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Abstract

Background: Transforming growth factor (TGF)B superfamily members transduce signals by
oligomerizing two classes of serine/threonine kinase receptors, termed type | and type Il. In contrast to
the large number of ligands only seven type | and five type Il receptors have been identified in mammals,
implicating a prominent promiscuity in ligand-receptor interaction. Since a given ligand can usually interact
with more than one receptor of either subtype, differences in binding affinities and specificities are likely
important for the generation of distinct ligand-receptor complexes with different signaling properties.

Results: In vitro interaction analyses showed two different prototypes of binding kinetics, 'slow on/slow
off' and 'fast on/fast off'. Surprisingly, the binding specificity of ligands to the receptors of one subtype is
only moderate. As suggested from the dimeric nature of the ligands, binding to immobilized receptors
shows avidity due to cooperative binding caused by bivalent ligand-receptor interactions. To compare
these in vitro observations to the situation in vivo, binding studies on whole cells employing homodimeric
as well as heterodimeric bone morphogenetic protein 2 (BMP2) mutants were performed. Interestingly,
low and high affinity binding sites were identified, as defined by the presence of either one or two BMP
receptor (BMPR)-IA receptor chains, respectively. Both sites contribute to different cellular responses in
that the high affinity sites allow a rapid transient response at low ligand concentrations whereas the low
affinity sites facilitate sustained signaling but higher ligand concentrations are required.

Conclusion: Binding of a ligand to a single high affinity receptor chain functioning as anchoring molecule
and providing sufficient complex stability allows the subsequent formation of signaling competent
complexes. Another receptor of the same subtype, and up to two receptors of the other subtype, can
then be recruited. Thus, the resulting receptor arrangement can principally consist of four different
receptors, which is consistent with our interaction analysis showing low ligand-receptor specificity within
one subtype class. For BMP2, further complexity is added by the fact that heterooligomeric signaling
complexes containing only one type | receptor chain can also be found. This indicates that despite
prominent ligand receptor promiscuity a manifold of diverse signals might be generated in this receptor
limited system.
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Background

The bone morphogenic proteins (BMPs), growth and dif-
ferentiation factors (GDFs) and activins belong to the
large transforming growth factor (TGF)B superfamily of
secreted signaling molecules [1,2]. The more than 30
TGFp-like proteins identified in vertebrates to date [3,4]
play important roles in all stages of embryogenesis [5]. In
the adult organism these factors exhibit a broad range of
biological effects and control various processes during
regeneration and tissue repair such as growth, growth
inhibition, differentiation, apoptosis, and secretion [6,7].
Based on their functional and sequence similarities TGF3
members can be divided into several subfamilies: the
TGFps (TGFB1, B2, and B3), activins (activin A, B, C, E),
BMP2s (BMP2, 4), BMP7s (BMP5, 6, 7), GDF5s (GDF5, 6,
7) and others [1,8]. Signal transduction of TGF§ members
is mediated by oligomerizing two different types of trans-
membrane serine/threonine kinase receptor chains
termed type I and type II. Five type II receptors and seven
type I receptors have been identified in mammals and the
broad range of TGFp ligands suggests a high degree of pro-
miscuity in ligand-receptor interactions [1,9]. On one
hand most receptors can bind several different ligands,
and on the other hand most ligands can interact with
more than one receptor chain of each subtype. Since
members of the TGFp superfamily transduce signals via a
heterooligomeric receptor system, differences in binding
affinities and specificities might generate a multiplicity of
ligand-receptor complexes with different signaling prop-
erties, allowing cellular responses that differ in quality
and quantity.

Binding specificities and affinities between ligands and
receptors have been analyzed on a semiquantitative basis
by crosslinking radioactively labeled ligands with recep-
tors that were overexpressed in cells. Two general binding
modes have been observed via this technique. One mode,
called 'sequential’, is characteristic for TGFBs and activins
and involves high affinity binding of the ligand to a type
I1 receptor and subsequent low affinity interaction of this
complex with a type I receptor [10,11]. Ligands following
this binding mode can be directly crosslinked to a type I1
receptor but crosslinking to a type I receptor is dependent
on the type II receptor presence. The second binding
mode, called 'cooperative’, is characterized by crosslink-
ing to either the type I or type II receptors and has been
proposed for BMPs. However, crosslinking efficiency is
enhanced if both receptor types are coexpressed [1].

To better understand receptor activation and the mecha-
nism underlying receptor specificity for TGFp ligands, we
determined binding affinities of different BMPs and GDFs
to their cognate receptor ectodomains by surface plasmon
resonance. One representative member from each of three
BMP/GDF subfamilies was chosen in this study. Binding
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parameters were evaluated in two ways, (1) by immobiliz-
ing the receptor ectodomains of the type I and type 1II
receptors activin receptor (ActR)-I, ActR-IB, BMP receptor
(BMPR)-IA, BMPR-IB, ActR-11, ActR-1IB, and BMPR-II, and
(2) by immobilizing the ligands. These two setups allow
us to obtain data on the individual binding affinity as well
as the avidity that is inherently linked to the dimeric
nature of the ligands. To compare the binding properties
of BMP/GDF receptor interaction with related receptor
systems, activin A was included in this study. Possible
cooperative interactions between the two receptor types
were investigated by studying the formation of ternary
complexes consisting of the ligand and the ectodomains
of both receptor types on the biosensor chip.

The dimeric nature of the ligands suggests that coopera-
tive binding via multiple interactions between ligand and
receptors (avidity) should also exist in vivo. Furthermore,
since certain ligands such as BMP2, BMP4 or GDF5 can
interact independently with type I as well as type II recep-
tors [12,13] an inherent complexity of individual ligand-
receptor interactions can be expected on cell surfaces. In
addition, since the ligands can bind to other cell surface
components such as coreceptors (for example, DRAGON,
BAMBI) [14,15] or the extracellular matrix (for example,
heparin) [16] the analysis of receptor recruitment and
activation is further complicated.

To analyze receptor compositions on cell surfaces and
their relation to biological function, BMP2 variants were
created lacking the heparin binding sites in order to
reduce binding to the extracellular matrix (ECM). Addi-
tional amino acid exchanges were introduced resulting in
homodimeric or heterodimeric ligands with interrupted
receptor binding epitopes. Binding of these variants to
receptors expressed on whole cells was analyzed by radio-
ligand binding assays and correlated to their biological
activities.

Results

Expression and purification of receptor ectodomain and
ligand proteins

Since the association rate k_, as well as the binding con-
stant K, determined from the sensorgrams directly
depend on knowledge of the exact concentration of the
active analyte, homogeneity and functionality of the ana-
lyte protein is essential for obtaining reliable data. Ecto-
domains (ECDs) of the bacterially derived receptors
BMPR-IA, BMPR-IB and ActR-1IB were purified to homo-
geneity by affinity chromatography employing a BMP2
affinity resin. The receptor ECDs that were expressed in
insect cells revealed distinct patterns of bands for each in
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) analysis under non-reducing conditions.
Since upon reduction of the disulfides using -mercap-
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toethanol each receptor protein appears as a single band
with an apparent molecular weight between 15 and 30
kDa, the bands of higher molecular weight most likely
represent incorrectly folded multimers linked by disulfide
bridges (data not shown). Purification of only mono-
meric receptor proteins could be achieved since only
monomeric ECDs bound to and were recovered from
BMP2 affinity columns. The ECDs ActR-I and ActR-IB
derived from insect cells could not be purified by affinity
chromatography due to their lack of binding to BMP2.
Hence, these receptors were purified to homogeneity by
trimethylaminoethyl (TMAE) anion exchange chromatog-
raphy followed by reverse-phase high performance liquid
chromatography (RP-HPLC). All isolated proteins exhibit
purities >95% (data not shown).

Biosensor experiments

As shown by the structures of several ligand-receptor com-
plexes, the dimeric ligands are capable of interacting
simultaneously with two receptor molecules of either sub-
type. Based on this property, the ligands can interact as
analyte either with one, or simultaneously with two,
immobilized receptors when those are present at suffi-
cient density on the biosensor (Figure 1a). Using the
inverse setup, with the ligands immobilized and the
receptor as analytes, individual binding of single receptor
molecules to the ligands can be determined (Figure 1b).
Simultaneous binding of both receptor subtypes to the
ligand, as is seen in ternary complex formation, can be
recorded using the experimental setup shown in Figure 1c.

Influence of ionic strength and pH value on binding
dffinities

The solubility of the BMP ligands strongly depends on pH
and ionic strength. In order to find optimal conditions, a
series of measurements with varying pH and salt concen-
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.

Figure |

Experimental layout. Model of biosensor experiments
with ligands as analyte passed over immobilized receptor
ectodomains (ECDs) (@), receptor ECDs passed over immo-
bilized ligands (b) and ternary complexes formed by perfus-
ing an immobilized type | receptor with the ligand plus the
ECD of a type Il receptor (c).
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tration were performed. BMP2 was perfused over biosen-
sor surfaces with the ECDs of BMPR-IA, BMPR-IB or ActR-
1B immobilized and employing different buffers as indi-
cated (Additional file 1).

Similar binding affinities and specificities were observed
over a wide range of salt concentrations (150 to 900 mM)
and pH conditions (pH 5.0 to 9.5). Thus, the binding of
BMP2 to immobilized receptors is unaffected by ionic
strength up to 500 mM NaCl. Above 500 mM NaCl the
affinities of BMP2 for immobilized receptors decrease up
to 10-fold (Additional file 1). As expected, strongest bind-
ing is observed at physiological pH. More acidic or basic
conditions result in a decrease (3-fold to 10-fold) of the
affinities of BMP2 to all tested receptors (Additional file

1).

The observed robustness of binding, independent of pH
or ionic strength, can be explained by the nature of the
binding interfaces [17-24]. For the interaction of receptors
of either subtype with the ligand, the binding is domi-
nated by hydrophobic interactions. Since the association
rates are far below the diffusion-controlled limit (<107 M-
15°1) electrostatic steering seems not to be involved in lig-
and-receptor interaction.

Based on our results we used 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES) buffer containing 500
mM NaCl at a pH value of 7.4 for all biosensor measure-
ments. Use of this buffer in the interaction analysis
yielded binding data which do not differ from those
obtained using physiological salt concentrations, but
greatly reduced non-specific binding of the ligand to the
carboxymethyl cellulose (CM) matrix on the chip surface.

Binding of ligands to immobilized receptors

Of the ligands tested, the highest binding affinities were
observed for BMP2 with preferred binding to the type I
receptors BMPR-IA (apparent Kn: 0.8 nM) and BMPR-IB
(2.7 nM) and for the GDF5:BMPR-IB interaction (1.3
nM), whereas activin A showed preferential binding to the
type Il receptor ActR-1IB with similarly high binding affin-
ities (2.1 nM) (see Table 1). In contrast, for BMP7 such a
preference in binding to a receptor of either subtype was
not detected: comparable affinities were observed instead
for the interaction of BMP7 with the type I receptor BMPR-
IB (9 nM) and the type II receptors ActR-II (8 nM) and
ActR-1IB (9.2 nM). Of the four prototypic ligands tested
only BMP7 bound ActR-I, and then very weakly (the sen-
sorgrams could not be evaluated). Since ligand concentra-
tions up to 120 nM were used the apparent K value of
this interaction is probably larger than 500 nM. The ECD
of ActR-IB was not bound by any of the tested ligands.
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Table I: Binding parameters of interactions of soluble ligands with immobilized receptor ectodomains (ECDs)

Ligand (analyte)

Type | receptor (immobilized)

Type Il receptor (immobilized)

ActR-1 ActR-IB BMPR-IA BMPR-IB ActR-1l ActR-1IB BMPR-II
Mean Mean Mean SD Mean SD Mean SD Mean SD Mean SD

BMP-2

kon  10-4[M-1s-1] NB NB 50 + 12.1 25 + 4.37 370 + 66.6 280 + 336 150 +255
ko 103 [s1] NB NB 0.4 +0.09 0.7 +0.09 88 +238 18 + 4.68 70 +19.6
Ko (kin) [nM] NB NB 0.8 +0.37 2.7 +0.82 14 *6.31 6.3 +2.39 45 *20.3
Ko (eq) [nM] NB NB NE NE 24 +1.92 9.0 *1.17 59 *10.0
GDF-5

kg % 104[M-1s71] NB NB 23 +5.98 39 +4.68 140 + 154 110 +19.8 110 +20.9
kog x 103 [s1] NB NB 4.3 +0.77 0.5 +0.16 28 + 4.48 4.5 +0.59 38 + 8.74
Ky (kin) [nM] NB NB 19 *8.36 1.3 +0.56 20 + 540 4.0 +1.24 36 * 5.1
Ko (eq) [nM] NB NB NE NE 32 +3.84 5.6 *0.90 46 +8.28
BMP-7

kon * 104[M-1s-1] NE NB 14 +2.24 1l +242 120 +20.4 140 + 308 96 + 144
koge % 103 [s71] NE NB 79 + 1.19 1.0 +0.18 6.2 + 0.69 9.0 + 1.26 24 + 6.24
Ky (kin) [nM] > 500% NB 58 +18.0 9.0 +3.87 5.1 +1.43 6.5 +2.34 25 +1]0.3
Ky (eq) [nM] > 500% NB NE NE 8.0 +0.48 9.2 *1.28 40 +5.20
Activin-A

kon x 104[M-1s-1] NB NB NB NB 130 +234 160 +224 53 +795
ko * 103 [s'] NB NB NB NB 7.5 + 1.65 1.7 +0.14 29 +6.96
Kp (kin) [nM] NB NB NB NB 5.7 +2.28 1.1 +0.24 59 +24.2
Ko (eq) [nM] NB NB NB NB 6.0 +0.54 2.1 +0.15 24 +4.08

The data obtained from measurements with immobilized type | receptor ECDs were fitted to a kinetic model (I:1 Langmuir binding) from which Ky
(kin) (bold) is calculated as k.4 (% 103 s-)/k,,, (% 10-4M-!s-1). Due to low but significant binding of BMP7 to AR-|, affinities could not be evaluated
exactly but are estimated to be higher than 500 nM (bold, asterisks). The data obtained from ligand binding to immobilized type Il receptors were
best fitted by equilibrium dose response Ky (eq) (bold). For this interaction the calculation of K (kin) (bold, italic) revealed minor differences
(<twofold). All data represent mean values of at least three repeated measurements using six different ligand concentrations.

ActR = activin receptor; BMP(R) = bone morphogenic protein (receptor); GDF = growth and differentiation factor; NB = no binding above
background detected; NE = could not be evaluated; SD = standard deviation.

The specificity of interactions between the studied recep-
tors and BMP2, BMP7, and GDF5 is only moderate. The
receptor BMPR-IA revealed the highest ligand specificity;
it binds BMP2 with >20-fold higher affinity than GDFS5 or
BMP7. The interactions of other receptors with these lig-
ands show only discrimination with a 10-fold difference
in binding affinity. Among the ligands, GDF5 exhibits the
highest receptor specificity, binding preferentially to
BMPR-IB and ActR-1IB. The type I receptor specificity of
GDF5 is defined by a single residue (Arg57), which is
located in the pre-helix loop in the center of the type I
receptor binding epitope [25].

For some of our data similar results have been published
by other groups [18,26]. However, affinities of other lig-
and-receptor interactions differ by more than two orders
of magnitude. Of note, the affinities of activin A for bind-
ing to the immobilized type II receptors ActR-II and ActR-
I1B are reported as 10-fold to 100-fold higher compared to
our data. The discrepancy is mainly due to lower dissocia-
tion rates (k,s) that are reported by Greenwald et al.
[18,27]. In addition, the affinity of BMP7 for BMPR-IA
according to our measurements is 20-fold higher than
reported by Allendorph et al. [26]. One explanation might
be differences in the chip surface density of the immobi-
lized receptor. At low immobilization levels the distances
between individual receptors might be too large to allow
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for simultaneous interaction of the dimeric ligand with
two immobilized receptors. By contrast, at very high den-
sities steric hindrances could occur. An investigation into
this has been reported for the interaction of activin A with
the type II receptor ActR-IIB [27].

However, another explanation for the latter discrepancy
might be due to the usage of the detergent 3-[(3-cholami-
dopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS). The results obtained from measurements with
0.36% CHAPS added to HBS500 buffer (see Methods) dif-
fer in most of the cases, some dramatically, from those
obtained without CHAPS (Figure 2). Only the interaction
of activin A with ActR-Il and ActR-IIB is unaffected,
whereas all other ligand-receptor interactions show a
reduced affinity. The binding affinity of BMP7 to BMPR-
IA was reduced 20-fold. The sensorgrams for the
BMP7:BMPR-IA (Additional file 2) interaction could not
be directly evaluated, but a correlation of the resonance
units obtained with an 80 nM ligand solution and the
known R, value of the sensor chip yields an estimation
of the apparent K|, value of approximately 2 uM. How-
ever, not only was the interaction between ligands and
type I receptors changed in the presence of the detergent
CHAPS, but binding specificity to the type II receptors was
also altered. Whereas binding of GDF5 to ActR-1I showed
only a 30-fold decrease, binding of the ligands to BMPR-
II was completely abolished in the presence of CHAPS.
Thus, the presence of CHAPS not only alters the binding
affinities but also influences ligand-receptor specificities
in the majority of the interactions investigated here.

Binding of receptors to immobilized ligands

Due to the measurement of the 1:1 interaction and hence
the lack of avidity, apparent affinities are much lower
when the setup is based on immobilized ligands and
using the soluble receptor ectodomains as analytes (Table
2). Binding constants range from 48 nM for the interac-
tion of BMPR-IA with BMP2 up to 60 uM for the binding
of BMPR-II to immobilized GDF5. The very weak affini-
ties of the 1:1 interaction of BMPR-II to BMP2, BMP7, and
GDF5 have been recently reported by Yin et al. [28]. Under
this setup again BMPR-IA shows the strongest overall
binding (among the type I receptors) to BMP2 (Kp: 48
nM). A similar value was reported by Sachse et al. [29] for
this interaction and for the binding of BMPR-IA to BMP4
[30,31], which is plausible considering that the type I
receptor binding epitope (wrist epitope) of BMP2 and
BMP4 share 100% amino acid identity [32]. Interestingly,
using this setup with immobilized ligands, the type I
receptor ActR-I measurably interacts only with BMP7.

Regarding the ligand specificities of the receptors, the
results are similar to those observed with the reciprocal
setup using immobilized receptors. Owing to the lack of
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avidity all affinities are 'scaled' down by a factor of 50 to
1,000. However, for BMP2 and GDF5 the binding to the
type 1l receptors benefits much more from avidity effects
compared to type I receptor binding. For BMP7, which
binds type I and type Il receptors with similar affinities, no
such significant receptor subtype specific effect on the
avidity is observed. In the case of activin A simultaneous
binding of the ligand to 2 type II receptors also leads to an
increased affinity by a factor of 30 to 40, direct binding of
activin A to type I receptors is not observed independent
of the biosensor setup. The lack of type I receptor binding
of activin A can be possibly explained by the known struc-
tures of activin A:ActR-II complexes, which show that the
type I receptor epitope in activin A might be structurally
disrupted in the absence of the type II receptors [23,27].

Binding dffinities in ternary complexes

The crystal structures of the BMP2:BMPR-IA:ActR-II [17]
and BMP2:BMPR-IA:ActR-IIB [24] ternary complexes
clearly demonstrate the lack of any receptor:receptor con-
tacts. Furthermore, no gross conformational changes are
observed in the ligand dimer architecture of BMP2 upon
complex formation, in contrast to activin A and TGFp3.
Consequently, a cooperative recruitment of the type II
receptor ectodomains could be excluded from Biacore
measurements [24]. To determine whether all type II
receptor ectodomains bind to BMP2, BMP7 and GDF5
with identical affinities independent of the presence of a
type 1 receptor, ternary complexes were generated on the
biosensor matrix as described in the Methods section (Fig-
ure 1c, Table 3). The results of the 'ternary' interactions
reveal only marginal differences compared to those
obtained for individual receptor-ligand interactions (see
Tables 2 and 3). All differences, except for the interaction
of ActR-IIB with the BMP7:BMPR-IB; . obilized COMPlex,
are within a factor of two and thus not significant consid-
ering the standard deviations of regular biosensor meas-
urements. An increase in affinities due to cooperativity, as
shown for the binding of BMP7 to ActR-I in the presence
of ActR-II [18], could not be detected in our experiments.
The detection of ternary complex formation via the
immobilized type I receptor ActR-I was not possible due
to its low ligand binding capabilities. The reverse detec-
tion to measure the binding of soluble type I receptor
ECDs to a preformed ligand:type II receptor complex with
the type II receptor serving as the anchor to the biosensor
could not be performed, since the fast dissociation rates
k¢ for ligand type II receptor interaction impeded a coin-
jection setup, which is the experimental basis for these
measurements.

In summary, our data clearly indicate an independent
binding of the ectodomains of type I and type II receptor
to the ligands BMP2, BMP7, and GDF5. However, since in
surface plasmon resonance (SPR) measurements only iso-
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Figure 2

Influence of 3-[(3-cholamidopropyl)dimethylammonio]- | -propanesulfonate (CHAPS) for ligand-receptor
interaction. Binding affinities of the ligands bone morphogenic protein (BMP)2, BMP7 and growth and differentiation factor
(GDF)5 to the immobilized type | receptors BMP receptor (BMPR)-IA and BMPR-IB (a) and those of the same ligands plus
activin A to the type Il receptors activin receptor (ActR)-Il, ActR-IIB, and BMPR-II (b) are depicted as bar diagrams. The data
represent mean values of two individual experiments using six different ligand concentrations. Standard deviations are indicated
by error bars.
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Table 2: Binding parameters of interactions of soluble receptors with immobilized ligands.

Ligand Type | receptor (analyte) Type Il receptor (analyte)
ActR-1 ActR-IB BMPR-IA BMPR-IB ActR-ll ActR-1IB BMPR-II

Mean SD Mean Mean SD Mean SD Mean SD Mean SD mean SD
BMP-2
kon  10-4[M-1s-1] NB NB 3.9 +0.63 23 + 0.56 NE NE NE
ko 103 [s1] NB NB 1.9 + 047 8.0 +138 >100 > 100 > 100
Ko (kin) [nM] NB NB 48 *19.6 350 + 146 NE NE NE
Ko (eq) [nM] NB NB NE NE 3800 +608 3100 £527 13000 2470
GDF-5
kg % 104[M-1s71] NB NB 05 +0.162 03 +0.09 NE NE NE
kog x 103 [s1] NB NB 17 +1.90 1.0 +0.124 > 100 > 100 > 100
Ky (kin) [nM] NB NB 3300 %1439 300 +123 NE NE NE
Ko (eq) [nM] NB NB NE NE 22000 +2420 4700 *658 60000 9600
BMP-7
kon * 104[M-1s-1] NE NB 0.3 +0.05 3.1 +0.38 NE NE NE
koge % 103 [s71] NE NB 54 +0.70 23 +584 >100 > 100 > 100
Kp (kin) [nM] NE NB 1900 *589 750 + 283 NE NE NE
Ky (eq) [nM] 58000 + 29140 NB NE NE 880 *61.6 2500 *300 9100 =*1365
Activin-A
kon x 104[M-1s-1] NB NB NB NB 30 +3.30 14 +238 10 +1.23
ko * 103 [s'] NB NB NB NB 44 +10.6 9.6 +278 76 +193
Kp (kin) [nM] NB NB NB NB 180  +63.0 88 405 890 335
Ko (eq) [nM] NB NB NB NB NE NE NE

The data obtained from the interaction soluble type | receptor ectodomains (ECDs) with the immobilized ligands were fitted to the |:1 Langmuir
binding model and the K, (kin) (bold) calculated as kg (% 103 s')/k,, (X 104 M-!s!). Due to the fast kinetics of the interaction between type Il
receptors as analyte and the immobilized ligands BMP2, BMP7 and GDFS5, the data could only be fitted by equilibrium dose response K, (eq). The
dissociation rate constants (k.g) of these interactions are >100 (x 103s!). All data represent mean values of three repeated measurements using at

least six different analyte concentrations.

ActR = activin receptor; BMP(R) = bone morphogenic protein (receptor); GDF = growth and differentiation factor; NB = no binding above
background detected; NE = could not be evaluated; SD = standard deviation.

lated extracellular domains of the receptors are used, the
cooperative recruitment of the type II receptor chains that
are observed in crosslinking experiments on cells must
therefore be generated by an alternative mechanism, such
as the interaction of transmembrane or intracellular
domains of the receptors.

Different types of binding kinetics

Generally, two types of binding kinetics could be
observed in our experiments. The first type, which is
observed for the interaction of BMP2, BMP7, and GDF5
with the immobilized type I receptors BMPR-IA and
BMPR-IB, can be considered 'slow' being characterized by
relatively slow association k., (1 to 5 x 105 M1 s1) and

dissociation rates kg (0.4 to 8 x 103 s'1) (see Additional
file 3). The second type, which is seen for the majority of
BMP2, BMP7 and GDFS5 type II receptor interactions, is
'fast' exhibiting fast association k., (>10° M-1s-1) and dis-
sociation rates kg (>102 s1) (see Additional file 3). The
sensorgrams measuring ternary complex formation clearly
display both types of binding kinetics, the slow associa-
tion and dissociation of the ligand to/from the immobi-
lized type I receptor ectodomain and the fast binding
kinetics for the interaction of the soluble type II receptor
ectodomain with the preformed complex (Additional file
3).
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Table 3: Binding affinities of soluble type Il receptors in ternary complexes
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Type | receptor (immobilized)

Ligand (analyte I)

Type Il receptor (analyte 2)

ActR-ll ActR-1IB BMPR-II
BMPR-IA BMP2 Ko (eq), nM 4,200 2,800 22,000
BMPR-IB SD +714 + 357 + 6,160
BMPR-IA GDF5 K5 (eq), nM 20,000 2,900 32,000
BMPR-IB D + 3,660 +339 +5,632
BMPR-IA BMP7 Ko (eq), nM 1,500 7,000 16,000
BMPR-IB SD + 130 + 1,015 +2,592

The data obtained from binding of type Il receptor ectodomains (ECDs) as analyte to the preformed complexes were fitted by equilibrium dose
response Kp (eq). The data represent mean values of two measurements using at least six different type Il receptor concentrations.
ActR = activin receptor; BMP(R) = bone morphogenic protein (receptor); GDF = growth and differentiation factor; SD = standard deviation.

The 1:1 interactions of the soluble type I and type II recep-
tor ectodomains to the immobilized ligands show princi-
pally comparable characteristics (in terms of fast and
slow) to those of the 1:2 interactions, which are observed
in the inverse situation (compare figures in Additional file
3). Binding kinetics of the 1:1 interaction are generally
characterized by faster dissociation rates k. This is
expected since on the biosensor with the ligand being
immobilized, the binding epitopes of the ligand act inde-
pendently, thus a dissociation of the receptor analyte is
irrevocable. In the 1:2 interaction dissociation of the lig-
and analyte from one receptor does not automatically
cause the release of the ligand from the biosensor. Since
the ligand is still coupled via the second receptor, fast
rebinding can occur and hence the dissociation is dramat-
ically decreased. Noteworthy is the very fast dissociation
of the type II receptor analytes from the immobilized
BMP2, BMP7, and GDFS5 resulting in sensorgrams with an
almost rectangular shape (Figure 3b). Since data acquisi-
tion can only proceed with a limited sampling frequency
(2.5 Hz) an evaluation of the kinetic rate constants is not
feasible. Thus, the dissociation rates k¢ can be estimated
to be certainly >10-! s-! but more precise analysis cannot
be provided here. Hence, no predictions with regard to the
association rates can be made.

The lifetimes of individual ligand-receptor complexes can
be deduced from the dissociation rates. For the 1:2 inter-
action of BMP2, BMP7 and GDF5 with the type I receptors
BMPR-IA and BMPR-IB rather long complex lifetimes (t;,
» = (In2)/k.¢) on the order of 2 to 30 min can be calcu-
lated, whereas ligand:type II receptor complexes with the
type II receptors anchored to the sensor surface exhibit
half-lives of the order of a few seconds (1 to 15 s). For the
1:1 interaction, which can be considered the initial bind-
ing event in the case of a sequential binding mechanism,
complex lifetimes are significantly reduced. However, the
lifetimes of almost all BMP2, BMP7, and GDF5 type I
receptor (1:1) complexes are still longer than those deter-
mined for the 1:2 interactions of these ligands with the

type Il receptors. Only activin A can form complexes with
type Il receptors that exhibit half-lives longer than 1 min.

Our data strongly suggest that, in all ligand-receptor sys-
tems tested here, one defined receptor subtype serves as an
anchor for the recruitment of the ligand from the superna-
tant to the membrane surface. The other receptor subtype
either does not interact with the ligand (that is, activin A
with ActR-IB) or binds with a fast binding kinetic as
observed for the BMP2 or GDF5 type II receptor com-
plexes and thus cannot efficiently act as a membrane
anchor. These data consequently suggest a sequential
binding mode for BMP2 and GDFS5, with an initial recruit-
ment via type I receptors and a subsequent binding of the
type Il receptors to this intermediate ligand:type I receptor
complex.

Ligand binding on whole cells

The presence of four receptor binding epitopes in the
dimeric ligand creates the possibility of a whole set of
individual ligand-receptor interactions on cell surfaces. In
addition the ligands can interact with other cell surface
components such as coreceptors (for example, DRAGON,
BAMBI) [14,15] or the extracellular matrix (for example,
heparin) [16]. In order to lower interactions with the
extracellular matrix, we created BMP2 ligands lacking the
heparin binding sites (so-called coreBMP2 variants, see
Methods section). In biosensor analyses the variant core
BMP2 wild type (coreBMP2wt) exhibits receptor binding
characteristics identical to those of wtBMP2 indicating
that the N-terminal sequences are not involved in receptor
interaction. For the homodimeric coreBMP2L51P variant
no binding to type I receptors is detected (K> 1 pM), in
agreement with published data [33]. Binding to type II
receptors is identical to that of wtBMP2, confirming that
the mutation L51P solely destroys type I receptor binding.
In the case of the heterodimeric coreBMP2wt/BMP2L51P
variant a binding constant of 50 nM was determined for
the interaction with BMPR-IA and of 350 nM for the bind-
ing to BMPR-IB. Interestingly, the same binding constants
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Binding of radiolabeled proteins on cell surfaces. (a) Dose-dependent binding of iodinated core bone morphogenic pro-
tein (wild type) (coreBMP2wt) to C2CI2 cells (total binding, black squares). Unspecific binding as determined by addition of a
1,000-fold excess of cold ligand (blue diamonds) was subtracted resulting in specific binding of the ligand (red stars). (b) Com-
parison of specific binding of coreBMP2wt to COS-7 cells transfected with either BMP receptor (BMPR)-IA or activin receptor
(ActR)-IIB or cotransfected with both receptors chains. (c) Specific binding of the iodinated heterodimeric coreBMP2/L51P
mutant to BMPR-|A transfected COS-7 cells using ligand concentration up to 4 nM. (d) Specific binding of a radiolabeled anti-
BMPR-IA Fab fragment to either untransfected (black squares) or BMPR-IA transfected (red asterisks) COS-7 cells. At all cases
specific binding was fitted to a one-site binding model resulting in the indicated values for K and B, .

could be determined when either the ligand or the recep-
tors were immobilized. Furthermore, these values resem-
ble the 1:1 interactions of BMPR-IA or BMPR-IB with
wtBMP2 (see Table 2). So far no mutations in BMP2 have
been found that are able to completely abolish type II
receptor binding. The heterodimeric coreBMP2wt/A34D
variant binds type II receptor ectodomains (immobilized
on the biosensor) with only 3-fold lower binding affinity,
and the homodimeric coreBMP2A34D variant with 10-
fold lower binding affinity, compared to wtBMP2. Since a
real 1:1 ligand:type II receptor interaction cannot be sim-
ulated with these ligands they were not suitable for radio-
ligand binding assays.

We analyzed the binding of iodinated coreBMP2wt to
C2C12 cells (Figure 3a). When ligand concentrations up
to 500 pM were used a binding constant of about 180 pM
was determined with roughly 12,000 binding sites calcu-
lated per cell. Both values agree with previously published
binding data employing other BMP responsive cells
[34,35].

Of note, 30% of total binding to C2C12 cells was non-
specific even when coreBMP2wt was used. Since nothing
is known about the detailed receptor composition for the
binding sites detected in these cells similar experiments
were carried out using transiently transfected COS-7 cells
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(Figure 3b). The conditions were chosen to keep the
number of binding sites similar to those observed in non-
transfected C2C12 cells, however the affinities for the lig-
ands were at least fourfold lower. Importantly, the values
observed for the binding of BMP2 to cells transfected with
BMPR-IA or ActR-IIB were basically identical to those of
the 1:2 interactions determined from Biacore measure-
ments (see Table 1). Cotransfection of both receptor sub-
types resulted in a marginal increase in binding affinities
(<twofold), similar to what was observed from Biacore
measurements when the ectodomains of both receptor
subtypes were immobilized simultaneously on the bio-
sensor (data not shown). These data clearly show that also
on whole cells only very weak cooperativity, if any, exists
in BMP2-mediated receptor recruitment.

Using up to 500 pM concentrations of the heterodimeric
coreBMP2wt/L51P variant the resulting binding curves
did not enter the plateau phase and thus could not be fit-
ted to a one-site binding model. With higher ligand con-
centrations a binding constant K, of approximately 30
nM was obtained resembling the binding affinity for the
1:1 BMP2:BMPR-IA interaction as determined from
Biacore measurements (Figure 3c). Interestingly, the
number of binding sites seems about 10-fold higher
(approximately 150,000 per cell) compared to the meas-
urements obtained with homodimeric wild-type
coreBMP2 (see Figure 3a). Since we cannot exclude that
other sites beside the transfected receptor are bound at
higher ligand concentrations, the BMPR-IA binding sites
were directly determined using a radiolabeled Fab frag-
ment (AbyD, Morphosys, Martinsried, Germany), which
binds specifically to the ectodomain of BMPR-IA (Figure
3d). For mock-transfected and BMPR-IA transfected cells
an identical binding constant of K, approximately 13 nM
was obtained for the Fab fragment, which is again consist-
ent with Biacore measurements (data not shown). Fur-
thermore, the number of BMPR-IA-derived binding sites
as determined from the Fab-fragment binding is basically
identical to those found in the measurements using the
heterodimeric coreBMP2wt/L51P variant. In mock-trans-
fected cells the number of BMPR-IA-derived binding sites
is approximately 25-fold lower. Thus COS-7 cells express
only minor amounts of BMPR-IA endogenously and the
majority of the signal in the transfected cells is generated
from the interaction with the ectopically expressed BMPR-
IA. Due to the monovalent nature of our Fab fragment the
number of binding sites most likely accounts for individ-
ual BMPR-TA molecules on the cell surface. Consequently,
the interaction of coreBMP2wt with BMPR-IA should
result in similar values for maximal ligand binding (B,,,)
at higher concentrations. However, when we used higher
concentrations of coreBMP2wt we obtained a biphasic
binding curve indicating the presence of two different
kinds of binding sites (Figure 4a). Separate evaluation of

http://www.biomedcentral.com/1741-7007/7/59

the binding affinities for the lower (0 to 500 pM) and
higher (1,000 to 4,000 pM) concentrations yields K val-
ues of 1.4 and 25 nM resembling the affinities obtained
from Biacore experiments for the 1:2 (high affinity) and
the 1:1 (low affinity) interaction. Importantly, the major-
ity (90%) of the total binding sites are low affinity sites,
which most likely reflect receptor monomers, whereas
only 10% of the binding sites exhibit high binding affin-
ity. These sites most likely represent receptors that are
arranged as preformed dimers or even in higher ordered
structures thereby allowing a simultaneous 1:2 interac-
tion.

Repeating the experiment using ActR-1IB transfected cells
to measure the binding of coreBMP2wt at higher concen-
trations did not produce a biphasic binding curve (Figure
4b). Fitting analysis of the binding data at higher or lower
ligand concentration resulted in identical values for K
and B,,,. To determine whether the rather small B, val-
ues are due to weaker expression of ActR-1IB, expression
levels were independently tested using fluorophore tagged
receptors and western blot analysis of whole cell lysates.
Since no significant differences were detected between
BMPR-IA and ActR-1IB transfected cells, this suggests that
the majority of the ActR-1IB receptors on the cell surface
are not occupied by the ligand even at concentrations of 4
nM (data not shown).

To determine, whether non-transfected BMP2 responsive
cells exhibit the same distribution of monomeric or
dimeric receptor assemblies C2C12 cells were incubated
with iodinated coreBMP2wt (Figure 4c). Similar to BMPR-
IA transfected COS-7 cells a biphasic binding curve was
observed. The number of binding sites at lower and higher
concentrations suggest a similar distribution of high and
low affinity receptor sites, but binding affinities were four
times higher for both 1:1 and 1:2 interactions compared
to BMPR-IA transfected COS-7 cells. It remains unclear if
the very tight binding in untransfected BMP2 responsive
cells is due to the interaction of the ligand with both
endogenously expressed type I and type II receptor chains
resulting in a heterohexameric complex. The high affinity
might likewise due to involvement of affinity-enhancing
coreceptors such as DRAGON, a member of the repulsive
guidance molecule (RGM) family, which might facilitate
ligand binding to dimeric as well as to monomeric recep-
tors. Expression of all three RGM family members could
be detected in C2C12 cells by real-time RT-PCR experi-
ments. The highest expression levels found for DRAGON
(RGMb) were approximately 20-fold lower compared to
those of BMPR-IA (data not shown).

Biological activity
Our results indicate a similar distribution of monomeric
and dimeric receptor arrangements in non-transfected
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BMP2 responsive cells and in cells transfected with BMP
receptors suggesting consequences for downstream signal-
ing events. We therefore used induction of alkaline phos-
phatase (ALP) expression to monitor the effect of different
receptor complex arrangements. In C2C12 cells BMP2
induces ALP activity in a dose-dependent manner requir-
ing about 20 nM BMP2 for half-maximal response [32].
The presence and functional importance of BMPR-IA for
this ALP activation has been reported previously [36,37].
Other receptors present in our C2C12 cells are ActR-],
ActR-1T and BMPR-II, whereas BMPR-IB and ActR-1IB seem
to be expressed at very low levels (data not shown). Since
BMP2 cannot efficiently activate cells expressing ActR-I as
the only type 1 receptor, signal transduction in C2C12
cells is most likely mediated via BMPR-IA [38,39]. Inter-
estingly, the concentration for half maximal response for
ALP induction in these cells correlates well with the K
value of the 1:1 BMP2:BMPR-IA interaction, and thus sug-
gests that ALP induction might be controlled via an iso-
lated (not dimeric) type I receptor architecture. Therefore,
ALP assays were performed employing the homodimeric
coreBMP2L51P and the heterodimeric coreBMP2wt/L51P
variants. The homodimeric coreBMP2L51P variant fails to
induce ALP expression, which is in agreement with results
published earlier using similar BMP variants that have
both type I receptor sites destroyed [33,40]. However, the
heterodimeric coreBMP2wt/L51P variant shows induc-
tion of ALP expression similarly (difference <twofold) as
coreBMP2wt (Figure 5). For comparison, wild-type BMP2
and the N-terminal truncated coreBMP2wt variant differ
about fourfold in ALP induction, indicating that the pres-
ence of heparin binding sites influences the induction of
ALP expression more so than does the complete ablation
of one type I receptor binding epitope.

SMAD phosphorylation

In addition to ALP induction we also studied SMAD-1
phosphorylation in C2C12 cells. We performed an initial
timecourse analysis of SMAD-1 phosphorylation from 30
min to 2 h after ligand addition [41] and also monitored
the influence of the ligand concentration.

After incubating the cells with coreBMP2wt for 30 min
half-maximal phosphorylated SMAD (pSMAD) levels
were obtained using approximately 300 pM of ligand
(Figure 6a). We then extended the time course analysis to
examine the kinetics of long-term stimulation. Interest-
ingly, the ligand concentration required for SMAD phos-
phorylation increases significantly with the time of ligand
exposure (Figure 6b). After 48-h incubation 10-fold to 30-
fold higher ligand concentrations compared to short-term
incubation (a 1-h period) were necessary to induce half-
maximal pSMAD levels (see Figure 6a, c). At ligand con-
centrations >3 nM high pSMAD-1 levels could also be
observed after 6 h and 24 h of ligand exposure indicating
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Biological activity of bone morphogenic protein
(BMP)2 variants. The dose-dependent induction of alkaline
phosphatase (ALP) activity in serum starved C2CI12 cells is
shown for the indicated ligands BMP2 wild type (BMP2wt)
(black squares), coreBMP2wt (red triangles) and the het-
erodimeric coreBMP2wt/L5 I P variant (blue asterisks). The
background absorption at 405 nm of 0.09 £ 0.0075 was not
subtracted to indicate the signal to noise ratio.

a permanent activation of the SMAD pathway (data not
shown). Interestingly, the total SMAD-1 protein levels
also marginally increased over time, but ligand independ-
ently. Dose-dependent phosphorylation of SMAD-1
could be also observed upon stimulation with the het-
erodimeric coreBMP2wt/L51P variant. Similarly, sensitiv-
ity to ligand exposure decreased over time although not to
the extent observed with wild-type ligand (Figure 6d).
Importantly, after 48 h of ligand exposure, half-maximal
PSMAD-1 levels were achieved using the same concentra-
tion of the heterodimeric BMP2 variant (approximately 3
nM) as observed for wtBMP2. This is consistent with the
comparable ability of wtBMP2 and heteromeric wtBMP2/
L51P variant to induce ALP, in that at variant concentra-
tions required for half-maximal ALP induction (10 to 20
nM) pSMAD-1 levels are similarly high.

Inhibition of the SMAD and mitogen-activated protein
(MAP) kinase pathway

The important points to consider are whether SMAD
phosphorylation and induction of ALP expression are
coupled through a common signaling cascade. It is sup-
posed that SMAD phosphorylation leads to differentia-
tion of C2C12 cells into the osteoblastic lineage, but it is
unclear whether SMAD phosphorylation is also required
for the induction of ALP gene expression at later time-
points. Recently, a small-molecule inhibitor of BMP sign-
aling, called dorsomorphin, was demonstrated to perturb
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SMAD phosphorylation. (a) A concentration-dependent phosphorylation of SMAD-1 mediated by bone morphogenic pro-
tein (BMP)2 is shown at the indicated timepoints in C2C12 cells by western blotting. Analysis of SMAD-| and actin levels acts
as loading control. (b) Time-dependent phosphorylation of SMAD-| by BMP2 at a concentration of 0.3 nM. (c) Diagram of the
time-dependent phosphorylation levels of SMAD-| without ligand or induced by BMP2 at the indicated concentrations. The
data were obtained by scans of western blot exposures. pPSMAD signals were quantified and normalized to total SMAD-I levels
using the software Image]. (d) Concentration-dependent phosphorylation of SMAD-1 mediated by heterodimeric core BMP

wild type (coreBMP2wt)/L51P.

dorsoventral axis formation in Zebrafish [42]. This sub-
stance selectively inhibits BMP type 1 receptors ActR-I,
BMPR-IA and BMPR-IB and thereby prevents phosphor-
ylation of SMAD1/5/8 proteins. SMAD2/3 phosphoryla-
tion as well as phosphorylation of the p38 MAP kinase is
not affected by dorsomorphin. The p38 MAP kinase path-
way contributes to chondrogenesis induced by GDF5 in
ATDC-5 cells as well as to osteogenic differentiation of
C2C12 cells mediated by BMP2 [43,44]. Several small
molecule inhibitors of p38 MAP kinase activation are cur-

rently available, however not all (for example, SB202190)
reduce or inhibit the induction of ALP expression [44].

To investigate if the activated SMAD1/5/8 and/or p38
MAP kinase pathways are required for the ALP induction,
dorsomorphin and SB203580 were added separately to
C2C12 cells at different timepoints using concentrations
of 10 and 30 uM, respectively. ALP activity was analyzed
72 h after ligand addition (Figure 7). The results clearly
show that the simultaneous administration of either dor-
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somorphin (Figure 7a) or SB203580 (Figure 7b) with lig-
and (that is, at t = 0 h) completely abolishes ALP
induction. Even if the inhibitors are added 24 h after the
ligand only a marginal increase in ALP activity is observed.
Addition of the inhibitors 48 h after ligand administration
still results in a significantly reduced ALP activity com-
pared to induction by 250 nM BMP2wt in the absence of
these inhibitors. Similar results were obtained from anal-
ogous experiments using ATDC-5 cells, thus the observed
inhibition of ALP activity is not cell type specific (data not
shown). These results clearly demonstrate that the induc-
tion of ALP gene expression requires a permanent activa-
tion of both, MAP kinase and SMAD pathways.
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Figure 7

Inhibition of the SMAD and p38 mitogen-activated
protein (MAP) kinase pathway. Alkaline phosphatase
(ALP) assays were carried out using C2C12 cells in the
absence or presence of 250 nM of bone morphogenic pro-
tein (wild type) (BMP2wt). (a) Dorsomorphin (DM) or (b)
SB203580 was added at the indicated timepoints. The back-
ground absorption at 405 nm of 0.09 £ 0.0075 was not sub-
tracted to indicate the signal to noise ratio.
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Discussion

In this study we investigated the binding properties of dif-
ferent BMP ligands, in vitro and on whole cells, and corre-
lated these properties with immediate downstream
signaling events such as SMAD phosphorylation and
induction of ALP expression. By performing in vitro inter-
action analyses in an identical manner for three proto-
typic members of the BMP subfamilies (BMP2/4, BMP5/
6/7 and GDF5/6/7) we could compare and analyze differ-
ences in detail, enabling us to deduce consequences for
the initial steps of receptor binding and activation. Due to
the dimeric nature of the BMP/TGF ligands their receptor
binding mechanism is inherently complex, which compli-
cates data acquisition and analysis. The binding of the lig-
and to membrane-anchored receptors is affected by
avidity as the two receptor sites lead to a strong increase in
the apparent binding affinity. The increase in affinity
should mainly result from slower dissociation because,
based on statistical thermodynamics, it is highly unlikely
that a molecule attached to two receptors can leave both
sites simultaneously. If re-binding is fast the dissociation
is slowed down dramatically. By contrast, statistical ther-
modynamics also predicts that binding of a dimeric lig-
and to membrane-anchored receptors will occur via a
stepwise process, since the direct binding of ligand to two
receptors simultaneously (with respect to the timing of
the binding events) involves a trimolecular reaction,
which is a very rare event. Thus, mechanistically, the lig-
ands will most likely bind initially to a single receptor
chain (unless the receptors exist as preformed dimers on
the cell surface) and a second receptor chain will subse-
quently be recruited into this membrane-bound complex.

Our experimental setup utilizing immobilization of either
the ligands or the receptors allows the determination of
the rate constants for each of these association and disso-
ciation steps. With immobilized ligands our in vitro inter-
action analysis delivers binding constants and kinetics for
the so-called 1:1 interaction, where the receptors bind
independently and no cooperativity is observed, due to
the absence of allosteric mechanisms or direct contacts
between the extracellular domains of the receptors. This
setup provides parameters that likely resemble the situa-
tion when ligand first encounters the cell surface, thereby
binding to a single receptor. Our results show that for the
interaction of BMP2 and GDF5, with type I receptors, as
well as the binding of activin A to the type II receptors
ActR-II and ActR-IIB, the 1:1 interaction occurs with 30-
fold to 100-fold lower affinity than the 1:2 interaction,
under the conditions tested. Binding of BMP2 and GDF5
to the type II receptors is even more affected by avidity,
showing a 100-fold to 1,000-fold increase in affinity when
going from a 1:1 to a 1:2 interaction scheme. As expected
the increased binding affinities in the 1:2 interactions
result from reduced dissociation rates but an increase in
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the association rates was also observed in most cases.
However, in the 1:1 interaction scheme, the dissociation
rates for ligand:type II receptor complexes are much faster
than those observed for the ligand:type I receptor interac-
tion. The deduced half-lives for complexes of BMP2 and
GDF5 bound to one type II receptor are, at most, on the
order of very few seconds, whereas binding of these lig-
ands to one of their type I receptors results in complexes
with half-lives on the order of several minutes. Thus,
assuming single isolated receptors for either subtype,
BMP2 and GDF5 likely bind first to a type I receptor and
subsequently recruit a second receptor (which possibly
could be either subtype) into the membrane-anchored
binary complex. The initial complex of a ligand bound to
two membrane-anchored receptors likely stabilizes the
complex by lowering the dissociation rate due to avidity
such that the receptor recruitment can proceed without
the intermediate complex falling apart.

BMP7 seems different when compared with BMP2 or
GDF5 as the 1:1 interaction scheme does not reveal a clear
high affinity receptor for BMP7. The type I receptor BMPR-
IB and the type II receptor ActR-II exhibit almost identical
affinities for BMP7. However, the dissociation rates again
show that the BMP7:BMPR-IB complex has a fivefold
longer half-life than the BMP7:ActR-II complex, making a
sequential mechanism with binding of BMP7 first to
BMPR-IB more likely. Most importantly, these hypotheses
are only valid under the assumptions that no other com-
ponents affect the complex lifetime and that the receptor
usage of a ligand in vivo solely depends on the receptor
affinity, that is, the receptor with the highest binding
affinity is the receptor to be recruited by this ligand. How-
ever, it is known that signaling of BMP7 and BMP6
involves the type I receptor ActR-1 [45], which binds with
at least 30-fold lower affinity (in the 1:1 interaction
scheme) than the other type I receptors BMPR-IA and
BMPR-IB. Furthermore, coreceptors such as members of
the DRAGON/RGM family or B-glycan can influence
binding by enhancing recruitment to the membrane sur-
face and, in the case of DRAGON, even influencing recep-
tor specificity [46]. Aside from the coreceptors, heparin
binding sites in some of the BMP ligands also change their
membrane localization, possibly forming a ligand species
that is not soluble as assumed but is rather, at least in part,
localized to the membrane even in a receptor-unbound
state.

To determine the receptor architecture present on cells in
vivo and to correlate the observation with the in vitro bind-
ing affinities, we additionally performed ligand-binding
assays to whole cells. Interestingly, if the ligand concentra-
tion is sufficiently high, the resulting binding curves sug-
gest the presence of two different receptor species on cell
surfaces. Using BMPR-IA transfected cells, high and low
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affinity binding sites whose binding affinities correlate
with the respective 1:2 and 1:1 interaction in vitro could be
identified for wild-type BMP2. We could estimate that
about 10% of the overall receptor sites represent high
affinity and about 90% the low affinity sites. By using a
heterodimeric BMP2 variant with only one functional
type 1 receptor epitope, we could confirm the presence
and the number of these low affinity sites. Correlating
these observations with our in vitro interaction analysis we
suggest that about 10% of the type I receptors are present
as preformed dimers, thereby binding BMPs with very
high affinity, whereas the majority of the BMP type I
receptors are present as isolated single binding sites on
cells.

For the BMP type II receptors the picture is similar.
Despite the exclusive detection of sites correlating in their
ligand binding affinities to the 1:2 interaction scheme, the
number of sites is much lower than expected from expres-
sion levels being comparable to those of BMPR-IA. We
suggest that due to the low binding affinities for the 1:1
BMP2:ActR-1IB interaction (approximately 3 uM, see table
2), significantly high levels of ligand specifically bound to
monomeric type II receptors cannot be achieved due to
increased unspecific interactions and solubility limitation
of the BMP ligands. These data nevertheless clearly show
that the receptor architectures on cells are heterogeneous
before ligand binding.

There are reports in the literature that preformed receptors
and single receptors (that are oligomerized by the ligand)
can address different signaling pathways, namely that pre-
formed receptors lead to induction of the SMAD pathway,
whereas ligand-induced receptor oligomerization leads to
activation of the p38 MAP kinase cascade [47]. We inves-
tigated the consequences of binding to the two different
receptor species by analyzing the induction of ALP expres-
sion and measuring SMAD phosphorylation. The concen-
tration for half-maximal ALP expression correlates with
the affinity determined for the 1:1 ligand:type I receptor
interaction. Furthermore the heterodimeric BMP2 variant
BMP2wt/L51P with only one functional type I receptor
epitope exhibits nearly the same half maximal effective
concentration (ECs,), strongly suggesting that ALP induc-
tion is mediated through single type I receptor sites rather
than through preformed type I receptor complexes. This
differs from SMAD phosphorylation, which requires sub-
nanomolar concentrations of BMP2. Thus the EC, of
early SMAD activation is close to the type I receptor affin-
ity measured for the 1:2 interaction scheme in vitro. With
increased incubation time, the EC5,values increase attain-
ing values between those of the affinities for the 1:1 and
1:2 ligand:type 1 receptor interactions. These results
strongly suggest that the low ligand concentrations
required for SMAD phosphorylation during short-term
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BMP2 exposure is likely mediated by preformed type 1
receptor dimers, which can bind BMP2 with very high
affinities in the subnanomolar range. During extended
exposure these preformed receptor dimers seem to disap-
pear, probably due to internalization, while monomeric
receptor chains predominantly remain at the cell surface.
These receptor monomers bind wtBMP2, as well as the
heteromeric wt/L51P variant with only one intact type I
receptor site, with a lower binding affinity, resulting in a
lower ECs, value. A constitutive endocytosis via clathrin-
coated pits, was reported for the type I receptor BMPR-IA
and BMPR-II, and also for BMPR-II, via caveola-like inter-
nalization [48]. It is, however, unknown whether the
internalized preformed receptor complexes reappear at
the cell surface as complexes that would thus reconstitute
high affinity sites, or if additional processes inhibit such
reappearance and thereby keep the ligand sensitivity low.
It also remains unclear, if other mechanisms such as
autoregulatory feedback loops trigger, for example, total
SMAD levels throughout the time the experiments take.

Our results utilizing BMP2 heterodimers with one ablated
receptor epitope also clearly suggest that only one type I
receptor is needed in the ligand:receptor complex to allow
signaling. In contrast, earlier studies showed that two type
II receptors are required for the formation of a signaling
competent complex. It remains questionable whether this
finding is the result of reduced type II receptor binding
affinities (that is, thermodynamically controlled) or
shorter half-lives of individual ternary complexes (that is,
kinetically controlled). However, the recruitment of the
type II receptors seems to be the limiting step in BMP2-
mediated signaling.

The remaining single type I receptor sites are still capable
of transducing signals via the SMAD pathway, but due to
their lower ligand affinities higher concentrations are
likely required. As shown by addition of dorsomorphin
and SB203580, a sustained activation of the type I recep-
tor resulting in both activated SMAD and MAP kinase
pathways is required for the induction of BMP-responsive
ALP gene expression. It is important to note that ALP is
not directly activated by either SMAD and/or the p38 MAP
kinase pathways, since cycloheximide abolishes BMP2
induced ALP mRNA synthesis [49]. It was demonstrated
that BMP2 controls ALP expression and osteoblast miner-
alization by a Wnt autocrine loop. Consequently, BMP2-
mediated ALP gene expression seems to depend only on
the quantity of type I receptors being activated by the lig-
and. Subsequent processes seem not to be limiting.

Conclusion

A comparison of our results obtained from in vitro interac-
tion analyses with binding studies performed on intact
cells provides new insights into the complexity of BMP/
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GDF receptor activation and its relevance for subsequent
signaling events. Our data clearly demonstrate the pres-
ence of distinct receptor arrangements on the cell surface,
contributing to distinct cellular responses. A minor subset
of receptors seems to be preformed and contains at least
two receptors of each subtype, allowing the assembly of
active signaling complexes at low ligand concentrations.
Whether this heterohexameric ligand:receptor arrange-
ment acts as a functional unit or is part of even higher
ordered cell surface structures remains undetermined.
However, the majority of activated BMP receptors on cell
surfaces mediating long-term signal transduction by
BMP2 most likely consist of the ligand, two type II recep-
tors but only one type I receptor chain. Such an assembly
also best explains the signaling capabilities of het-
erodimeric ligands such as BMP2/7. If only one anchoring
receptor can provide sufficient complex stability the
recruitment of a variety of low affinity receptor chains into
signaling complexes might be possible. Heterodimeric
receptor arrangements (that is, ActR-I and BMPR-IA) were
recently reported that were shown to be important for the
signaling of homodimeric ligands such as BMP2 and
BMP4 [50]. Thus, further analyses of ligand receptor inter-
actions, and the identification of residues determining
binding affinity and specificity of individual ligands to
their receptors, might allow the construction of new
homodimeric or heterodimeric ligand proteins with
unique signaling capabilities. Moreover, the data pre-
sented here indicate a much greater complexity in receptor
recruitment and activation, as well as in resulting down-
stream signaling events, than is typically appreciated for
the BMP receptor system. The presumed discrepancy
resulting from the disparity between ligand number and
available receptor molecules, compared to highly specific
biological functions addressed by the individual TGFf
family members, suggests that receptor complexes of
identical composition but formed by different ligands can
activate distinct signal cascades. This raises questions how
parameters such as the order of receptor recruitment,
complex lifetime, receptor stoichiometry, binding kinet-
ics, and subtle differences in ligand receptor architectures
can alter ligand specific signaling in quantity and/or qual-
ity. The data presented here provide a first glimpse of how
some of the aforementioned parameters influence signal-
ing by BMPs.

Methods

Expression and purification of receptor ECDs

The receptor ECDs of the type I receptors hActR-I (amino
acids 21 to 123 [51]), hActR-IB (amino acids 24 to 126
[51]), hBMPR-IA (amino acids 24 to 152 [51]) and
mBMPR-IB (amino acids 14 to 126 [52]), and of the type
I receptors hActR-1I (amino acids 18 to 135 [53]), mActR-
IIB (amino acids 19 to 128 [54]), and hBMPR-II (amino
acids 32 to 150 [13]) were expressed with a C-terminal
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thrombin cleavage site (LVPRGS) followed by a His,-tag
in baculoviral infected Sf9 insect cells as described previ-
ously [32]. After metal affinity chromatography (nickel-
nitrilotriacetic acid (Ni-NTA); Qiagen, Hilden, Germany)
the receptor proteins (BMPR-IA, BMPR-IB, and the type II
receptor ECDs) were further purified by affinity chroma-
tography using a BMP2 affinity resin as described [55].
Monomeric ECDs of Act-RI and ActR-IB were isolated by
anion exchange and subsequent RP-HPLC. The receptor
ectodomains of BMPR-IA, BMPR-IB, and ActR-IIB were
additionally prepared as thioredoxin fusion proteins in
Escherichia coli and purified as described previously [55].

Expression and purification of ligands

The mature part of hBMP2 (amino acids 283 to 396 plus
an N-terminal Met-Ala [55]) and GDF5 (amino acids 387
to 501 [56] plus a N-terminal Met-Lys) were expressed in
E. coli, isolated from inclusion bodies, renatured and puri-
fied as described previously [25]. Recombinant h-activin
A [57] with a His; tag and a thrombin cleavage site located
C-terminal of the furin cleavage site RXXR was expressed
in Sf9 insect cells. The non-glycosylated, biologically
active protein was isolated from the conditioned medium
by Ni-NTA chromatography, the His, tag was removed by
thrombin and the resulting protein was further purified
by anion exchange chromatography and RP-HPLC. CHO-
cell derived h-activin A and hBMP7 were purchased from
R&D Systems, Minneapolis, MN, USA.

Preparation of heteromeric BMP2 mutants

A sequence encoding for a thrombin cleavage site (TCS;
amino acids: LVPRGS) was introduced at a position four
amino acids N-terminal of the first conserved cysteine of
BMP2. Mutations for the amino acid exchanges L51P [33]
or A34D [32] were established by site directed mutagene-
sis. For the production of heterodimeric BMP2 mutants a
BMP2 variant with an altered N-terminal sequence
(MAPTSSSTKKTQLS) followed by a TCS site was prepared,
which exhibits a lower pI due to a smaller number of pos-
itively charged site chains. The heterodimeric BMP pro-
teins were produced and purified as described previously
[40]. Homodimeric and heterodimeric BMP2 variants
were enzymatically cleaved and the products purified by
RP-HPLC.

SPR measurements

A Biacore 2000 system (Biacore, GE Healthcare, Chalfont
St. Giles, GB) was used for all biosensor experiments.
Receptor ectodomains were N-biotinylated by incubation
with equimolar concentrations of sulfo-NHS-LC-biotin
(Pierce, Thermo Scientific, Rockford, IL, USA) as
described previously [58]. Ligands were biotinylated
using the same procedure but using a twofold molar
excess of sulfo-NHS-LC-biotin. Using these conditions the
majority of the molecules should statistically be bioti-

http://www.biomedcentral.com/1741-7007/7/59

nylated only at a single site leaving the majority of the
binding epitopes unaffected. Proteins (approximately 200
resonance units (RU)) were immobilized to streptavidin-
coated biosensor CM5 chips as described previously [25].
Interaction sensorgrams were recorded at a flow rate of 10
pl/min at 25°C. The association and dissociation times
were set to 5 min. After each data acquisition cycle the bio-
sensor chips were regenerated with 4 M MgCl, for 2 min.
The formation of ternary complexes was recorded as
described previously [59]. Briefly, ligands at 100 nM in
HBS500 buffer (10 mM HEPES, pH7.4, 500 mM NaCl,
3.4 mM ethylenediaminetetraacetic acid (EDTA), 0.005%
surfactant P20) were first perfused for 2 min at a flow rate
of 10 pl/min at 25°C over the biosensor surface coated
with the high affinity receptor chain followed by a 2 min
perfusion with 100 nM of the ligand plus 0 to 64 uM of
soluble receptor ectodomain proteins. After a 5 min disso-
ciation period, the chip was regenerated as described
above.

Evaluation of recorded sensorgrams

All apparent binding affinities were obtained using the
software BlAevaluation v. 2.2.4 (Biacore, GE Healthcare,
Chalfont St. Giles, GB). Affinities of 'slow' interactions
characterized by low values for the association rate k_,
(<10°M-1s1) and k¢ (<102s°1) were derived by fitting the
kinetic data to a 1:1 Langmuir binding model (K (kin))
since a dose-dependent equilibrium binding could not be
achieved at low analyte concentrations. To exclude the
effect of analyte rebinding, k., was evaluated only in the
very early section of the dissociation phase. The associa-
tion rate k,, was fitted in a section for the association
phase that shows a linear interdependence in the deriva-
tive In(abs(dy/dx)). (abs: absolute value; y: resonance
units (RU); x: time (s))

Since the data acquisition cannot be performed at sam-
pling rates greater than 2.5 Hz, the fitting of 'fast' interac-
tions with k,, and k g values exceeding 106 M-1s'! (for k)
and 10-2s! (for k,g) is not applicable due to low amounts
of data points in sections that are unbiased by mass trans-
port limitation or analyte rebinding. In these cases the
apparent binding affinities were determined from the
dose dependency of equilibrium binding (K (eq)). The
relative standard deviations for mean K, (eq) values are
below 25%. The evaluation of the dissociation rate kg
and the association rate k., revealed relative standard
deviations of <30% and <20%, respectively. Conse-
quently, the relative standard deviation of Kj (kin) is
below 50%. Differences in binding affinities of more than
a factor of two can therefore be considered as significant.

lodination of ligands
Ligand proteins were radiolabeled with 1251 using the
chloramine-T method as described previously [60]. All
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reactions were performed at room temperature using 100
pmol of ligand proteins and a twofold molar excess (200
pmol, 400 pCi) of Nal25I (GE Healthcare, Chalfont St.
Giles, GB) in a total volume of 20 pl. Labeled proteins
were purified by gel filtration using a Sephadex P6DG col-
umn (Bio-Rad, Hercules, CA, USA). Typically, 50% to
60% of 125] is incorporated resulting in proteins contain-
ing statistically one label with a specific activity of approx-
imately 2 pCi/pmol of ligand. The monoclonal anti-
BMPR-IA Fab fragment (AbyD) was radiolabeled using
1,3,4,6-tetrachloro-3,6-diphenylglycoluril (iodogen) as
described previously [61].

Radioligand binding assays

Transfected COS-7 cells were seeded in Dulbecco's modi-
fied Eagle medium (DMEM) medium containing 10%
fetal calf serum (FCS) into 24-well plates at a density of
7.5 x 104 cells per well. After 12 h of incubation at 37°C
and 5% CO, the cells were washed twice with serum-free
DMEM medium. Then, 300 pl of incubation medium
(DMEM without carbonate buffer, supplemented with 25
mM HEPES pH 7.5 and 0.1% bovine serum albumin
(BSA)) was added and the cells chilled down to 4°C. A
total of 300 pl of incubation medium containing radioac-
tively labeled ligand proteins at varying concentrations
was added and the cells were incubated for 3 h at 4°C.
Unspecific binding was determined by adding a 1,000-
fold molar excess of unlabeled ligand to the binding reac-
tion. After incubation the cells were washed three times
for 5 min at 4°C and incubated overnight at 4°C in 1 ml
of lysis buffer (20 mM HEPES pH 7.4, 1% Triton X-100,
10% glycerol, 0.1% BSA). An aliquot (800 pl) of each
lysate was analyzed using a y counter.

ALP assay

The promyoblast C2C12 cell line (ATCC CRL-172) was
cultivated in DMEM containing 10% FCS, 100 U/ml pen-
icillin G and 100 pg/ml streptomycin. ATDC-5 cells
(RIKEN, Ibaraki, Japan; RCB0565) were grown in DMEM/
Ham's F12 medium (1:1) containing the same antibiotics
but 5% FCS. The ALP assays were carried out in 96-well
microplates as described previously [25,32]. For inhibi-
tion of the SMAD and p38 MAP kinase pathway dorso-
morphin (Merck, Darmstadt, Germany) or SB203580
(Calbiochem, Merck, Darmstadt, Germany) was added at
the indicated timepoints.

SMAD phosphorylation

SMAD phosphorylation was analyzed in C2C12 cells.
Briefly, the cells were grown under serum starvation con-
ditions and ligand proteins were added at different con-
centrations. At given timepoints the cells were lysed and
70 pg of the lysate were analyzed by SDS-PAGE. SMAD-1
and pSMAD-1 were detected by western blotting using a
specific antibodies (Cell Signaling Technology, Danvers,
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MA, USA). The blots were quantitatively analyzed using
the software Image] (National Institute of Health,
Bethesda, MD, USA).
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Additional material

Additional file 1

Influence of ionic strength and pH on binding affinities. Bar diagrams
representing mean values of the binding affinities determined from
Biacore measurements for the interaction of bone morphogenic protein
(BMP)2 with the indicated immobilized receptor ectodomains (ECDs) at
different ionic strength (a) and pH value (b). The experiments were car-
ried out in duplicate using six different ligand concentrations.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-7-59-S1.eps|

Additional file 2

Sample trace of individual ligand receptor interactions. Binding of
bone morphogenic protein (BMP)7 at a concentration of 80 nM to immo-
bilized receptor ectodomains in absence or presence of 0.36% 3-[(3-chola-
midopropyl)dimethylammonio]-1-propanesulfonate (CHAPS).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-7-59-S2.eps]

Additional file 3

Binding kinetics of ligand receptor interactions. Examples of biosensor-
grams of the interactions of bone morphogenic protein (BMP)2 with BMP
receptor (BMPR)-IA and/or activin receptor (ActR)-1IB. At timepoint 0
the perfusion of the analyte with varying concentrations was initiated and
stopped after 300 s (a, b). Sections used for analyzing the kinetic rate con-
stants k,yand k,, are indicated by arrows (al). The evaluation of the K,
value from the dose dependence of equilibrium binding is shown as inset
(a2). Resonance units achieved in the binding equilibrium were plotted
against the used analyte concentrations and fitted to the Michaelis-
Menten equation yielding values for R,,,.and K, (eq). A ternary complex
was formed by perfusing immobilized BMPR-IA at timepoint 0 with 100
nM of BMP2 followed after 120 s by the perfusion with 100 nM of the
ligand plus the indicated concentrations of ActR-IIB (c). Sensorgrams
revealed two types of binding kinetics: A 'slow" kinetic typical for the
BMP2 type I receptor interaction (al, bl) and a 'fast' kinetic typical for
BMP2 type II receptor interactions (a2, b2). Both kinetics can be observed
during ternary complex formation (c).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1741-
7007-7-59-S3.eps]
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