes (N = 5)

We classify all connected quintuplets into 9364 classes
(out of 9608 patterns total, i.e. connected and uncon-
nected) and count the actual number of quintuplets in
each class. We compare these counts with the mean of the

Page 6 of 12

(page number not for citation purposes)



BMC Biology 2004, 2:25

D

25 20

Figure 6

Calaia

http://www.biomedcentral.com/1741-7007/2/25

/.:F;

65

Examples of symmetric quadruplet patterns that are not over-represented.

Table 2: Percentage of quadruplets in pattern #45, which do not
fit into the three-layer feedforward network model.

motif i = 45 Theta =
| 2 3 4 5
Dataset I 37% 31 % 29 % 25 % 23 %

2 34% 25% 16 % 19 % 14 %

These quadruplets contain either all four neurons from the same layer
or at least one connection from a motor neuron to an interneuron or
from an interneuron to a sensory neuron.

random matrix ensemble. In this case, the random matri-
ces preserve the numbers of uni- and bi-directional con-
nections for each neuron and, in addition, keep the
numbers of all triplets and quadruplets in a 10% range of
the actual network. We do not find any significantly over-
represented quintuplets. This could happen because there
are no significantly over-represented quintuplets with a
given number of quadruplets. Alternatively, this could
happen because specifying the numbers of triplets and
quadruplets constrains the number of quintuplets in any
random matrix the size of the C. elegans network. There-
fore, absence of significantly over-represented quintuplets
in C. elegans does not rule out the existence of five-neuron
modules that can be detected as motifs by applying our
algorithm to larger networks.

Discussion

By comparing counts of multi-neuron patterns in the C.
elegans wiring diagram to the mean counts of the appro-
priate random matrix ensemble, we find several over-rep-
resented motifs. First, we find that bi-directionally
connected doublets (out of three possible doublet classes)
are over-represented, given the number of connections on
each neuron is fixed. Second, several triplet classes (out of
thirteen possible connected patterns) are over-repre-
sented, given the actual number of bi-directional (as well
as uni-directional) connections for each neuron. Third, we
find that several quadruplet classes (out of 199 connected

patterns) are over-represented, given the numbers of tri-
plets are preserved in addition to previously listed con-
straints. We find no over-represented quintuplet classes.
Some of these results, such as the over-representation of
the feedforward loop and the feedforward quadruplet,
have been reported previously [5,8,18]. The current paper
extends and complements previous reports by performing
a systematic motif search for various connection multi-
plicity thresholds and rigorous statistical significance
assessment. Also, we consider whether the discovered
motifs can be accounted for by previously known facts
about the organization of the nervous system. There is no
functional explanation for the existence of the motifs.
Therefore, the identified motifs are candidates for mod-
ules that may perform stereotypical functions in the C. ele-
gans nervous system, and they need to be investigated
further.

Although the main motivation for this work, search for
modules, led to our focus on over-represented patterns,
we also checked for under-representation. For example,
previous work indicated that the number of triplets with
pattern #11 (or feedback loops) was small [6]. To deter-
mine significance, we applied the single-step min P proce-
dure to the absolute value of the deviation of counts from
the mean. We found that the feedforward loop is not sig-
nificantly under-represented, yet many other patterns,
such as weakly connected triplets were significantly
under-represented (see Supplementary Information
[Additional File 1]).

Our motif search algorithm is different from previous
attempts to find modules [19]. For example, traditional
clustering approaches look for the subsets of nodes, which
are connected with their own subset more strongly than
with other subsets. In our algorithm, we consider all the
connections within a pattern (unlike [20], who consid-
ered only some connections within the pattern) but
ignore the connections with neurons outside the pattern.
One could question the expediency of ignoring multiple
possible inputs to the neurons in a module since those
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inputs could influence the operation of that module. To
counter this, we point out that if there were a particularly
recurring way to attach an external connection to a given
N-neuron motif then it would appear as an N + 1-neuron
motif. If, on the other hand, the motif is connected in
many different ways in different instances, their signifi-
cance will be washed out. Thus our approach may hierar-
chically detect modules with recurring input/output sites,
growing them out of smaller patterns. A second justifica-
tion for looking at N-neuron patterns is that the nervous
system is capable of performing many different functions
under different circumstances and neurons active in one
case may be silent in another. Therefore, in any particular
case, many of the anatomical inputs to the module may
remain silent and can safely be ignored. This speculation
may be verified experimentally by simultaneous monitor-
ing of neuronal activity in different neurons.

The strategy and algorithms we described in this paper can
be applied to incompletely mapped networks because a
highly significant pattern is also likely to be over-repre-
sented in a sub-network. However, the statistical power of
our algorithm increases with the knowledge of the wiring
diagram. Therefore it was natural to choose the C. elegans
nervous system, whose wiring diagram is largely known.
Unfortunately, C. elegans has some disadvantages when it
comes to the interpretation of the results: the polarity of a
synapse (excitatory vs. inhibitory) in C. elegans is often
unknown; electrophysiological investigations are still dif-
ficult in C. elegans [21]; and the whole network contains
only 302 neurons, limiting the statistical power of the
approach. Yet we hope that recent technological develop-
ments [22] will eliminate the first two disadvantages and
allow functional analysis of the discovered modules.
Moreover, we expect that our results have implications for
understanding nervous system structure and function
beyond C. elegans. The modules we identify in C. elegans
may be a general property of the nervous system, and,
once identified, can be searched for in other species.
Finally, the algorithm itself can be applied to other net-
works [8] once they become available.

As in any other theoretical analysis, we made several sim-
plifications. For example, we assumed that the strength of
synaptic connection between a pair of neurons is charac-
terized by its multiplicity (i.e. the number of synapses
between that pair). This assumption may be questioned if
synapses implementing high-multiplicity connections are
weaker than those implementing low-multiplicity con-
nections, as known to happen in nematodes [23]. Yet, this
assumption represents a reasonable first step in the sys-
tematic quantitative analysis, which may be extended in
the future by estimating synaptic strength from the origi-
nal EM reconstructions. In addition, we ignored the polar-
ity of the synapses and the existence of gap junctions. Yet

http://www.biomedcentral.com/1741-7007/2/25

our results are robust to the inclusion of these factors in
the future because if an over-represented class is found, it
will remain over-represented even if divided into smaller
sub-classes. It would be interesting to see whether the
inclusion of the above factors will reveal specific over-rep-
resented sub-classes.

Conclusions

We have shown that certain neuronal connectivity pat-
terns are significantly over-represented in the C. elegans
nervous system. These patterns, called motifs, are candi-
dates for computational modules that may perform stere-
otypical functions. It would be interesting to determine
what these functions are and whether these motifs appear
in other nervous systems.

Methods

Representation of the networks

We transformed the C. elegans synaptic connectivity data
into a binary matrix A, called Adjacency Matrix or Connec-
tivity Matrix, in which an entry A is 1 if there is a connec-
tion from neuron i to neuron j and 0 otherwise. The order
in which neurons are assigned to rows in this matrix is not
important for our calculations. The multiplicity of syn-
apses between two given neurons is mapped to a binary
value by applying a threshold to the data. We assume a
synaptic connection of threshold ® from neuron i to neu-
ron j if neuron i makes at least ® synapses on to neuron j.
Adjacency matrices that we used are available in the Sup-
plementary Information [Additional files 2 and 3].

Detecting & counting patterns

We implemented two strategies for counting the number
of triplets, quadruplets and quintuplets in a given connec-
tivity matrix. First, to obtain the count of all N-neuron
patterns, we took all different N-neuron subsets and char-
acterized their connectivity. Second, we took all possible
N-neuron subsets out of the neighborhood of a neuron x.
This neighborhood is defined by all neurons that can be
reached from x, if the directed connectivity matrix is made
undirected. In both cases it is crucial for the run time of
the algorithm to detect the pattern class from these con-
nectivity sub-matrices as quickly as possible. We realized
this by defining a function that maps each possible N-
neuron sub-matrix to a unique integer value. Then we
classified all the sub-matrices based on the function value
and a pre-calculated lookup table, which identifies the
pattern class from the function value.

Creating random matrices

The number of neurons that receive synaptic input from a
given neuron x is called out-degree of x. The number of
neurons providing synaptic input to neuron x is called in-
degree of x. In the binary matrix representation of a net-
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Distribution of degree in C. elegans in comparison to Poisson distribution. The distribution of in-degree and out-
degree in a random matrix (Erdés-Rényi random graph) can be approximated by Poisson. We observe that the distribution in
C. elegans is significantly different from Poisson (p < 7%). Figure shows in-degree and out-degree for dataset |, ® = |; Dataset

2 and other thresholds give similar results.

work as described above, the out-degree of a neuron x can
be calculated as the sum of row x, the in-degree as the sum
of column x.

N = 2. For the first step of our analysis we create random
matrices that preserve the in-degree and out-degree of
every neuron but change their connection partners. Start-
ing with an empty matrix, our algorithm selects neurons
in a random order and connects each with the required
number of other neurons, chosen randomly out of the
remaining neurons with in-degree and out-degree less
than that in the C. elegans network. This choice of random
matrices is motivated by the observation that the distribu-
tion of in-degrees and out-degrees in C. elegans is signifi-
cantly different from Poisson, which is expected for a
randomly generated matrix without any correlations
(Erdos-Rényi random graph) (Figure 7).

N = 3. We keep the number of incoming and outgoing
uni-directional connections as well as the number of
reciprocal connections for each neuron the same. One of
the implemented algorithms starts with an empty matrix.
Then it randomly selects a neuron and does three things.

It reconnects all outgoing connections of that neuron to
other neurons, as long as their in-degree does not exceed
that in the C. elegans network. It reconnects all incoming
connections of that neuron to other neurons, as long as
their out-degree does not exceed that in the C. elegans net-
work. It reconnects all reciprocal connections of that neu-
ron to other neurons with available unconnected
reciprocal connections. We also implemented a second
algorithm to verify the robustness of our results. This algo-
rithm [9,10] will randomly pick and swap 2 unidirec-
tional or 2 bi-directional connections (a—b and c—d will
be changed to a—d and c—b).

N = 4. For comparing the count of quadruplets, we con-
struct random matrices that keep the same not only in-
degree and out-degree of uni-directional and bi-direc-
tional connections for each neuron but also the count of
the 16 different 3-neuron pattern in the whole matrix.
Starting from a random matrix for N = 3 as described
above, we use the Simulated Annealing algorithm [24] by
swapping two connections of the same type until the
count for all triplets in the random matrix matches the
real network. Since this swapping operation does not
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change the degrees of the various connection types for the
neuron, the algorithm only has to check if the triplet
count in all 16 classes is identical to C. elegans.

N = 5. For the analysis of the quintuplets, we modified the
Simulated Annealing algorithm to match the count of all
4-neuron patterns to the real network. With this algorithm
we could only find random matrices for which the relative
difference between the count of each pattern in the ran-
dom matrix and the real dataset was less than 10%.

Coin-tossing example of multiple hypothesis testing
correction

Here we illustrate the issue of multiple hypothesis testing
by considering a classical coin-tossing example. Imagine
determining whether a given coin is fair (i.e. yielding
heads with probability 1/2) or not by tossing it 100 times
and recording the number of heads. If the number of
heads is not too different from 50, we expect that the coin
is fair. The significance of the deviation in the number of
heads from 50 is characterized by the p-value, which is the
probability that a fair coin would have that or greater devi-
ation. For example, the probability of getting 62 or more
heads is about 1% and the corresponding p-value = 0.01.
Now consider testing simultaneously 100 different coins
by tossing each 100 times. Analyzing these 100 experi-
ments for outliers reveals that one coin yielded 62 heads.
Does this mean that this specific coin is unfair? Not nec-
essarily. Even if all the coins are fair, such a seemingly
unlikely result will be observed approximately once when
examining 100 coins. In other words, the p-value esti-
mated for a single coin is an underestimation of the true
p-value when 100 coins are examined simultaneously.
This situation is called multiple hypotheses testing and
requires a modification of the p-value definition.

http://www.biomedcentral.com/1741-7007/2/25

p-Value calculation/multi hypotheses testing correction

Assume the number of N-neuron patterns in the i-th class
in the actual network A and a random network R is given
by: cy; (A) and ¢y ; (R). Then the raw p-value is defined by:

pi=Pr(en,i (Re) 2 ey (A) Ry € {R}).

Because we look for over-representation of all connected
patterns in parallel (and there are m = 13 patterns for N =
3, m = 199 patterns for N = 4 and m = 9364 patterns for N
= 5), there is an increased probability of finding an over-
represented pattern by chance. We correct for that by cal-
culating a multiple hypothesis testing corrected p-value
for each pattern and threshold. This p-value, P,, reflects
the probability that one random matrix Ry, out of our ran-
dom matrix ensemble {R} will have at least one pattern,
i, which has smaller (or equal) raw p-value than the given
pattern in C. elegans. This is known as the single-step min P
procedure and controls for family-wide error rate [16,17].
In mathematical notation the single-step min P adjusted p-
values are defined by:

ﬁi ZPI'( mln P] Spl |H8]
1<j<m
where HOC denotes the complete null hypothesis, p; the

probability that the count for pattern i in a random matrix
R is greater than the count in C. elegans, and P; denotes the

raw p-value for the ith pattern in a random matrix ky: P; =
PT(CN,]' (R) = CN,j (Rio))-

To determine P,, for a pattern i we perform the following
procedure:

Table 3: Number of connected neurons and the count of the different connection types after applying thresholds to the two datasets.

Source Dataset Threshold ® = Connected Total connections uni-directional Reciprocal
neurons connections connections

Durbin JSH | I 179 1152 1011 141

2 175 649 603 46

3 170 463 435 28

4 161 328 313 15

5 140 226 216 10

6 119 163 156 7

7 106 124 119 5

Durbin N2U 2 | 187 1288 1143 145

2 181 728 685 43

3 172 460 445 15

4 162 323 313 10

5 138 206 200 6

6 119 143 138 5

7 97 104 101 3
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1. For all random matrices Ry, ~(kyis the index of the ran-

dom matrix; we usually created n = 1000 of them) out of
the ensemble we calculate P, (Rk0 ARF\ Ry, ) between

Ry, and all other random matrices in this ensemble for

each pattern i:

e 1
Py Bty ARF\Re, ) = Pr(eni(Re) > ey (R ) e # o ) + 2 P, (Re) = ey (Ri ) e # e )

2. We then derive the raw p-value for Ry, ~as a minimum

of these values across all patterns i I, =minPj .
1

3. We calculate the probability that for a given pattern i
the observed count in a random matrix R, out of our
ensemble {R} is greater than the count in the C. elegans
network :

pi =Pr(cn,i(Re) > oni(A) Ry € {R})Jr%PI(CN,i(Rk) =cni(A) Ry e {R}).

4. Last, we calculate the single-step min P adjusted p-value
P, for a given pattern i as:

Py =Pr(Py <pi1<ky<n).

In addition, we verified our results with the alternative sin-
gle-step max T adjusted p-value [16,17] (for figures and
explanations see Supplementary Information [Additional
file 1]).

Datasets/data sources

We used data from [6], which provides separate connec-
tivity data for the different reconstructions JSH and N2U
done by White et al. (1986). We deleted 11 non-neuronal
cell or classes from the dataset: CEPshDR, CEPshVL, CEP-
shVR, GLRDL, GLRDR, GLRL, GLRR, GLRVL, GLRVR, hyp,
mu_bod. The classification of the neurons into their func-
tion and their location was taken from [20].

Additional material

Additional File 1
A document containing supplementary information and data not pre-

sented in the paper. See also http://www.cshl.edu/labs/mitya/Celegans/
additional info.doc
Click here for file

|http://www.biomedcentral.com/content/supplementary/1741-
7007-2-25-S1.doc]

http://www.biomedcentral.com/1741-7007/2/25

Additional File 2

Description of the files containing triplet lists and used data sets. See also
http://www.cshl.edu/labs/mitya/Celegans/SupMain. html

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-2-25-S2.doc]

Additional File 3

Zip file containing files mentioned in Additional file 2

Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-2-25-S3 zip|
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