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Abstract
Background: Regular exercise reduces cardiovascular and metabolic disease partly through
improved aerobic fitness. The determinants of exercise-induced gains in aerobic fitness in humans
are not known. We have demonstrated that over 500 genes are activated in response to
endurance-exercise training, including modulation of muscle extracellular matrix (ECM) genes.
Real-time quantitative PCR, which is essential for the characterization of lower abundance genes,
was used to examine 15 ECM genes potentially relevant for endurance-exercise adaptation.
Twenty-four sedentary male subjects undertook six weeks of high-intensity aerobic cycle training
with muscle biopsies being obtained both before and 24 h after training. Subjects were ranked
based on improvement in aerobic fitness, and two cohorts were formed (n = 8 per group): the high-
responder group (HRG; peak rate of oxygen consumption increased by +0.71 ± 0.1 L min-1; p <
0.0001) while the low-responder group (LRG; peak rate of oxygen consumption did not change,
+0.17 ± 0.1 L min-1, ns). ECM genes profiled included the angiopoietin 1 and related genes
(angiopoietin 2, tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1) and 2 (TIE2),
vascular endothelial growth factor (VEGF) and related receptors (VEGF receptor 1, VEGF receptor 2 and
neuropilin-1), thrombospondin-4, α2-macroglobulin and transforming growth factor β2.

Results: neuropilin-1 (800%; p < 0.001) and VEGF receptor 2 (300%; p < 0.01) transcript abundance
increased only in the HRG, whereas levels of VEGF receptor 1 mRNA actually declined in the LRG
(p < 0.05). TIE1 and TIE2 mRNA levels were unaltered in the LRG, whereas transcription levels of
both genes were increased by 2.5-fold in the HRG (p < 0.01). Levels of thrombospondin-4 (900%; p
< 0.001) and α2-macroglobulin (300%, p < 0.05) mRNA increased substantially in the HRG. In
contrast, the amount of transforming growth factor β2 transcript increased only in the HRG (330%;
p < 0.01), whereas it remained unchanged in the LRG (-80%).
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Conclusion: We demonstrate for the first time that aerobic training activates angiopoietin 1 and
TIE2 genes in human muscle, but only when aerobic capacity adapts to exercise-training. The
fourfold-greater increase in aerobic fitness and markedly differing gene expression profile in the
HRG indicates that these ECM genes may be critical for physiological adaptation to exercise in
humans. In addition, we show that, without careful demonstration of physiological adaptation,
conclusions derived from gene expression profiling of human skeletal muscle following exercise
may be of limited value. We propose that future studies should (a) investigate the mechanisms that
underlie the apparent link between physiological adaptation and gene expression and (b) use the
genes profiled in this paper as candidates for population genetic studies.

Background
Regular exercise and high aerobic fitness both reduce the
risk of cardiovascular- and metabolic-disease-related
death for a multitude of potential reasons [1-5]. It is note-
worthy that a very large intersubject variation exists when
measuring the physiological adaptation to supervised
exercise training [6-9]. While some subjects demonstrate a
robust increase in aerobic capacity, others seem not to
respond substantially at all [8,10,11]. This variation also
applies to the improvement in insulin sensitivity seen
after exercise [9]. Such observations may be important for
future cardiovascular health, as an inherent lack of 'train-
ability' associates with increased cardiovascular risk fac-
tors [5]. The mRNA abundance for a huge number of
genes (>500) have been shown to be increased many
hours after exercise training in humans [8,12-18]. How-
ever, only very recently have gene expression changes
been related to the magnitude of physiological adaptation
[8,9]. Teran-Garica and others [9] observed a divergent
mRNA response in subjects that increase their insulin sen-
sitivity most following endurance training, whereas we
have demonstrated that the expression of insulin-like
growth factor related genes were increased with training
and more markedly in those subjects that most enhanced
their aerobic capacity [8]. Little else is known about the
relationship between the extent of gene activation and the
magnitude of physiological adaptation to exercise train-
ing in humans.

Increased aerobic capacity following a period of intense
endurance training reflects both central and peripheral
adaptations [19-23]. Activation of angiogenesis is pre-
sumably an important component of the response to
endurance training [15,20,23-25], indicating that sub-
stantial remodeling of skeletal muscle extracellular matrix
(ECM) is required. Using gene expression profiling, our
knowledge of the many factors that regulate the extracel-
lular environment and facilitate vascular remodeling fol-
lowing exercise has improved. Alterations in vascular
endothelial growth factor (VEGF) and related receptor(s)
transcript expression occur following acute exercise and
endurance training [15,17,26-28], indicating that VEGF
may be an important exercise factor. More recently, the

Angiopoietin (ANG) signaling pathway has been shown
to synergize with VEGF [29,30] and expression of both
ANG1 and ANG2 is altered by intense aerobic training in
rats [27]. There is currently no information on the physi-
ological regulation of the ANG system in human skeletal
muscle following aerobic training. Furthermore, the sig-
nificance of changes in the abundance of transcripts from
genes for various growth factors [15,26,27] has not been
examined in the context of changes in aerobic capacity
resulting from endurance training.

We therefore set out to establish if greater improvements
in systemic cardiovascular adaptation would be associ-
ated with changes in muscle gene expression. We did so by
examining the expression responses of a number of tissue
remodeling genes in subjects that demonstrated either a
substantial (high-responder group; HRG) or a modest/
negligible (low-responder group; LRG) response to train-
ing [8]. We also aimed to establish if the inclusion of low
responders in a gene analysis study could yield misleading
information on genes that might genuinely contribute to
physiological adaptation to exercise in humans.

Results
Physiological parameters
Table 1 presents the baseline physiological characteristics
of the HRG and LRG. As can be observed, no differences
in baseline demographics or physiological characteristics
existed between LRG and HRG subjects prior to the train-
ing program [8]. The combined training response was sig-
nificantly greater in the HRG (p < 0.001). The reduction
in submaximal heart rate was more substantial (p < 0.01)
in the HRG (-25.9 ± 3.6 beats min-1 (BPM)) vs. the LRG (-
10.5 ± 3.5 BPM) during a 10 min fixed-workload, sub-
maximal cycle. The increase in work performed during 15
min cycling after the six weeks of endurance exercise train-
ing was 60% greater (p < 0.05) in the HRG (+40.8 ± 4.3
kJ) than in the LRG (+24.9 ± 4.1 kJ). The increase in peak
rate of oxygen consumption (peak VO2) was four times
greater (p < 0.001) in the HRG (+0.71 ± 0.1 L min-1) than
in the LRG (+0.17 ± 0.1 L min-1). Importantly, there was
no correlation between baseline physiological
characteristics and the magnitude of improvement noted;
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this observation is consistent with those from previous
studies [31].

Growth factor-related genes
Subjects in both groups underwent six weeks of endur-
ance training. Gene expression levels were then measured
24 h after the last training session. Levels of VEGF gene
expression were not significantly altered in either group
(Fig. 1). Likewise, levels of VEGF receptor 1 (VEGFR1)
mRNA did not significantly increase in the HRG and actu-
ally declined in the LRG (p < 0.05). However, VEGF recep-
tor 2 (VEGFR2) mRNA expression increased by threefold
in the HRG (p < 0.01), whereas it did not significantly
change in the LRG. Similarly, mRNA for the VEGFR2 core-
ceptor Neuropilin-1 (NP-1) increased in the HRG (p <
0.001) but not in the LRG (Fig. 1). Expression of the
hypoxia-inducible factor 1α (HIF) gene did not significantly
change after endurance training. Regulation by endurance
training of ANG-related genes was only observed in the
HRG (Fig. 2). Levels of mRNA coding for ANG1, an ago-
nist for the Tyrosine kinase with immunoglobulin-like
and EGF-like domains 2 (TIE2) receptor, increased signif-
icantly in the HRG (p < 0.05), although ANG2 levels did
not change significantly in either group. Likewise, tran-
scription of tyrosine kinase with immunoglobulin-like and
EGF-like domains 1 (TIE1; 3.4 ± 1.0-fold increase; p < 0.01)
and TIE2 increased in the HRG only (p < 0.01; Fig. 3).

Extracellular matrix growth factor binding genes
Using our microarray dataset [8], we selected ECM factors
that (a) demonstrated evidence of being modulated by
exercise training and (b) were relevant for ECM remode-
ling [32-34]. These genes included ones that encoded
structural components of blood vessels (collagen type
IIIα1) or known regulators of tissue angiogenesis (collagen
type XVα1), factors known to influence ECM-derived

growth factor activity (α2-macroglobulin (A2M) and throm-
bospondin-4 (THBS4)), transforming growth factor β2
(TGFB2; a potent regulator of tissue remodeling) and
TGFB receptor II (TGFBR2). The level of fetal vascular col-
lagen (i.e., collagen type IIIα1) gene expression was
increased 14.7 ± 2.8-fold (p < 0.001) in the HRG and 8.5
± 4.1 fold in the LRG (p < 0.001). The level of collagen type
XVα1 expression increased in both groups: the HRG dem-
onstrated a 7.6 ± 3.6-fold increase (p < 0.001) while the
LRG demonstrated a 2.7 ± 0.5-fold increase (p < 0.01) in
expression of the gene (Fig. 3). In contrast, while both
A2M and THBS4 were significantly upregulated in the
HRG (threefold (p < 0.01) and tenfold (p < 0.001)
increases, respectively), in the LRG the THBS4 response
was more modest (2.5-fold; p < 0.01) and A2M mRNA
levels did not significantly change. TGFB2 was signifi-
cantly upregulated in the HRG (p < 0.01), whereas, if any-
thing, it tended to be downregulated in the LRG (Fig. 3).
The level of TGFBR2 expression was unchanged in the
LRG, but threefold increased in the HRG (p < 0.001; Fig.
3). Finally, three genes unrelated to ECM biology but pre-
viously described as being modulated by exercise [8],
interleukin 17D, Rho-GTPase-activating-protein 1 and myris-
toylated alanine-rich protein kinase C substrate, did not sig-
nificantly vary in their expression between HRG and LRG
(data not shown).

Discussion
Classic alterations in skeletal muscle phenotype following
physical training include improved fatigue resistance,
enhanced aerobic capacity and greater insulin sensitivity
[9,23,25,35,36]. The significance of an individual's ability
to adapt to exercise training may ultimately influence
multiple risk factors important for long term cardiovascu-
lar health [5]. In the present study we demonstrate for the
first time that ANG genes are substantially modulated in

Table 1: Baseline demographic and physiological parameters

LRG1 HRG1 p-value

Height (cm) 180 ± 3 183 ± 3 p = 0.53
Age (year) 23 ± 1 24 ± 1 p = 0.54
Mass (kg) 77 ± 3 77 ± 6 p = 0.97
Mean blood pressure (mm Hg) 92 ± 1 88 ± 4 p = 0.25
Peak VO2 (L min-1)2 3.7 ± 0.1 3.5 ± 0.3 p = 0.48
Resting heart rate (BMP) 71 ± 5 70 ± 6 p = 0.94
Submaximal heart rate3 170 ± 5 171 ± 5 p = 0.85
Respiratory exchange ratio4 1.0 ± 0.0 1.0 ± 0.0 p = 0.45
15 min work (kJ)5 220 ± 9 204 ± 16 p = 0.37

1Values are mean (± SEM) taken prior to training.
2Peak VO2 is the increase in 'maximal' oxygen uptake measured during an incremental maximal exercise protocol.
3Submaximal heart rate was measured during 10 min constant load cycling at 75% peak VO2.
4The respiratory exchange ratio was obtained during 10 min of submaximal exercise at 75% of pretraining peak VO2.
515 min work is the total work done in 15 min of self-paced cycling.
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humans following a six-week aerobic training program.
Overall, many ECM-gene transcripts were only modulated
in subjects that demonstrated a concurrent improvement
in aerobic capacity. Our data suggest that activation of
ECM genes may help determine the cardiovascular adap-
tation to aerobic exercise in humans. The present findings
also indicate that, when carrying out expression studies of
gene transcripts in humans, prior to any interpretation of
muscle gene expression responses, attention must be
afforded to the presence of physiological adaptation.

Modulation of genes that regulate extracellular matrix 
remodeling
We still have an incomplete understanding of the endog-
enous processes that regulate physiological adaptation to
aerobic exercise. Vascular growth factors not only regulate
tissue blood vessel density, but also enhances the expres-
sion of proteins that regulate oxygen levels in tissue [37].
Hence, it is naïve to think about the role of such growth
factors only in terms of regulating tissue capillary density.
Altered expression of HIF responsive genes (e.g. VEGF or

Change in Vascular endothelial growth factor-related gene expression following endurance trainingFigure 1
Change in Vascular endothelial growth factor-related gene expression following endurance training. Values are -
fold changes in human skeletal muscle gene expression (mean ± SE) following six weeks of aerobic training. Gene expression 
was determined using real-time quantitative PCR. Following six weeks training (n = 24), the eight highest and eight lowest 
responders to exercise training were identified using the sum of (a) the percent improvement in maximal aerobic capacity, (b) 
the percent reduction in submaximal heart rate during 15 min fixed-workload, submaximal cycling and (c) the percent 
improvement in work done during a 15 min maximal cycling test. This ranking was carried out before any genomic analysis was 
carried out. The training responses were evaluated by two-way ANOVA and Bonferoni post-hoc tests. * indicates p < 0.05, ** 
indicates p < 0.01 and *** indicates p < 0.001.
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VEGFR1) typically reflects the posttranslational
stabilization of HIF1α protein [38], and consistent with
this dogma, HIF mRNA was not significantly upregulated.
VEGFR2, considered the major mediator of VEGF-A-
related angiogenesis, was significantly upregulated in the
HRG only. Furthermore, NP-1, a facilitator of VEGF165
action at VEGFR2, was markedly elevated in the HRG and
unchanged in the LRG (Fig. 1). Upregulation of the
VEGFR2 coreceptor transcript provides some evidence for
greater VEGF activity in the HRG, as enhanced NP-1 gene
expression can be mediated by VEGF signaling [39,40].
The significance of the downregulation of VEGFR1 in the
LRG is unclear, but plausibly reflects an (unsuccessful)
compensation for the general lack of VEGFR2/NP-1 gene

activation in the LRG, as studies indicate VEGFR1 may
oppose VEGF signaling via VEGFR2 in some situations
[41].

The present study represents the first characterization of
expression levels of the human ANG gene family in
response to endurance-exercise training. Recently, the Ter-
jung laboratory examined the impact of exercise on the
angiopoietin system in rodents [27]. Alterations in TIE2,
ANG1 and ANG2 transcript expression were profiled 2 h
post exercise in various muscle groups taken from
Sprague-Dawley rats after 1 to 24 days of intense aerobic
running [27]. In rodents, activation of TIE2 and ANG2
was, broadly speaking, rather similar across each muscle

Changes in Angiopoietin-related gene expression following endurance trainingFigure 2
Changes in Angiopoietin-related gene expression following endurance training. Values are -fold changes in human 
skeletal muscle gene expression (mean ± SE) following six weeks of aerobic training, as described in Fig. 1. * indicates p < 0.05, 
** indicates p < 0.01 and *** indicates p < 0.001.
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tissue, especially when one considers that recruitment pat-
terns would differ between the various muscle groups
studied. The ANG1 response, however, differed both
across muscle groups and when compared with our
human data. In contrast with the upregulation of ANG1
seen in humans in the HRG (Fig. 2), in the rat ANG1
expression was slightly downregulated in oxidative mus-
cle groups, while 'fast' gastrocnemius demonstrated only
a modest increase in ANG1 expression [27]. It has recently
been established that either pre- [30] or concurrent
administration [29] of ANG1 synergizes with VEGF to
promote hindlimb angiogenesis. Thus it makes sense that
effective aerobic training might result in stable increases
in ANG1 expression (as we have found). Therefore, differ-
ences between our human data and the rodent study by
Lloyd et al [27] perhaps reflect differing muscle sampling

times. Future human studies should ideally use multiple
time points post exercise to clarify these issues. However,
care should be taken to verify that the subjects studied are
able to demonstrate a measurable aerobic training
response otherwise such results may be unreliable.

It has been hypothesized that changes in the ratio
between levels of ANG1 and ANG2 is of physiological
importance [27,42] by contributing to the stabilization of
the primary endothelial structures [43]. While ANG1's
ability to antagonize ANG2 at the TIE2 receptor may be
cell-type specific [42,44,45] and has yet to be proven to be
important in vivo, it is interesting to note that ANG1 and
ANG2 appear to have identical binding affinities for the
TIE2 receptor, whereas a threefold molar excess of ANG2
is required to antagonize ANG1 activity [45]. If the gene

Change in extracellular-matrix-related gene expression following endurance trainingFigure 3
Change in extracellular-matrix-related gene expression following endurance training. Values are -fold changes in 
human skeletal muscle gene expression (mean ± SE) following six weeks of aerobic training, as described in Fig. 1. * indicates p 
< 0.05, ** indicates p < 0.01 and *** indicates p < 0.001.
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expression patterns observed in the present study translate
to greater Tie2 receptor signaling, then our data supports
the idea that ANG1 cooperates with other growth factors
in vivo to regulate and promote functional angiogenesis.
This hypothesis clearly requires further investigation.
ANG1 and TGFB signaling facilitate the maturation of
VEGF-stimulated collateral vessel growth in adult tissue
[29,30,46]. Notably, TGFB2 and TGFBR2 were substan-
tially upregulated only in the HRG. This observation again
suggests that the ECM-related gene response in the HRG
may have allowed for greater tissue remodeling, which
would have contributed to the fourfold greater increase in
aerobic capacity.

To further examine the idea that the pattern of transcript
expression in the HRG contributed to the enhanced aero-
bic adaptation, we profiled a second set of genes chosen
from a gene-array study [8]. For example, upregulation of
potent growth factors should be accompanied by upregu-
lation of endogenous regulators, so that physiological
control could be maintained. A2M is an ECM protein
known to bind and regulate growth factor activity [47,48].
A2M was substantially upregulated in the HRG only (Fig.
3) suggesting that there was more active growth factor sig-
naling within the ECM of the HRG. Thrombospondins
also regulate ECM growth factors, including TGFB activity.
In addition, a loss of function polymorphism in THBS4 is
strongly associated with premature coronary artery dis-
ease [49]. In the present study a more substantial increase
in THBS4 mRNA expression was noted in the HRG (Fig.
3). As dysfunction of THBS4 and lack of cardiorespiratory
fitness are both risk factors for cardiovascular disease, it is
plausible that THBS4 plays a role in the cardioprotective
effects of exercise. Further analysis is required to establish
if such a relationship exists within a larger human
population.

Conclusion
There was unquestionably a differential physiological
response between the groups, as the HRG increased their
aerobic capacity by, on average, 0.71 L min-1, whereas the
LRG did not significantly increase their aerobic capacity
(+0.17 L min-1). At this time, our data cannot directly
attribute cause-and-effect for the differentially responding
genes. Although we profiled changes in skeletal muscle
ECM-related gene expression changes, we are not imply-
ing that only the local (i.e., in skeletal muscle) role of
these genes contributes to the magnitude of the training
adaptation. It is entirely plausible that the observed differ-
ence between our cohorts reflects a genotype-dependant
response, which would impact on gene expression in a
range of tissues important for cardiovascular adaptation
to endurance-exercise training. Importantly, histological
analysis of muscle would not address this possibility.
Instead, we would suggest that these differentially

expressed genes represent reasonable candidates for future
polymorphism studies in larger populations. Our data
also demonstrates that direct evidence for physiological
adaptability must be presented prior to concluding that
gene transcript alterations may or may not occur during
the physiological adaptation to exercise.

Methods
Human and physiological measurements
The study was approved by the ethics committee of the
Karolinska Institutet, Stockholm, Sweden, and informed
consent was obtained from each of the volunteers. Sub-
jects abstained from strenuous exercise during the three
weeks prior to obtaining pretraining muscle biopsies
(taken from the vastus lateralis). Twenty-four subjects
trained under full supervision on a cycle ergometer four
times a week (45 min) at 75% of their pretraining peak
VO2 for six weeks. Posttraining biopsies were taken 24 h
after the last training session. Physiological measurements
and muscle biopsies were performed as previously
described [8,16,50]. All physiological parameters were
derived from a minimum of two assessments, taken on
separate days. Peak VO2 was determined using a cycle
ergometer (Rodby, Sweden). An incremental protocol was
combined with continuous analysis of respiratory gases
using the Sensormedic ventilator (Sensormedic Co.,
USA). At peak VO2 the respiratory exchange ratio and
heart rate exceeded 1.1 and 190 BPM, respectively, on all
occasions. Total amount of work done in 15 min of
cycling was determined using a self-paced protocol (Lode,
Netherlands, test-re-test variability <5%). Submaximal
physiological parameters were determined during two
separate 10 min constant-load, submaximal cycling ses-
sions (carried out at 75% of pretraining peak VO2).

Two groups were selected from a larger training cohort
based on the magnitude of their training response (Table
1). The two groups represented the eight subjects that
demonstrated the largest improvement in physiological
capacity (HRG) and the eight subjects that demonstrated
minimal changes in physiological capacity (LRG) after
following an identical supervised training program. The
average training-induced change in peak VO2 in the LRG
equates to the lower ~10% of responses observed in the
HERITAGE study [6], whereas the response in the HRG
represents the top ~10% of responses. This information
helps to establish a 'population perspective' on the
responses observed in the present study. Subjects were
assigned to each group after being ranked on the basis of
the sum of changes in three main physiological parame-
ters: (a) percent improvement in peak aerobic capacity,
(b) percent reduction in submaximal heart rate during 10
min fixed-workload, submaximal cycling and (c) percent
improvement in work done during a 15 min maximal
cycling test. A combination of physiological markers of
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adaptation was used to ensure that no spurious individual
physiological measurement would compromise the
overall categorization of a subject [8]. Peak aerobic capac-
ity, decreased exercise-induced-increases in heart rate and
aerobic performance are all valid and accepted responses
to aerobic exercise training. No molecular or biochemical
analysis was carried out until the subjects were assigned to
their particular group. This type of novel analysis strategy
has previously been used by our group and also, more
recently, by Bouchard et al [8,9]

Real-time quantitative PCR and statistics
Total RNA was prepared using the TRIzol method (Invit-
rogen, USA) and quantified using a spectrophotometer.
Two µg of RNA was reverse transcribed by Superscript
reverse transcriptase (Life Technologies, Sweden) using
random hexamer primers (Roche Diagnostics GmbH,
Mannheim, Germany) in a total volume of 20 µl. Detec-
tion of mRNA was performed using a ABI-PRISM® 7700
Sequence Detector (Perkin-Elmer Applied Biosystems Inc,
Foster City, CA, USA). All reactions were performed in 96-
well MicroAmp Optical plates (Perkin-Elmer Applied Bio-
systems Inc.). Amplification aliquots contained 5 µl of the
sample cDNA, the TaqMan Universal PCR master mix
(Perkin-Elmer Applied Biosystems Inc.) and an optimized
concentration of each primer and probe, prepared accord-
ing to the manufacturer's recommendation, in a final vol-
ume of 25 µl. 18S rRNA was selected as an endogenous
control to correct for potential variations in RNA loading
into the cDNA synthesis reaction. The 18S rRNA control
was run in triplicate in separate wells (using 1:2000 dilu-
tion of the original cDNA). Thermal cycling conditions
were, initially, 2 min at 50°C followed by 10 min at 95°C,
and then, subsequently, 45 cycles of 15 s at 95°C and 1
min at 65°C.

Oligonucleotide primers and TaqMan probes were
designed using Primer Express version 1.5 (Perkin-Elmer
Applied Biosystems Inc.) and synthesized by Cybergene
(Stockholm, Sweden) or ordered as a 'gene assay by
demand' product (Perkin-Elmer Applied Biosystems Inc).
The sequences or 'gene assay by demand' numbers can be
provided on request. The probes were designed to cover
exon-exon boundaries to avoid amplification of genomic
DNA. As there are no predetermined low-abundance
"house-keeping" genes for this experimental paradigm,
the ∆∆Ct method [51] was used to calculate relative
changes in mRNA abundance. The threshold cycle (Ct) for
18S was subtracted from the Ct for the target gene to
adjust for variations in mRNA/cDNA generation efficacy.
This was carried out for both pre- and posttraining
samples. The preexercise value reflects baseline gene
expression levels and was subtracted from the postexercise
value to calculate the increase or decrease in mRNA
abundance.

A two-way mixed model ANOVA (GraphPad Prism 4.0)
was used to establish whether a significant interaction
between 'group' and 'extracellular gene responses'
occurred (p < 0.0001) and to confirm appropriate base-
line subject matching (p < 0.0001). Bonferoni post-hoc
testing established which individual gene responses were
significant for each subgroup, and this analysis was used
for the basis of the discussion. For comparison between
HRG and LRG training response data (e.g., peak VO2), a
two-tailed unpaired t-test was utilized. Significance was
accepted at the 5 % level. Data are mean ± SE.

List of abbreviations used
α2-Macroglobulin (AM2)

Angiopoietin (ANG)

Angiopoietin 1 (ANG 1)

Angiopoietin 2 (ANG2)

Beats per minute (BPM)

Collagen type IIIα1 (COL3A1)

Collagen type XVα1 (COL15A1)

Extracellular matrix (ECM)

High-responder group (HRG)

Hypoxia-inducible factor 1α (HIF)

Interleukin 17D (IL17D)

Low responder group (LRG)

Myristoylated alanine-rich protein kinase C substrate
(MARKS)

Neuropilin (NP-1)

Rate of oxygen consumption (VO2)

Rho-GTPase-activating protein 1 (ARHGAP1)

Threshold cycle (Ct)

Thrombospondin-4 (THBS4)

Transforming growth factor β (TGFB)

Transforming growth factor β2 (TGFB2)

Transforming growth factor β receptor II (TGFBR2)
Page 8 of 10
(page number not for citation purposes)



BMC Biology 2005, 3:19 http://www.biomedcentral.com/1741-7007/3/19
Tyrosine kinase with immunoglobulin-like and EGF-like
domains 1 (TIE1)

Tyrosine kinase with immunoglobulin-like and EGF-like
domains 2 (TIE2)

Vascular endothelial growth factor (VEGF)

Vascular endothelial growth factor related receptor 1
(VEGFR1)

Vascular endothelial growth factor related receptor 2
(VEGFR2)
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