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Abstract

Background: Sec8 is highly expressed in mammalian nervous systems and has been proposed to
play a role in several aspects of neural development and function, including neurite outgrowth,
calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and
regulation of neuronal microtubule assembly. However, these models have never been tested in
vivo. Nervous system development and function have not been described after mutation of sec8 in
any organism.

Results: We identified lethal sec8 mutants in an unbiased forward genetic screen for mutations
causing defects in development of glutamatergic Drosophila neuromuscular junctions (NMJs). The
Drosophila  NM] is genetically malleable and accessible throughout development to
electrophysiology and immunocytochemistry, making it ideal for examination of the sec8 mutant
synaptic phenotype. We developed antibodies to Drosophila Sec8 and showed that Sec8 is abundant
at the NMJ. In our sec8 null mutants, in which the sec8 gene is specifically deleted, Sec8
immunoreactivity at the NM] is eliminated but immunoblots reveal substantial maternal
contribution in the rest of the animal. Contrary to the hypothesis that Sec8 is required for neurite
outgrowth or synaptic terminal growth, immunocytochemical examination revealed that sec8
mutant NMJs developed more branches and presynaptic terminals during larval development,
compared to controls. Synaptic electrophysiology showed no evidence that Sec8 is required for
basal neurotransmission, though glutamate receptor trafficking was mildly disrupted in sec8
mutants. The most dramatic NM) phenotype in sec8 mutants was an increase in synaptic
microtubule density, which was approximately doubled compared to controls.

Conclusion: Sec8 is abundant in the Drosophila NMJ. Sec8 is required in vivo for regulation of
synaptic microtubule formation, and (probably secondarily) regulation of synaptic growth and
glutamate receptor trafficking. We did not find any evidence that Sec8 is required for basal
neurotransmission.
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Drosophila CG2095 / sec8. A: Amino acid alignment of human (Accession number NP_068579), rat (Accession number
Q62824), fly (Accession number AY905551), nematode (Accession number NP_492732) and yeast (Accession number
NP_015380) Sec8. The amino acid sequence of Drosophila CG2095 is 33% identical to rat and human Sec8. Drosophila amino
acids 440—460 (underlined) represent the peptide sequence used to generate Sec8 antibodies. B: Genomic map of Drosophila
CG2095 (sec8). Grey bars represent exons. sec8P/ is a lethal transposon insertion into the first exon. sec84/ is a deletion cre-
ated by imprecise excision of the transposon. The sec84/ deletion removes almost the entire sec8 gene, with the exception of
the first 37 bp of exon | and last 73 bp of the final exon 9.
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Background

The Sec6/8 complex, or 'exocyst', is an octomeric protein
complex thought to comprise the proteins Sec3, Sec5,
Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84. This complex
has been most extensively studied in yeast, where it is
required for membrane trafficking and secretion [1,2]. In
multicellular organisms, Sec proteins are expressed at par-
ticularly high levels in the nervous system [3,4]. The func-
tional role of Sec proteins in neurons, however, including
whether they always function as a canonical octomeric
complex, remains unclear.

We identified sec8 mutants in an unbiased forward genetic
screen for mutations causing defects in development of
glutamatergic Drosophila neuromuscular junctions (NMJs)
[5,6]. Sec8 is a core member of the sec 6/8 complex. Alone
or as a member of that complex, Sec8 has been suggested
to play a role in several aspects of neural development and
function, including: (1) neurite outgrowth [7-10], (2) cal-
cium-dependent neurotransmitter secretion [11], (3) traf-
ficking of ionotropic glutamate receptors [12-14] and (4)
regulation of neuronal microtubule assembly [10,15].

A mouse sec8 knockout has been created, but dies early in
embryonic development [16], precluding significant func-
tional or developmental analyses. In contrast, the Dro-
sophila sec8 knockouts described here survive through
embryogenesis, and hypomorphs survive throughout lar-
val development into pupation. This provides the first
opportunity to describe a sec8 mutant phenotype at any
synapse. The Drosophila NM] is a particularly good model
synapse for this purpose, since it is glutamatergic and
accessible to powerful microscopic and electrophysiolog-
ical techniques throughout development. Here, we pro-
vide the first description of sec8 mutant synaptic
phenotypes. We focused our analysis on (1) growth of
presynaptic terminals, (2) basal neurotransmission, (3)
ionotropic glutamate receptor trafficking and (4) microtu-
bule density, since Sec8 has specifically been implicated in
each of these processes.

We found that sec8 mutant NMJs show no obvious defect
in growth of presynaptic arborizations or neurotransmit-
ter secretion, but do show mild defects in glutamate recep-
tor trafficking and relatively dramatic alterations in
synaptic microtubule density. We hypothesize that Sec8's
most important role in vivo is spatially-restricted inhibi-
tion of microtubule stability, and that disruption of
microtubule regulation may underlie most, if not all, sec8
mutant phenotypes.

Results

Identification and generation of sec8 mutants

We identified the transposon insertion mutant P{SUPor-
P}CG2095KG02723 in  simultaneous unbiased forward

http://www.biomedcentral.com/1741-7007/3/27

screens for Drosophila mutants with alterations in NM]
presynaptic growth and glutamate receptor cluster forma-
tion [5,6]. We selected this mutant for further study on the
basis of a dramatic semi-penetrant presynaptic over-
growth phenotype and reproducible loss of glutamate
receptor immunoreactivity (see results, below). The
KG02723 P-element insertion was mapped by the Berke-
ley Drosophila Genome Project using inverse PCR to the
first exon of predicted gene CG2095 [17]. We confirmed
the KG02723 P-element insertion site in CG2095 by site-
specific PCR primers.

We cloned and sequenced full-length CG2095 cDNA from
the wild-type Drosophila strain Oregon R (Accession
number AY905551). A BLAST search using this Oregon R
CG2095 amino acid sequence showed 33% identity to rat
and human Sec8 (Fig. 1A). Conversely, BLAST searches
using mammalian Sec8 against the translated Drosophila
genome showed close matches only to CG2095. Thus,
CG2095 represents the sole Drosophila sec8 homolog.
Hereafter, we refer to CG2095 as sec8.

Because the P{SUPor-P}CG2095KG02723 P element inser-
tion mutant represents a mutation in the Drosophila sec8
gene, we refer to this allele as 'sec8P1'. We verified that the
P-element insertion was responsible for the sec8P1 pheno-
type (see below) by complementation analysis and remo-
bilization of the P-element [18] to create precise excisions
(‘revertants'). These revertants are phenotypically indistin-
guishable from other control (w!!!8) animals. Further-
more, sec8P1 mutants retain their phenotype in trans to a
deficiency, Df(3R)Tpl10, that completely eliminates the
CG2095 gene. These results show that the sec8P1 pheno-
type is specifically due to the P-element insertion in sec8.

Many transposon insertion mutants, including the sec8P1
mutants, represent hypomorphic alleles. Therefore, we
generated deletions of the sec8 gene via imprecise excision
of the KG02723 P-element in sec8P1, using standard
methods [18]. Among the excision mutants isolated was a
CG2095-specific deletion that we refer to as 'sec841'. To
confirm that sec841 only disrupts the sec8 gene and pro-
vide an accurate molecular description of this mutation,
we sequenced the sec8 genomic region in sec841 mutants.
Sequencing showed that the sec841 deletion begins before
the ATG, 37 bp into the first 5' exon, and ends 73 bp prior
to the 3' end of the last exon. Neighboring genes are com-
pletely intact. sec841 therefore represents a zygotic null.
sec841 homozygous mutants hatch at the same time as
controls (approximately 24 h after egg laying, AEL), but
do not undergo their first molt and die as first instar larvae
(~ 46 h AEL). The molecular nature of the sec8P1 and
sec841 mutations is summarized in Fig. 1B.
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Figure 2

Sec8 is found in the Drosophila NMJ. A: Third instar larval NMJs on ventral longitudinal muscles 6 and 7, stained using antibodies
against Sec8 (green), GIuRIIA (red), and the neuronal membrane marker anti-HRP (blue). All results in this study are derived
from experiments on 6/7 NM]s in segments A3—A4. Lower row shows NMJ terminals at higher magnification. Scale bars = 5
um. B: Confocal fluorescent images showing intersegmental nerve branch b (ISNb) innervating ventral longitudinal muscles in
first instar larvae (24-28 h AEL). NMJs were visualized using the neuronal membrane marker anti-HRP (magenta). Sec8 was vis-
ualized using anti-Sec8 antibodies (green). Scale bar: 10 pum. Insets show individual synaptic boutons at higher magnification
(approximately 2 um x 2 um). C: Quantification of total animal Sec8 protein, measured using protein blots from first instar
control and mutant larvae, probed with anti-Sec8 antibody.
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Homozygous sec8P1 and sec841 mutants both hatched at
approximately normal time (22-24 h AEL) and appeared
grossly normal by light microscopy (appropriate size, seg-
mentation, mouthooks, etc.). There was no obvious dif-
ference in mutant animal size, behavior or viability
immediately after hatching. However, homozygous
sec841 mutants did not undergo their first molt and did
not live past first instar larval stage (~ 48 h AEL).
Homozygous sec8P1 mutants appeared to molt and
pupate normally, and therefore lived through larval devel-
opment, but did not eclose and therefore died as pupae.
In view of the viability and the fact that sec8 is almost
completely deleted in sec841 mutants, we conclude that
sec8P1 represents a hypomorphic allele, while sec8A1 rep-
resents a zygotic null allele.

Drosophila Sec8 is abundant in embryonic and larval
neuromuscular junctions (NMJs)

The Drosophila embryonic/larval neuromuscular junction
(NM]J) is a well-established model glutamatergic synapse
that can be used to examine the effects of Sec8 loss on syn-
aptic development and function. To test whether Sec8 is
expressed at the NM]J, we raised rabbit polyclonal anti-
bodies against Sec8 using a synthetic peptide composed of
Sec8 amino acids 440-460, and affinity purified these
antibodies using the original peptide epitope. Immunore-
activity of this antibody was widely distributed through-
out many tissues and was particularly enriched in
synapses, including the NMJ (Fig. 2A). Because the pre
and postsynaptic membranes are separated by only
approximately 15 nm [19,20], it is impossible to distin-
guish definitively by light microscopy whether Sec8
immunoreactivity directly at the NM] is pre or postsynap-
tic. Nevertheless, several indications suggest that Sec8 is
both pre and postsynaptic. First, there is clearly Sec8
immunoreactivity throughout the muscle cell outside the
area delimited by presynaptic HRP staining; therefore,
sec8 must be expressed in the postsynaptic muscle cell.
Postsynaptic localization of Sec8 is also suggested by the
fact that Sec8 immunoreactivity overlaps immunoreactiv-
ity for the postsynaptic glutamate receptor subunit
GIuRIIA. Three-dimensional reconstructions and rota-
tions (not shown) show Sec8 immunoreactivity extending
above the interior face of the muscle, consistent with pre-
synaptic localization. We did not observe any Sec8 immu-
noreactivity in segmental nerve axons, suggesting that
presynaptic Sec8, if present, must be localized specifically
at the terminals, but there is little or no immunoreactivity
in the centers of presynaptic boutons. Thus, presynaptic
Sec8 must be localized specifically near the terminal
membrane. We obtained essentially identical results using
a recently described and independently generated anti-
body [21] (data not shown).

http://www.biomedcentral.com/1741-7007/3/27

Sec8 antibody immunoreactivity in the embryonic/first
instar (L1) neuromusculature was dramatically reduced in
homozygous sec8P1 mutants, and was almost undetecta-
ble in sec841 mutants (Fig. 2B). On immunoblots using
whole-animal extracts, our Sec8 antibody recognized a
single 111 kDa band (not shown). The intensity of this
band was reduced, on average, to approximately one-half
normal in both sec8P1 and sec841 L1 mutants (Fig. 2C).
This suggests that despite the deletion of the sec8 gene in
sec841 mutants, and almost complete elimination of Sec8
in the NMJ of homozygous mutants, there is substantial
maternal contribution of Sec8 in other tissues, as previ-
ously shown for other sec proteins [7,8,21-23].

We conclude from our immunohistochemical results that
Sec8 is probably expressed both pre and postsynaptically
at the Drosophila NM]J, and that sec8 mutant NMJs have
almost no remaining Sec8 but substantial maternal Sec8
persists in other parts of the sec841 mutant animals.

sec8 mutants show increased NM|J growth during larval
development

Sec proteins have been implicated in the membrane addi-
tion required for neurite outgrowth [7-10]. Formation of
Drosophila larval NMJs involves extensive neurite out-
growth and presynaptic arborization. Examination of
motor nerve terminals in the ventral body wall neuromus-
culature of Drosophila sec8 mutants therefore provides an
excellent opportunity to test whether Sec8 plays a role in
nerve terminal growth in vivo. Approximately halfway
through Drosophila embryonic development (12 h After
Egg Laying, AEL), motor neuron growth cones exit the
CNS and travel along the developing segmental nerve
toward their body wall muscle targets. Approximately 13
h AEL, development of ventral NMJs begins when motor
neuron growth cone filopodia contact the target muscles.
Over the next several hours, filopodia-ringed growth
cones in contact with appropriate targets collapse to form
nascent presynaptic processes of indistinct shape, termed
‘prevaricosities'. By 17-22 h AEL, parts of the prevaricosi-
ties begin to constrict and/or swell such that presynaptic
terminals (known as synaptic boutons) are formed [24-
30]. These presynaptic boutons are functional very early;
electrophysiological analysis shows that NMJ transmis-
sion occurs within minutes of contact between motor
nerve axons and muscles [31,32]. At the time of hatching
(22-24 h AEL), presynaptic boutons are still relatively
indistinct, morphologically, but nonetheless are clearly
highly functional since neuromuscular transmission is
required for hatching and subsequent crawling of the
newly hatched first instar (L1) larva. During larval devel-
opment (24-120 h AEL), the presynaptic arborization
grows dramatically in order to accommodate rapidly
growing larval muscles. This growth involves additions in
NM]J length, branches and bouton number (from about
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Figure 3
NM]J morphology in sec8 mutants becomes abnormal during larval growth. A: Confocal images showing NMJs on ventral longi-

tudinal muscles 15, 6/7, 13 and 12 in first instar larvae (24-28 h AEL), visualized using anti-HRP antibodies. Scale bar: 10 um. B:
Confocal images showing NMJs on ventral longitudinal muscles 6 & 7 in third instar larvae (110-120 hr AEL), visualized using
anti-HRP antibodies. Scale bar: 20 um. C: Example of extreme NM] overgrowth occasionally observed in sec8PI mutant third
instar larvae. The mutant NM] appears contracted, with an abnormally high number of boutons, compared to controls (c.f. 3B).
In addition, long slender neurites (normally not present) extend across the muscle to the right (distally) of the NMJ center.
Abnormal NMJ growth such as this was never observed in control animals (N>200). D: Quantification of the number of presy-
naptic boutons (left) and the number of branches (right) at the 6/7 NM] in first instar (24—48 h AEL) larvae. E: Quantification of
the number of presynaptic boutons (left) and the number of branches (right) at the 6/7 NM] in third instar (110-120 AEL) lar-
vae. sec84/ mutants die before third instar (skull and crossbones) and thus third instar morphology could not be assayed in

that genotype.

Page 6 of 20

(page number not for citation purposes)



BMC Biology 2005, 3:27 http://www.biomedcentral.com/1741-7007/3/27

22-24h AEL.:
A

sec8A1 control

B control  sec8A1 c S

g
E

1000

500°

GIuR current (pA)

500 pA

o
500/ms control sec8A1

m

Single channel current (pA)
~
o

D control sec8A1

=

40pAl__

10 ms 0.0

control sec8A7

110-120h AEL.:

£ e || el IR\ r
8
o 1na|
E N 1s
3 T ) ( i
@
2]
= control
* sec8P1

0.0 0.5 1.0 15 20

sEJC amplitude (nA)

Figure 4

Fewer synaptic glutamate receptors are electrophysiologically detectable in sec8 mutants. A: Portions of representative patch
clamp recordings from control and sec84/ mutant first instar larvae (22-24 h AEL), showing spontaneous excitatory junction
currents (sEJCs) from the muscle 6 NMJ. B: Glutamate-gated currents triggered by pressure ejection of | mM glutamate on to
patch-clamped muscle 6, from control and sec84/ mutants. Amplitudes of glutamate-gated currents are quantified in C. C:
Quantification of glutamate-gated current amplitudes from control and sec84/ mutants. D: sEJCs from control and sec84/
mutant first instar larvae, showing delayed single channel closings observable during the falling phase of the currents. Lines have
been added to the figure to indicate the baseline and single receptor current amplitude. Single-channel glutamate receptor
amplitudes were measured from delayed closings such as these; quantification of these amplitudes is shown in E. E: Quantifica-
tion of single glutamate receptor current amplitudes from control and sec84/ mutants. F: Portions of representative two-elec-
trode voltage clamp recordings from control and sec8P/ third instar larvae (1 10—120 h AEL), showing spontaneous excitatory
junction currents (sEJCs) in the muscle 6 NMJ. On the right are shown portions of recordings at expanded time scale, which
sacrifices an overall impression of sEJC amplitude differences but better demonstrates the resolution with which larval sgJCs
were detected. G: Cumulative frequency histogram of sEJC amplitudes in third instar animals. Homozygous sec8P/ mutant ani-
mals had fewer large events, compared with controls.
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8-10 in at hatching to 50-100 in the third instar 6/7
NMY]). Boutons also become more distinct during NMJ
development, such that the third instar NMJ typically
appears as 'beads on a string' [28-30,33].

To examine motor nerve terminal morphology, we used
fluorescently-conjugated anti-HRP antibodies (which
allow visualization of all neuronal membrane), and con-
focal microscopy (Fig. 3). In sec8P1 and sec841 mutants,
NMJ morphology appeared normal in first instar (L1) lar-
vae (Fig. 3A). L1 mutant motor nerve insertion sites
appeared normal, presynaptic swelling size was appropri-
ate for the animal age, and the arborizations were similar
in number and shape to those from age-matched control
animals. The number of boutons and branches in mutant
L1 ventral longitudinal muscle 6/7 NMJs were statistically
unchanged compared to control animals (Fig. 3D; Con-
trol boutons per 6/7 NMJ = 13.36 + 0.62, n = 14; sec8P1 =
11.85 £ 0.75, n =13, p = 0.130; sec841 = 13.14 + 0.67, n
= 14, p = 0.816; control branches per 6/7 NMJ = 1.62 +
0.22, n = 21; sec8P1 = 1.43 + 0.25, n = 21, p = 0.577;
sec841 = 1.82 + 0.28, n = 22, p = 0.587). However, in
sec8P1 third instar larvae (sec841 mutants did not survive
to this stage of development), muscle 6/7 NMJs showed
consistent and qualitatively obvious changes in morphol-
ogy and terminal number (Fig. 3B). With less penetrance,
sec8P1 mutant third instar larvae showed dramatically
abnormal neurite growth (e.g. Fig. 3C) that was never
observed in control NM]Js. The average number of presyn-
aptic boutons and branches was significantly increased in
sec8P1 mutant larvae compared to controls (Fig. 3E; Con-
trol boutons per 6/7 NMJ = 38.45 + 1.65, n = 22; sec8P1 =
47.50 + 3.36 n = 22, p = 0.020; control branches per 6/7
NMJ=3.14 +0.30, n=22; sec8P1 =5.41 +0.71,n=22, p
= 0.006). Homozygous sec8P1 and sec841 L1 mutants did
not show any obvious defects in body wall muscle shape
or size. Muscle insertions were correct and muscles did
not detach abnormally during manual dissection or sub-
sequent treatment. We conclude from these results that
loss of Sec8 does not significantly impair growth of motor
nerve terminals or presynaptic arborization. Instead, sur-
prisingly, loss of Sec8 triggered an increase of NMJ size
during larval development.

sec8 mutants show robust neurotransmission but a slight
decrease in the number of postsynaptic glutamate
receptors

Sec8 has been suggested to play a role in calcium-depend-
ent neurotransmitter secretion [11]. To determine
whether transmission in sec8 mutants is functionally
abnormal, we used voltage clamp synaptic electrophysiol-
ogy on NM]Js. First we examined sec841 mutants, since
Sec8 was almost completely eliminated from the NMJ in
these animals (Fig. 2B). Whole-cell patch clamp record-
ings from homozygous sec841 mutants showed that

http://www.biomedcentral.com/1741-7007/3/27

sec841 mutant NMJs were capable of robust endogenous
synaptic transmission (Fig. 4A). This result is consistent
with the fact that newly hatched sec841 mutant larvae
appeared to crawl and feed efficiently. The frequency of
spontaneous synaptic currents (aka 'spontaneous excita-
tory junction currents', or 'sEJCs') was normal in sec841
mutants (Control = 13.30 + 1.25 Hz, n = 11; sec841 =
12.34 +2.78 Hz, n = 10, p = 0.750). These data suggest no
major disruption of presynaptic function after loss of
Sec8. However, sEJC amplitude in sec841 mutant first
instar NMJs was mildly but significantly reduced (K-S sta-
tistic = 0.379, p < 0.0001). Reduced sEJC amplitude sug-
gests loss or mislocalization of postsynaptic glutamate
receptors.

To test glutamate receptor function directly, we pressure
ejected 1 mM glutamate on to patch-clamped (-60 mV)
postsynaptic muscle. Pressure ejection of glutamate pro-
vides a means of measuring postsynaptic receptor func-
tion independent of presynaptic glutamate release.
Drosophila NMJ receptors have low affinity for glutamate
compared to mammalian glutamate receptors [34]; 1 mM
is barely saturating. Currents triggered by pressure ejection
of glutamate were significantly reduced in sec841 mutants
compared to controls (Fig. 4B-C; Control = 1858 + 222.4
PA, n = 13; sec841 =1181 + 105.5 pA, n=11, p=0.016).
This reduction in glutamate-gated current amplitude
could be due to a decrease in the number of functional
postsynaptic glutamate receptors, or a change in the bio-
physical properties of individual receptors. In embryonic/
L1 Drosophila, these two possibilities can be distinguished
by measuring the single channel current size of synaptic
receptors directly. The input resistance of embryonic/L1
Drosophila muscle cells, coupled with the large conduct-
ance of insect muscle glutamate receptors, allows whole-
cell patch clamp mode discrimination of delayed single
channel closing on the falling phase of some sEJCs [35-
38]. The amplitude of these delayed synaptic receptor
closings was not significantly different between sec841
mutants and controls (Fig. 4D-E; control = 12.02 + 1.15
PA, n=11; sec841 = 10.70 + 0.94 pA, n = 10, p = 0.392),
suggesting that the decrease in glutamate-gated current
size measured in sec8 mutants is due to a loss of functional
postsynaptic receptors, rather than a change in receptor
properties. These latter experiments could not be repeated
in sec8P1 mutant third instar larvae because synaptic
receptors are not accessible for rapid agonist application
because presynaptic terminals tend to be embedded deep
within a subsynaptic reticulum, SSR. Decreased muscle
input resistance in L3 animals also makes it impossible to
discriminate single channel current amplitudes. However,
two-electrode voltage clamp recordings revealed that, as
in sec841 mutant L1 animals, sEJC amplitude was signifi-
cantly reduced in sec8P1 mutant third instar larvae (Fig.
4F-G; K-S statistic = 0.815, p < 0.0001), consistent with
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Figure 5

Fewer glutamate receptors are immunocytochemically detectable in sec8 mutants. A: Confocal images showing NMJs on ven-
tral longitudinal muscles 15, 6/7, 13 and 12 in first instar larvae (24-28 h AEL). NMJs were visualized using the neuronal mem-
brane marker anti-HRP (magenta). Postsynaptic glutamate receptors were visualized using antibodies raised against the
glutamate receptor subunit GIuRIIA (green). Scale bar: 10 um. Quantification of GIuRIIA cluster sizes is shown in B. B: Top:
Average GIuRIIA cluster size was significantly reduced in sec8 mutant first instar larvae. Middle: Frequency histogram of
GIuRIIA cluster sizes. Bottom: Average GIuRIIA cluster size was significantly reduced in sec8PI mutant third instar larvae, and
this phenotype is rescued by a precise excision of the P-element ('sec8rev5"). Similar results were obtained using antibodies
against GIuRIIB and GIuRIIC (see text). C: Confocal images showing ventral longitudinal NMJs in first instar larvae, as in A,
stained using antibodies against cysteine string protein (CSP; top panels), discs-large (DLG; middle panels), and synaptotagmin
(SYT; bottom panels). Scale bar: 10 um. D: Quantification of staining in C. sec8 mutants showed no significant difference in
cysteine string protein (CSP, top), discs-large (DLG, middle) or synaptotagmin (SYT, bottom) immunofluorescence compared
with controls.
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loss of postsynaptic glutamate receptors in both mutant
alleles throughout larval development.

To confirm the electrophysiological results and determine
whether loss of receptors in sec8 mutants might be due to
loss of a specific receptor subtype, we performed immu-
nocytochemical experiments on the same synapses exam-
ined electrophysiologically (muscle 6 NMJs). Drosophila
NMJs contain two spatially, pharmacologically and bio-
physically distinct subtypes of postsynaptic glutamate
receptor [38-42], referred to as 'A-type' and 'B-type' recep-
tors. A and B-type receptors appear to be molecularly
identical heterotetramers that differ by one subunit: A-
type receptors contain the subunit GluRIIA, but not
GIuRIIB, and B-type receptors contain the subunit
GIuRIIB, but not GIuRIIA. Both receptor subtypes also
contain the subunits GIuRIIC (aka GluRIII), GIuRIID and
GIURIIE [39-41].

We visualized A-type glutamate receptors using an anti-
body against the receptor subunit GIuRIIA. We visualized
B-type receptors using an antibody against the receptor
subunit GIuRIIB. We also used an antibody against the
subunit GIuRIIC, which is shared by both glutamate
receptor subtypes. At Drosophila embryonic/L1 NM]Js,
glutamate receptor subunit immunoreactivity is visible as
small puncta clustered under and around presynaptic ter-
minals [37,38,40-42]. Figure 5A shows embryonic NMJs
double-stained using anti-HRP antibodies to visualize
presynaptic nerve terminals (magenta) and anti-GluRITA
antibodies to visualize A-type postsynaptic glutamate
receptors (green). In sec8P1 and sec841 mutant first instar
larvae, the cluster size of both A- and B-type glutamate
receptors was significantly reduced (Fig. 5A-B; GIuRIIA
Control cluster sizes = 0.45 + 0.02 umZ2, n = 115 clusters in
9 animals; sec8P1 = 0.22 + 0.01 um2, n = 124 clusters in
11 animals, p <0.0001; sec841 = 0.24 + 0.01 um2, n = 142
clusters in 11 animals; GIuRIIB Control cluster sizes
0.32 + 0.01 um?2, n = 117 clusters in 9 animals; sec8P1
0.24 + 0.01 um?, n = 126 clusters in 11 animals, p <
0.0001; sec841 = 0.25 + 0.01 um?2, n = 142 clusters in 11
animals; GIuRIIC control cluster sizes = 0.32 + 0.01 pm?2,
n = 140 clusters in 9 animals; sec8P1 = 0.26 + 0.01 um?2, n
= 139 clusters in 11 animals, p < 0.0001; sec841 = 0.22 +
0.01 um?, n = 141 clusters in 11 animals). Glutamate
receptor cluster sizes were also significantly reduced in
sec8P1 mutant third instar larvae (Fig. 5B, bottom; Con-
trol GIuRIIA cluster sizes in third instar larvae = 1.42 +
0.06 um?, n = 120 clusters in 9 animals; sec8P1 = 0.44 +
0.03 um?, n = 120 clusters in 9 animals; p < 0.0001; Con-
trol GIuRIIB cluster sizes = 0.82 + 0.05 um?2, n = 160 clus-
ters in 11 animals; sec8P1 GluRIIB cluster sizes = 0.47 +
0.02 um?2, n = 150 clusters in 11 animals; p < 0.0001; Con-
trol GIuRIIC cluster sizes = 1.52 + 0.06 um2, n = 90 clus-
ters in 6 animals; sec8P1 GIuRIIC cluster sizes = 0.98 +
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0.05 um?, n = 90 clusters in 6 animals; p < 0.0001). Rever-
tant third instar larvae showed no change in glutamate
receptor cluster size (Fig. 5B, bottom; Control GluRIIA
cluster sizes = 1.42 + 0.06 um?, n = 120 clusters in 9 ani-
mals; sec 8rev5 = 1.33 + 0.06 um2, n = 140 clusters in 11
animals, p = 0.303).

We also quantified the immunoreactivity of the presynap-
tic proteins cysteine string protein (CSP) and synaptotag-
min (SYT), as well as the MAGUK protein discs-large
(DLG), which is primarily localized postsynaptically.
These antigens do not form distinct immunoreactive clus-
ters. Therefore, we quantified CSP, SYT and DLG immu-
noreactivity by measuring average fluorescence intensity
in the NMJ minus average non-NMJ muscle background
intensity over an identical area of neighboring muscle
membrane, normalized to control genotype (e.g.: immu-
noreactivity = (fNM] - fmuscle)mutam/ (fNM]_fmuscle)conlrol)' This
approach avoids use of fluorescence intensity from a dif-
ferent wavelength as a control, which would be inappro-
priate because fluorescence of different fluorophores and
detection of different emission spectra can vary independ-
ently from that of the 'target' fluorophore. Immunoreac-
tivity for CSP, DLG, and SYT was normal in both sec8P1
and sec841 (Fig. 5C-D; CSP fluorescence control = 1.0 +
0.13, n = 14; sec8P1 = 1.19 # 0.15, n = 14, p = 0.351;
sec841 =0.88 +0.11, n = 14, p = 0.519; DLG fluorescence
control = 1.0 + 0.11, n = 14; sec8P1 = 0.79 + 0.07, n = 14,
p=0.132;sec841 =1.06 + 0.14, n = 14, p = 0.732; SYT flu-
orescence control = 1.0 + 0.08, n = 14; sec8P1 = 0.84 +
0.09,n =14, p=0.223; sec841 =0.91 + 0.11,n= 14, p =
0.571). Since CSP and SYT are critical for normal synaptic
transmission [43], and DLG is required for proper locali-
zation of GIuRIIB [38,44], normal immunoreactivity for
CSP, SYT and DLG is consistent with relatively normal
neurotransmission and GIuRIIB clustering that we
observed.

Taken together, our electrophysiological and immunocy-
tochemical results suggest that sec8 mutant NMJs are capa-
ble of relatively normal neurotransmission, except for a
slight loss of postsynaptic glutamate receptors.

The loss of glutamate receptors in sec8 mutant NMJs is
due to mislocalization of glutamate receptor protein
Although the loss of postsynaptic glutamate receptors that
we observed in sec8 mutants was slight, we felt this pheno-
type deserved further investigation since Sec8 has been
implicated in glutamate receptor trafficking, but Sec8-
dependent trafficking of non-NMDA receptors has not
been demonstrated [12-14]. Drosophila NMJ glutamate
receptors are most similar in amino acid sequence to
mammalian non-NMDA kainate receptors [40,41]. The
Drosophila genome also encodes NMDA receptor subu-
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Figure 6

sec8P1 sec'BM control sec8P1 sec'8A1

Glutamate receptor subunit mRNA and protein is not reduced in sec8 mutants. A: Relative mRNA levels for glutamate recep-
tor subunits GIuRIIA (left), GIuRIIB (middle), and GIuRIIC (right), as measured by quantitative real-time RT-PCR in control and
sec8 mutant first instar larvae. B: Example immunoblot from first instar larvae (24-28 h AEL) probed with a anti-GIuRIIB anti-
body. The arrow points to the GIuRIIB band. GIuRIIA immunoblots have been previously described [71]. GIuRIIA and GIuRIIB
bands are eliminated in Df(2L)SP22 mutants, in which GIluRIIA and GIuRIIB genes are deleted (not shown). Loading control was
total protein; to ensure that the same amount of protein was loaded for both control and mutant, total extracted protein

quantity was measured using a Bradford assay and then the same amount of protein was loaded on to the gel for each mutant
(either 20 pg for GIuRIIB blots or 50 pg for GIuRIIA blots). Loading was also checked with Coomassie staining (not shown). C:
Quantification of total GIuRIIA (left) and GIuRIIB (right) protein, as measured from immunoblots such as the one shown in B.

nits, which are expressed in the CNS but not in muscle
[45,46].

To determine whether the loss of postsynaptic receptors
might be due to changes in receptor subunit expression,
we measured glutamate receptor subunit mRNA levels
using quantitative real-time RT-PCR. In embryonic/L1
sec8 mutants, the relative levels of GIuRIIA, GluRIIB and
GIuRIIC mRNA were not reduced compared to controls
(Fig. 6A; GIuRIIA: Control = 1.0 + 0.03 arbitrary units
(au.), n=7;s5ec8P1 =1.21 £ 0.12 au, n =8, p = 0.153;
sec841 =1.13 £ 0.06 a.u., n = 10, p = 0.128; GIuRIIB: Con-
trol = 1.0 + 0.02 a.u.,, n = 8; sec8P1 = 1.18 + 0.05 a.u.,, n =
9,p=0.016; sec841 = 1.13 £ 0.05 a.u,, n = 10, p = 0.067;
GIuRIIC: Control = 1.0 £ 0.03 a.u., n = §; sec8P1 = 1.21 +
0.07au.,n=9, p=0.018; sec841 = 1.13 + 0.06 a.u, n =
10, p = 0.129).

To determine whether the loss of postsynaptic receptors
involved decreased glutamate receptor protein production
or increased degradation, we measured total GluRIIA and
GIuRIIB subunit protein using immunoblots. GIuRIIA
and GIuRIIB are thought to be expressed only in body wall

muscle [40,47,48]. Immunoblot analysis suggested a
reduction in neither total GIuRIIA nor total GluRIIB pro-
tein in sec8 mutants (Fig. 6B-C; GIuRIIA Control = 1.0
0.11a.u.,n=06;se8P1=124+0.07au.,n=6p=0.114;
sec841 = 1.29 £ 0.09 a.u., n = 6, p = 0.085; GIuRIIB Con-
trol=1.0+0.12 a.u, n=5; sec8P1 =1.07 + 0.19 a.u,, n =
6, p=0.754; sec841 = 1.24 £+ 0.15 a.u,, n = 5, p = 0.254).
This result suggests that, in sec8 mutants, glutamate recep-
tor protein may be dispersed throughout the cell instead
of appropriately localized in the postsynaptic membrane,
where it would have been detectable immunocytochemi-
cally and electrophysiologically. These results, in combi-
nation with our electrophysiology and
immunocytochemistry, are consistent with a minor role
for Sec8 in non-NMDA glutamate receptor trafficking.

Drosophila Sec8 inhibits microtubule formation in vivo

Previous work has demonstrated that exocyst proteins
associate biochemically with microtubule proteins [10],
and that this association destabilizes microtubules [15].
To test whether Sec8 regulates microtubules at the Dro-
sophila NM], we examined pre and postsynaptic NM]J
microtubules using an antibody against acetylated tubu-
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Microtubule density is inversely proportional to Sec8 expression. A: Confocal images showing a portion of a NMJ on ventral
longitudinal muscles 6 & 7 in third instar larvae (110-120 h AEL), visualized using antibodies against tubulin (green) and the
essential glutamate receptor subunit GIuRIIC (red). Upper left half of the image shows confocal projection; lower right half of
the image shows 3D isosurface reconstruction of the same data. This shows the close association between pre and postsynap-
tic microtubules and the NM]. B: Microtubules in postsynaptic larval muscles. Muscle nuclei ('N') are surrounded by microtu-
bule networks (labeled with anti-acetylated tubulin antibody, magenta) that often extend (arrows) toward the neuromuscular
junction (labeled with anti-HRP, green). This suggests that muscle microtubules may be critical for delivery of postsynaptic mol-
ecules to the NMJ. C: Quantification of synaptic microtubule density. To measure synaptic microtubule density, immunofluo-
rescence from only the non-axonal area delimited by HRP staining (magenta) was measured. D: Quantification of extrasynaptic
microtubule density. To measure extrasynaptic microtubule density, immunofluorescence from the muscle area not delimited
by HRP staining was measured. E: Confocal images showing intersegmental nerve branch b (ISNb) innervating ventral longitudi-
nal muscles in first instar larvae (24-28 h AEL). Neuronal tissue was visualized using anti-HRP antibody (magenta). Microtubules
were visualized using an anti-acetylated tubulin antibody, which recognizes only stably polymerized alpha and beta tubulin
(green). Individual NMJs are identified (arrows, labels). In 24B Gal4;UAS-sec8 animals, sec8 cDNA is overexpressed in postsyn-
aptic muscle cells, resulting in small but not statistically significant reductions in microtubule immunofluorescence. In sec8
mutants, microtubule immunofluorescence is increased. This increase is highest at the synapse, where Sec8 is normally local-
ized. Qualitatively identical results were obtained using another antibody that recognizes all tubulin (not shown). Scale bar: 10

pm.
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Glutamate receptor clustering is inhibited by overexpression of tubulin. Overexpression of alpha tubulin in muscles triggers an
increase in microtubules (see text). A: Confocal images showing intersegmental nerve branch b (ISNb) innervating ventral lon-
gitudinal muscles in first instar larvae (24-28 h AEL). Neuronal tissue was visualized using anti-HRP antibody (magenta). Gluta-
mate receptors were visualized using an antibody against the receptor subunit GIuRIIA (green). In UAS-alpha tubulin/24B gal4
animals, sec8 cDNA is overexpressed in postsynaptic muscle cells. Overexpression of tubulin causes a reduction in glutamate
receptor cluster size and number (quantified in B and C). B: Quantification of receptor cluster size, showing a reduction in clus-
ter size after postsynaptic overexpression of tubulin (UAS-alpha tubulin/24B gal4). C: Quantification of cluster number, showing
a reduction in cluster number after postsynaptic overexpression of tubulin (UAS-alpha tubulin/24B gal4).

lin, which preferentially recognizes polymerized tubulin.
Microtubules are abundant in presynaptic motor axon ter-
minals and throughout postsynaptic muscle cells (Fig.
7A-B and [49-52]). Both pre- and postsynaptically,
microtubules are intimately associated with the NM]J (Fig.
7A-B and [49-52]). Within the Drosophila presynaptic
motor terminal, microtubules form distinct loops that
appear to be critical for presynaptic arborization and reg-
ulation of bouton growth [49,50,53,54]. Postsynaptic
muscle microtubules also regulate NMJ growth and devel-
opment [51,52]. In L1 animals overexpressing sec8 cDNA
in muscles, microtubule immunoreactivity was noticeably
decreased (Fig. 7E), but this decrease was not statistically
significant (Fig. 7C-D; Control MT density = 1.00 + 0.17,

N = 11; 24B Gal4;UAS sec-8 (muscle overexpression of
sec8) =0.72 £ 0.09, N =13, p = 0.14).

In contrast, microtubule immunofluorescence at NMJs
was approximately doubled in sec8P1 and sec841 L1
mutant larvae (Fig. 7C,E; Control synaptic MT density =
1.00 + 0.12, N = 11; sec8P1 = 2.57 + 0.31, N =11, p =
0.0002; sec841 =1.95+0.28, N=11, p=0.005). Very little
Sec8 is localized extrasynaptically in wildtype animals.
Therefore, a change in synaptic microtubule immunoflu-
orescence (where Sec8 is normally found), but not in
extrasynaptic microtubule immunofluorescence (where
only very little Sec8 is found), is most consistent with syn-
apse-specific regulation of microtubules by Sec8. Extrasy-
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naptic microtubule immunofluorescence was not
significantly increased in either sec8P1 or sec841 L1
mutant larvae (Fig. 7D,E; Control extrasynaptic MT den-
sity = 1.00 £ 0.17, N = 11; sec8P1=1.39 + 0.33, N =11, p
= 0.31; sec841 = 1.33 + 0.25, N = 11, p = 0.28). We con-
clude from these data that Sec8 inhibits microtubules in
vivo, as predicted by previous biochemical data showing
inhibition of microtubule formation by sec proteins
[10,15].

Overexpression of tubulin phenocopies the loss of
glutamate receptors seen in sec8 mutants

Our data suggest that Drosophila Sec8 plays a role in gluta-
mate receptor localization and microtubule regulation.
These two phenotypes could represent separate functions
for Sec8, or could be due to the same root cause. Mamma-
lian glutamate receptors are trafficked to the synapse via
the microtubule network [55-57]. Therefore, it is reasona-
ble to surmise that the defects in postsynaptic glutamate
receptor localization measured in sec8 mutants might be
due to misregulation of microtubules. To address this, we
mimicked the increase in microtubules observed in sec8
mutants by overexpressing alpha tubulin. Overexpression
of an alpha tubulin transgene in postsynaptic muscles
using the gal4-UAS system doubles microtubule density
(Images not shown; Control MT density = 1.00 + 0.17, N
= 11; UAS-& tub/B24 gal4 tubulin = 2.21 + 0.24 a.u., n =
12, p = 0.001), presumably due to a shift in the dynamic
equilibrium between disassembled and assembled tubu-
lin subunits. This shift toward an increase in microtubules
caused a significant decrease in the size and number of
postsynaptic glutamate receptor clusters, similar to that
observed in sec8 mutants (Fig. 8; Control GIuRIIA cluster
size = 0.45 + 0.02 um?, n = 115 clusters in 8 animals; UAS-
otub/B24 gal4 = 0.28 + 0.01 um?, n = 104 clusters in 9 ani-
mals, p < 0.0001; Number of control clusters = 0.68 + 0.06
clusters/um?, n = 13 NMJs; UAS-o tub/B24 gald = 0.47 +
0.05 clusters/um2, n = 14 NM]Js, p = 0.014). These results
suggest that the loss of postsynaptic glutamate receptors
observed in sec8 mutants may be secondary to disruption
of microtubule networks.

Discussion

Ours is the first detailed examination of any multicellular
Sec8 mutant. Sec proteins are thought to play a role in
almost every cell type, but are particularly highly enriched
in the brain. Therefore, most interest in Sec protein func-
tion is within the context of neuronal development and
function. Sec8, alone or as part of the exocyst complex,
has been implicated in several aspects of neural develop-
ment and function including: (1) neurite outgrowth [7-
10], (2) calcium-dependent neurotransmitter secretion
[11], (3) trafficking of ionotropic glutamate receptors [12-
14] and (4) regulation of neuronal microtubule assembly

http://www.biomedcentral.com/1741-7007/3/27

[10,15]. We explored each of these areas of potential func-
tion in Drosophila sec8 mutants.

Surprisingly, we did not see any evidence that Sec8 is
required for neurite extension or nerve terminal growth, at
least in motor neurons. Instead, sec8 mutant NMJ motor
arborizations were morphologically normal at time of
hatching, but then developed more branches and more
boutons during larval development, compared to con-
trols. This suggests that Sec8 suppresses neurite growth. The
sec8 mutant NMJ overgrowth phenotype is unlikely to be
an artifact for several reasons: (1) Although our immuno-
blots showed that 50% of total late embryonic/L1 Sec8
was left after deletion of the gene, Sec8 in the NM]J at the
start of larval development was already almost undetecta-
ble. (2) Regardless of whether the amount of Sec8 is
reduced to 50% or 0% (the difference between a func-
tional hypomorph or a null), there was no detectable
impairment of presynaptic terminal growth. Instead, NMJ
growth was enhanced in the sec8 mutants. (3) The NMJ
growth enhancement occurred entirely during larval
development — when maternal sec8 was fading to its low-
est levels. This sec8 mutant NMJ overgrowth phenotype is
dramatically different from the phenotype observed in
sec5 mutants [7]. Drosophila sec5 mutants showed a slight
increase in NMJ growth during L1 development (c.f.
Murthy et al., Fig 3B), but then progressive deterioration
in the ability to form new motor nerve terminals through
later larval development [7]. This suggests, along with
other evidence (see below), that metazoan Sec proteins
may not always function together as part of a canonical
octomeric complex.

Because Sec proteins are required for membrane secretion
in yeast, neuronal Sec proteins have long been implicated
in neurotransmission, which relies on synaptic vesicle
membrane insertion and cycling. However, we did not see
any evidence that Sec8 is critical for neurotransmitter
secretion, consistent with recently published descriptions
of Drosophila sec5 and sec15 mutants [7,21], and sec10
RNAI expression in the fly NM]J [58]. Our result is unlikely
to be an artifact of incomplete removal of Sec8 from the
synapse, because even though sec8 zygotic null mutants
showed substantial maternal contribution of Sec8 protein
(~ 50% normal levels overall), immunocytochemistry
and confocal microscopy showed that Sec8 was almost
completely absent from mutant early larval NMJs. Thus,
we were able to examine synaptic function following
severe genetic reductions in synaptic Sec8. No mutant evi-
dence to date suggests a role for Sec proteins in neuro-
transmission. Our data add Sec8 to the list of tested Sec
proteins, and strengthen this conclusion.

Mammalian Sec8 has been shown to interact with NMDA-
type glutamate receptors and the PDZ-domain protein
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SAP102 [12]. This interaction appears critical for delivery
of NMDA receptors to synaptic membrane in cultured
cells [12]. Sec8 also interacts with PSD-95 and SAP-97
[13,14], which are two proteins thought to be important
for delivery of non-NMDA (AMPA & kainate) glutamate
receptors to postsynaptic membranes. Thus, Sec8 has
been implicated in trafficking of all types of glutamate
receptors. We observed mislocalization of postsynaptic
glutamate receptors in Drosophila sec8 mutants, consistent
with a role for Sec8 in glutamate receptor trafficking.
However, the mechanism by which Drosophila Sec8 regu-
lates glutamate receptor trafficking may not be the same as
the mechanism proposed for mammalian neurons. As
mentioned above, mammalian glutamate receptor traf-
ficking by Sec8 is thought to occur via interactions with
the PDZ-domain proteins SAP102, PSD-95 or SAP-97.
DLG is the sole Drosophila member of the mammalian
PSD-95/SAP97/SAP102 protein family [59-61]. In Dro-
sophila DLG mutants, only B-type receptor trafficking/
localization is disrupted; trafficking and localization of A-
type receptors appear normal [38]. But in the sec8 mutants
described here, trafficking of both A- and B-type receptors
was affected. Therefore, our evidence suggests that loss of
Sec8 does not selectively disrupt a DLG-dependent gluta-
mate receptor trafficking pathway, which would be
expected to lead to loss of only B-type receptors.

Exocyst proteins, including Sec8, have recently been
shown to associate with microtubules in vitro and in cul-
tured cells, and overexpression of sec proteins inhibits
microtubule polymerization [10,15]. Overexpression of
Drosophila sec8 cDNA in vivo also caused a noticeable but
statistically insignificant reduction in microtubule immu-
noreactivity, and sec8 loss of function mutants showed
dramatically increased microtubule immunoreactivity in
NMJs. These results suggest that Sec8, probably in con-
junction with other sec proteins, locally inhibits synaptic
microtubule network assembly and/or stability.

The misregulation of microtubules in sec8 mutants could
be responsible for the glutamate receptor mislocalization
we observed, since glutamate receptors, like other trans-
membrane proteins, are thought to be transported to syn-
apses via microtubule networks [55-57]. Consistent with
the idea that the receptor trafficking defects are secondary
to microtubule misregulation, postsynaptic overexpres-
sion of tubulin increased muscle microtubule density and
phenocopied the loss of synaptic glutamate receptors
measured in sec84 1 mutants. Misregulation of microtu-
bules in sec8mutants might also explain the presynaptic
growth defects that we observed in sec8 mutants. Presyn-
aptic growth in the Drosophila NMJ is known to be
dependent on microtubule stability in both pre and post-
synaptic cells [49-54]. Misregulation of microtubules by
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either pre or postsynaptic Sec8 might therefore be
expected to trigger defects in presynaptic growth.

Regulation of microtubules by Sec8 might also explain
why expression of a sec8 transgene in sec8 mutant neurons
(elav C155 gal4/UAS-sec8; sec8) fails to rescue the synaptic
overgrowth (Data not shown), and why overexpression of
a sec8 transgene in sec8 mutant muscle (UAS-sec8; 24B
gal4 or UAS-sec8; H94 gal4) fails to reverse sec8 mutant
receptor trafficking phenotypes (Data not shown). Tradi-
tionally, these results might be taken as genetic evidence
that our phenotypes may be due to 'background' muta-
tions. But nervous-system-specific expression sec8 (elav
C155 gal4/UAS-sec8; sec8) rescues the mutant viability,
sec8P1 mutants retain their phenotype in trans to a defi-
ciency (Df(3R)Tpl10) that removes the sec8 gene region,
and precise excision of the P-element in sec8P1 mutants
completely reverses all synaptic phenotypes (see results).
These results all argue that: (1) The sec8 mutant flies die
owing to problems in the nervous system but not the NM]J
defects, and (2) all NMJ phenotypes are indeed due to spe-
cific disruption of sec8.

The failure of transgenic rescue is also consistent with the
fact that overexpression of sec8 (in a wildtype back-
ground) phenocopies sec8 mutants. For example, presyn-
aptic overexpression of sec8 causes NMJ overgrowth (Data
not shown; Control boutons per 6/7 NMJ = 38.45 + 1.65,
n = 22; elav C155 gal4/UAS-sec8 =37.11 + 2.51,n =18, p
= 0.647; Control branches per 6/7 NMJ =3.13 + 0.30, n =
22; elav C155 gal4/UAS-sec8 = 4.61 + 0.36 n = 18, p =
0.003). Interestingly, postsynaptic overexpression of sec8
also causes NMJ overgrowth (Data not shown; Control
boutons per 6/7 NMJ = 38.45 + 1.65, n = 22; UAS-sec8;
24B gal4 = 53.80 + 3.19, n = 20, p < 0.0001; control
branches per 6/7 NMJ =3.13 + 0.30, n = 22; UAS-sec8; 24B
gal4 =7.15 £+ 0.51, n = 20, p < 0.0001). This latter result is
consistent with the idea that Sec8 regulates microtubules
and the knowledge that microtubule stability - on both
the pre and postsynaptic sides of the NMJ- is a critical reg-
ulator of presynaptic terminal growth and arborization
[49-54].

Considered together, our results suggest that a primary
role for Sec8 at synapses may be spatially-restricted regu-
lation of microtubule networks. But we cannot conclude
that this is a primary function for other Sec proteins. A
growing body of evidence suggests that metazoan exocyst
proteins may not always function as a canonical hetero-
octomeric complex; functionally distinct subcomplexes
appear to exist in different cell types or even within the
same cell [21,23,62-64]. There are, for example, impor-
tant differences between the sec8 mutant phenotypes
described here and the phenotypes previously described
for Drosophila Sec5 mutants with regard to NM]J formation
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[7,22]. Similarly, Drosophila expressing sec10 RNAI in the
neuromusculature showed no NMJ changes, and Sec10
was not detected in the NMJ [58]. More recently, a study
of Drosophila Sec15 mutants found more differences
between sec mutant phenotypes and argued explicitly for
independent Sec protein roles [21]. Thus, several lines of
evidence, including expression patterns and phenotypes,
suggest that Sec proteins function independently in at
least some tissues and/or at different times. Nevertheless,
all Drosophila sec mutants show at least partial defects in
membrane trafficking, membrane protein distribution
and/or cell polarization - processes that rely, at least to
some extent, on microtubules. Thus, microtubule regula-
tion may be a common thread tying together Sec protein
function in vivo. One might imagine that different subsets
of differentially-regulated Sec proteins transiently associ-
ate in specific cellular compartments to prune the
dynamic microtubule network. This pruning and shaping
might ensure that membrane packages are delivered past,
or are dropped off at, appropriate places. We think that it
is important for future work on Sec proteins to consider
this possibility.

Conclusion

Sec8 is abundant in the Drosophila NM]. Sec8 is required
in vivo for regulation of synaptic microtubule formation,
and (probably secondarily) regulation of synaptic growth
and glutamate receptor trafficking. We did not find any
evidence that Sec8 is required for basal neurotransmis-
sion.

Methods

Genetics

To identify genes required for glutamatergic synapse
development, we screened GT1 and SuPor-P transposon
insertions from the Berkeley Drosophila Gene Disruption
Project [17]. Specifically, we first identified homozygous
mutants using the FlyBase Insertions Query Form http://
flybase.bio.indiana.edu/. Approximately 10% (220 of
2185 stocks) of the insertion lines available in March
2003 contained lethal inserts. We examined dechorion-
ated embryos from each of the 220 stocks to ensure that
homozygous mutants developed to at least late stage
embryogenesis (16-17 h after egg laying, AEL), which is
when NM]Js begin to form. Of the 220 mutants, 202 devel-
oped into morphologically mature embryos (condensed
CNS, clear segmentation, trachea, mouth hooks, etc.).
These 202 mutants were rebalanced using a chromosome-
specific GFP balancer for unambiguous identification of
homozygous P-element mutants and then screened
immunocytochemically using anti-HRP and anti-GluRIIA
antibodies to visualize presynaptic nerve terminals and
postsynaptic glutamate receptors, respectively. The
remaining 18 stocks were discarded from future consider-
ation.  P{SUPor-P}CG2095KG02723 mutants  (herein
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referred to as 'sec8P1') were identified as a member of the
subgroup of mutants with defects in both presynaptic
morphology and postsynaptic glutamate receptor expres-
sion. A more complete description of this screen, and the
mutants identified therein, can be found elsewhere [5,6].

sec841 mutants were created by imprecise excision of
P{SUPor-P}CG2095KG02723 from sec8P1, using standard
methods for P-element mobilization [18]. Four hundred
and forty-five independent mutant lines of flies were cre-
ated; approximately 8% of these (35 of 445) were
homozygous lethal. The lethal lines were then screened
using a PCR-based assay with three pairs of primers. One
pair of primers was designed to amplify a portion of sec8
near the P-element insertion. A second set of primers was
designed to amplify a portion of the gene CG2082, located
immediately 5' to CG2095, and the third set of primers
was designed to amplify a portion of gene CG2091,
located immediately 3' to sec8. Mutants in which the first
(sec8 specific) primer pair did not produce a product but
the second and third primer sets did suggested that sec8
was specifically deleted but the neighboring genes were
left intact. Eight mutants of this type were identified.
Lethal lines containing partial deletions of sec8 were fur-
ther characterized using several sets of PCR primers. Both
forward and reverse primers were designed to every 1 kb
of genomic DNA beginning 500 bp upstream and down-
stream of sec8. Using these primers, one deletion mutant
(sec841) was isolated in which the first forward primer
(positioned approximately 500 bp 5' of sec8) and the last
reverse primer (positioned approximately 500 bp 3' of
sec8) produced a product of approximately 1 kb. This PCR
product was sequenced to determine the exact location
and size of this deletion (sec841).

Precise excisions of P{SUPor-P}CG2095KG02723 ('rever-
tants') were produced by the same P-element mobiliza-
tion that produced sec841. Revertants were initially
identified based on eye color and reversion of the lethal
insertion phenotype, then confirmed by PCR. Measure-
ments from revertants, in which the sec8 P-element was
precisely excised, are indicated in the text and figures. For
all experiments, homozygous mutant larvae were identi-
fied by use of an appropriate GFP-tagged balancer chro-
mosome. 'Control' genotypes in all experiments are w118,
Animals were age-matched for all experiments using
timed laying plates and morphological staging of late-
stage embryos.

Molecular biology

Wild-type CG2095 (sec8) cDNA was cloned by RT-PCR
amplification of embryonic RNA. Total RNA was isolated
using Trizol extraction and reverse transcribed using
cDNA-specific primers and cloned. The 3256 bp sec8
cDNA was ligated into the pUAST vector using the Kpnl
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and Xbal sites, and then sequenced for confirmation. Our
results are consistent with the predicted gene structure
shown in FlyBase, although we noted several polymor-
phisms. We used our cDNA clone sequence to predict the
CG2095 amino acid sequence. Our predicted Oregon R
CG2095 amino acid sequence contains three differences
compared to the predicted CG2095 translation product as
annotated in FlyBase: Oregon R CG2095 encodes an M at
amino acid 119, a D at amino acid 328, and a Y at amino
acid 669.

Fly transformation was performed by DNA microinjection
of embryos using standard methods (Genetic Services,
Inc, Cambridge MA). Ten independent UAS-sec8 trans-
genic strains were created.

Quantitative real-time RT-PCR of Drosophila glutamate
receptor subunits was performed as previously described
[41]. Briefly, total RNA was isolated from 22-24 h AEL
embryos using Trizol extraction and reverse transcribed
using sequence specific primers. Real-time RT-PCR was
then performed using subunit cDNA-specific primers in
an Opticon 2 real-time cycler (MJ Research, Waltham
MA), using SYBR green (Molecular Probes, Eugene, OR)
for fluorescent measurement of amplicon quantity. Non-
specific fluorescence due to primers was eliminated by
measuring fluorescence after a short 'holding step' at a
temperature sufficient to melt primer dimers but not
desired product (MJ Research Technical Note # 004). As a
loading control, actin 5C RNA levels were also measured
for every extraction using actin 5C-specific primers, and
GIuRII RNA levels normalized using this measurement.
Each measurement represents the actin 5C c(t) divided by
a GluRII c(t), where both measurements were made from
the same RNA isolation and RT reaction.

Immunocytochemistry

To generate Sec8 antibodies, rabbit polyclonal antisera
was raised against a synthesized peptide composed of
Sec8 amino acids 440-460 (GTSNNSDAFKEHRRNAS-
DASV). The antiserum was affinity purified and used at
1:500. For staining and microscopy, animals were manu-
ally dissected and fixed for 30-60 min in either Bouin's
fixative (when Sec8 or GluRII antibodies were used), or
4% paraformaldehyde (for all other staining). Note that
the Sec8 antibody recently described in [21] as not show-
ing immunoreactivity at the fly NM]J, actually does so (and
shows staining very similar to our antibody) when prepa-
rations are fixed in Bouin's fixative. Mouse monoclonal
anti-GIluRIIA ('8B4D2', Iowa Developmental Studies
Hybridoma Bank, lowa City, IA) was used at 1:100. Rabbit
polyclonal anti-GluRIIB and anti-GIuRIIC [39] were gifts
from Dr. Aaron DiAntonio (Washington University, St.
Louis, MO) and used at 1:2000 and 1:3000, respectively.
Fluorescently conjugated anti-HRP (Jackson Immunore-
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search Labs, West Grove, PA) was used at 1:100. Mouse
monoclonal anti-CSP was used at 1:200 [65]. Mouse
monoclonal anti-Discs Large (DLG) ('4F3', lowa Develop-
mental Studies Hybridoma Bank, Iowa City, IA) was used
at 1:1000. Mouse monoclonal anti-synaptotagmin (SYT)
was used at 1:500 [66]. Mouse monoclonal anti-
acetylated tubulin (Sigma) was used at 1:1000. Goat anti-
rabbit or goat anti-mouse fluorescent (FITC or TRITC) sec-
ondary antibodies (Jackson Immunoresearch Labs, West
Grove, PA) were used at 1:400. Confocal images were
obtained using an Olympus FV500 laser-scanning confo-
cal microscope. All images represent maximum intensity
projections of confocal Z-stacks. Image analysis and quan-
tification was performed on maximum intensity projec-
tions of Z-stacks using Image] software. Three-
dimensional surface reconstructions were generated from
confocal Z-stacks using Amira 3.1 (Mercury Computer
Systems, Chelmsford, MA).

Quantification of glutamate receptor cluster size was per-
formed as previously described [37,38,42,67]. Every clus-
ter on a 6/7 NMJ from each animal was measured.
Drosophila NM] glutamate receptor clusters form over the
course of hours and then stabilize to form distinct clusters
with relatively invariant diameter [37,67]. These diame-
ters stay relatively constant, even throughout larval devel-
opment [30]. Because changes in the number of
postsynaptic receptors within each cluster are linearly pro-
portional to changes in cluster area; cluster area is a quan-
titative and sensitive optical measure of receptor number
in the Drosophila NMJ [30,37,67]. Cluster area was quan-
tified and measured from maximum intensity Z-projec-
tions of confocal image stacks, using automated edge
finding and area measurement in Image] software (NIH,
Bethesda MD). This method agrees well with manual
measurements [37], is highly reproducible [38,42,67],
and involves no experimenter bias for cluster selection
because the software selects and measures every bright
spot regardless of shape or size. An alternative measure-
ment of glutamate receptor abundance is fluorescence
intensity. Although fluorescence intensity measurements
gave qualitatively identical results for this study (data not
shown), we do not prefer them for embryonic/L1 receptor
abundance measurements because intensity measure-
ments assume changes in protein density within individ-
ual PSDs (for which we have no evidence) or
underestimate differences in receptor abundance due to
fluorescence measurement from pixels between individ-
ual GluR clusters. Because immunoreactivity for microtu-
bules and the synaptic proteins DLG, CSP and SYT did not
show distinct clusters, we quantified their abundance
using fluorescence intensity. However, all of these meas-
urements are relative to 'background' fluorescence (meas-
ured from non-muscle areas for microtubules, or
nonsynaptic areas for DLG, CSP and SYT) in the same
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image and filter channel [68]. We feel that this is an
important wavelength-matched control for variation due
to possible differences in staining, mounting of the prep-
aration, or microscope settings.

Immunoblots

After protein isolation for immunoblotting, protein abun-
dance was quantified using Bradford assays, and the same
amount of protein was loaded per lane on 6% SDS-poly-
acrylamide gels. The amount loaded was 20 ug for
GIuRIIB blots, 50 pg for GIuRIIA blots and 20 pg for Sec8
blots. After electrophoresis, protein was transferred to
nitrocellulose membranes. Nitrocellulose membranes
were blocked with 5% milk in TBST (10 mM Tris, pH 8.0,
150 mM NaCl and 0.1% Tween 20) for 1-2 h at room
temperature. Anti-Sec8 was used at 1:500 and anti-
GIuRIIA ('8B4D2' concentrate, lowa Developmental Stud-
ies Hybridoma Bank, Iowa City, IA) was used at 1:200.
GIuRIIB antibodies usable for immunoblots have not pre-
viously been described. To generate Anti-GluRIIB anti-
bodies for use in immunoblots, rabbit polyclonal antisera
was raised against synthetic peptides containing C-termi-
nal sequence of GIuRIIB: RQSRDSTSTGYSSLEQITSAS-
SAKKKK. For immunoblotting, GIuRIIB antibodies were
used at 1:400. Note that these GIuRIIB antibodies are not
the same as used for in situ staining; as described above,
the GIuRIIB antibodies used for in situ staining are
described in Marrus et al. [39]. After incubating at 4°C
overnight, the membranes were washed with TBS-T. Anti-
mouse HRP-conjugated secondary antibodies were used
at 1:5000 for GluRIIA blots and anti-rabbit AP-conjugated
secondaries were used at 1:1000 for GIuRIIB and Sec8
blots. Protein bands on blots were visualized using
enhanced chemiluminescence (GIuRIIA) or via a colori-
metric reaction (GluRIIB and Sec8). Both GIuRIIA and
GIuRIIB bands are completely eliminated in appropriate
mutants (Df(2L) [AD9] and Df(2L) [SP22]) [40] and
Liebl, Ng, Sheng, Karr and Featherstone, unpublished).

Electrophysiology

All electrophysiology was performed on the ventral body
wall muscle 6 at 19°C. For electrophysiology on first
instar (L1) larvae we used a whole-cell patch clamp tech-
nique. Third instar larval muscles are too large for whole
cell patch clamp. Therefore, we used two-electrode voltage
clamp technique for third instar (L3) larval recordings.
Both techniques were performed as previously described
[36,38,68]. The sEJCs analyzed in this study, in either first
or third instar larvae, are unlikely to include events result-
ing from endogenous action potentials, based on two
pieces of evidence: (1) Endogenous action potential
evoked activity is much larger, typically patterned, and
thus easily recognizable, and (2) Drosophila sEJCs
recorded in 0 mM calcium with 5 um TTX occur with less
frequency but are not larger, in both embryos/first instars
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and third instar larvae [[68] and unpublished observa-
tions|. Therefore, although we do not methodologically
exclude any particular type of synaptic event and therefore
properly use the conservative term 'sEJC' to describe what
we are measuring, all of the events shown and analyzed in
this study are likely to represent only true spontaneous
monovesicular 'mEJCs', or 'minis'".

For patch clamp electrophysiology on L1 (22-24 h AEL)
larvae, animals were manually dissected by gluing (His-
toacryl Blue, Braun Germany) them to sylgard-coated cov-
erslips under standard Drosophila saline (135 mM NacCl, 5
mM KCl, 4 mM MgCl,, 1.8 mM CaCl,, 5 mM TES, 72 mM
sucrose). A slit was then made along the dorsal midline
using a glass capillary pulled to a sharp point, and the
body walls glued flat to the coverslip. After dissection, the
exposed muscle sheath was enzymatically removed by
30-90s exposure to 1 mg/ml collagenase (type IV, Sigma).
Muscle 6 was then whole-cell patch clamped (-60 mV) in
standard Drosophila saline (135 mM NaCl, 5 mM KCl, 4
mM MgCl, 1.8 mM CaCl, 5 mM TES, 72 mM sucrose)
using standard patch-clamp techniques. Pressure ejection
of 1 mM glutamate dissolved in extracellular saline uti-
lized a Picospritzer III (General Valve/Parker Hannifin,
Fairfield NJ). Pressure ejection pipettes were approxi-
mately the same size and tip diameter as unpolished patch
pipettes. Glutamate leak was minimized by continuous
back-pressure; no evidence for glutamate leak and subse-
quent desensitization of receptors was ever observed, and
would be identical between genotypes. Data were
acquired using an Axopatch 1 D amplifier and a PC run-
ning pClamp9 software (Axon Instruments, Union City,
CA). Data were subsequently analyzed using Clampfit9
(Axon Instruments).

For two-electrode electrophysiology on third instar (L3)
larvae (110-120 hr AEL), Dissections were made as with
first instar larvae, except that collagenase was not used.
Larval dissections and recordings were also performed
under standard Drosophila saline, as described above.
Standard two-electrode voltage clamp techniques were
used (holding potential -60 mV), as previously described
[36]. Electrodes for TEVC were filled with 3 M KCI. Data
was acquired using an Axon GeneClamp 500B and a PC
running Axoscope software. Data were subsequently ana-
lyzed using Clampfit9 (Axon Instruments)

In all cases (data from both L1 and L3 animals) sEJCs were
detected and analyzed using Clampfit9's template-match-
ing method [69,70], which identifies synaptic events
based on shape matching to a data-based ideal template.
In Drosophila embryos and L1 larvae, small sEJCs as
recorded and analyzed for this study represent a mixture
of spontaneous calcium-dependent and calcium-inde-
pendent monovesicular events. Changing the calcium
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concentration to 0 mM in the recording saline decreases
the frequency of embryonic/L1 sEJCs, but not their ampli-
tude [68].

Statistics

All statistical comparisons were made using unpaired T-
tests or, for distributions, Kolmogorov-Smirnov tests. Sta-
tistical significance in figures is represented as follows: * =
p<0.05 **=p<0.01,and *** = p <0.001. All error bars
represent S.E.M.
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