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Abstract

Background: The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy
and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the
heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle,
heart and brain) is its distant relative, o-dystrobrevin. The o-dystrobrevin gene is subject to
complex transcriptional and post-transcriptional regulation, generating a substantial range of
isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The
choice of isoform is understood, amongst other things, to determine the stoichiometry of
syntrophins (and their ligands) in the dystrophin glycoprotein complex.

Results: VWe show here that, contrary to the literature, most o.-dystrobrevin genes, including that
of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly
enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression
pattern of human and mouse a.-dystrobrevin isoforms, and show that two major gene features (the
novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-
specific isoforms a-dystrobrevin-4 and -5) are present in most mammals but specifically ablated in
mouse and rat.

Conclusion: Lineage-specific mutations in the murids mean that the mouse brain has fewer than
half of the a-dystrobrevin isoforms found in the human brain. Our finding that there are likely to
be fundamental functional differences between the a-dystrobrevins (and therefore the dystrophin
glycoprotein complexes) of mice and humans raises questions about the current use of the mouse
as the principal model animal for studying Duchenne muscular dystrophy and other related
disorders, especially the neurological aspects thereof.

Background cytoskeletal proteins found throughout the

The

branches of a superfamily of membrane-associated

animal king-

dystrophins and dystrobrevins constitute two  dom [1]. While invertebrates have one member from each
class, the increased genomic complexity of vertebrates has
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conferred on them three paralogous members, namely
dystrophin [2], utrophin [3] and dystrophin-related pro-
tein 2 (DRP2) [4] in the dystrophin branch and a-, - and
y-dystrobrevin [1,5-9] in the dystrobrevin branch (y-dys-
trobrevin has been lost in tetrapods). Dystrophins and
dystrobrevins can heterodimerise to form the core of a
widely expressed membrane-bound complex, the dys-
trophin glycoprotein complex (DGC). Mutations which
disrupt the DGC cause numerous types of skeletal myop-
athy (including Duchenne muscular dystrophy, DMD) in
humans and mice [10,11]. The DGC is often considered
to function as a structural scaffold linking the extracellular
matrix to the intracellular cytoplasm, thereby helping to
resist the large mechanical forces experienced by contrac-
tile tissues. As well as resulting in progressive skeletal and
cardiac myopathy, however, DMD mutations are also
associated with substantial cognitive effects [12,13], sug-
gesting an important and poorly understood role for
DGCGCs in non-contractile tissues.

The heterodimerisation of dystrophins and dystrobrevins
is mediated by their C-terminal coiled-coil domains
[14,15], and it is generally assumed that all DGCs have a
dystrophin/dystrobrevin core (indeed, in the nematode,
for example, the null dys-1 and dyb-1 mutant phenotypes
are indistinguishable [16]). The vertebrate dystrobrevins
are expressed in a dynamic and complex way during
development [17-19], but disruption of the a-dystrobre-
vin gene in mouse results in a very mild skeletal and car-
diac myopathy with retention of the remainder of the
DGC (apart from neuronal nitric oxide synthase, nNOS)
and no evident central nervous system (CNS) defects [20].
This mouse model exhibits structural abnormalities of the
neuromuscular junction [21] (NMJ) reminiscent of those
caused by utrophin loss [22]. Disruption of the paralo-
gous B-dystrobrevin gene gives no noticeable phenotype,
but simultaneous ablation of both dystrobrevin genes
results in appreciable reduction of GABA,-containing syn-
apses on cerebellar Purkinje cells and a concomitant
motor defect [23]. This last study showed conclusively
that both dystrobrevins contribute to functionally impor-
tant DGCs in CNS GABAergic synapses [23] in a manner
similar to that of a-dystrobrevin in the NMJ, a cholinergic
synapse [21].

One of the functions of dystrophins and dystrobrevins in
the DGC seems to be to act as a platform for the recruit-
ment of members of the syntrophin family. The syn-
trophins are multifunctional adaptor proteins which
contain a postsynaptic density protein 95/discs large/
zonula occludens-1 (PDZ) domain, two pleckstrin
homology (PH) domains, and a C-terminal syntrophin-
unique (SU) region. Numerous candidate ligands for the
syntrophins have been identified, including nNOS [24],
voltage-gated sodium channels [25], syntrophin-associ-
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ated serine/threonine kinase (SAST) [26], diacylglycerol
kinase-{ [27], the lipid transporter ABCA1 [28], and
aquaporin-4 [29], all of which interact with the syn-
trophins' PDZ domain. The first PH domain is proposed
to be involved in an interaction with lipid headgroups at
the membrane [30,31]. The second PH domain and the
SU domain mediate interaction with the dystrophins and
dystrobrevins [32]. There are five vertebrate syntrophins
(al-, B1-, B2-, yl-and y2-syntrophins) [33-35], arising
from two invertebrate common orthologues, syntrophin-
1 (a/B-like) and syntrophin-2 (y-like) [36].

The syntrophin-binding sites (SBSs) on dystrophins and
dystrobrevins have been identified [37]. They appear to be
short, modular and largely a-helical motifs, of which
there are two (SBS1 and SBS2) in most dystrophin family
members (vertebrate or invertebrate). Invertebrate dystro-
brevins have a single SBS, but in vertebrates a tandem
duplication of the SBS-encoding exon has resulted in the
potential for two SBSs (again, SBS1 and SBS2) in all dys-
trobrevins except fish B-dystrobrevins [1]. It is striking that
the SBS-encoding exons of dystrophin and a- and B-dys-
trobrevin [37,38] are subject to alternative splicing, mean-
ing that syntrophin stoichiometry can be regulated, in
principle at least, from two to four syntrophin molecules
per DGC [37]. There is a suggestion from at least one
study, however, that not all SBSs are equal, and that there
is a degree of SBS-syntrophin specificity [39].

Almost all of our knowledge regarding the function of a-
dystrobrevin has been gleaned from the mouse; surpris-
ingly, apart from one isolated report of a dominantly
inherited heart phenotype [40], no human disease has yet
been associated with mutations in the a-dystrobrevin
gene. We report here the unexpected finding that most
tetrapod a-dystrobrevin genes (including human, but not
mouse or rat) have the potential to encode a third func-
tional SBS, SBS1'. Furthermore, we show explicitly that
the N-terminally truncated a-dystrobrevin isoforms 4 and
5, first described in human tissues [8] and rarely studied
since, are specifically ablated in the murids. We use this as
a starting point to compare the tissue-specific diversity of
human and mouse o-dystrobrevin transcripts, and show
that more than half of the usual mammalian a-dystrobre-
vin brain isoforms are non-existent in mouse.

Methods

Samples

Human tissue RNAs were purchased from Ambion (Aus-
tin, Texas, USA). Mouse RNA was extracted from tissues (a
gift from Dr Rebecca Oakey, King's College London, UK)
obtained from normal adult C57BL6-] mice killed by cer-
vical dislocation. A QIAGEN RNA extraction kit was used
according to the manufacturers' instructions (QIAGEN,
Hilden, North Rhine-Westphalia, Germany). The lamprey
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RNA was a kind gift from Dr Sebastian Shimeld (Univer-
sity of Oxford, UK). RNA was quantified using an RNA
Nano Chip on an Agilent 2100 Bioanalyser (Agilent Tech-
nologies, Santa Clara, California, USA).

Non- and semi-quantitative RT-PCR

Single-strand cDNA was synthesized from equal amounts
of total RNA using gene-specific primers (Additional file
1, Table S1 and S3) and M-MLV Reverse Transcriptase
(Applied Biosystems, Foster City, California, USA); ran-
dom hexamer primers were used for synthesis of cDNA for
endogenous controls. 2 Bl ¢cDNA was used for the first
round of nested polymerase chain reaction (PCR) using
coarse isoform-defining primer pairs (Additional file 1,
Tables S1 and S3). The first-round product was diluted
five-fold and was used as template for the second-round
PCR using fine isoform-defining primer pairs (Additional
file 1, Tables S2 and S4). All primer sequences and PCR
conditions are given in Additional File 1. A degree of
quantitation was achieved by stopping the second-round
PCR at 5-cycle intervals and electrophoresing the products
on ethidium bromide-stained agarose gels.

Quantitative RT-PCR

Human and mouse second-round nested reverse tran-
script-PCR (RT-PCR) products were cloned into pCR4-
TOPO (Invitrogen, Carlsbad, California, USA) and veri-
fied by sequencing. Plasmid preparations containing the
appropriate inserts were linearised using Ncol or Pmel
(New England Biolabs, Ipswich, Massachusetts, USA),
quantitated using a Nanodrop ND-1000 spectrophotom-
eter (Labtech International, Ringmer, East Sussex, UK),
and serially diluted. These were used as standards to allow
comparison between different amplimers. Coarse isoform-
defined first-round RT-PCR products were used as tem-
plates in a quantitative fine isoform-specific second round
PCR (see Additional File 1 for conditions) using SYBR
green detection in an ABI Prism 7000° Sequence Detection
System (ABI, Foster City, California, USA). For each
amplimer, measurements of threshold cycle (Ct) were
used to infer initial template copy number (in the com-
mon first-round PCR) when compared to Ct measure-
ments of the respective serially diluted standard. Each
datum plotted is the mean of three measurements, nor-
malised to 18S rRNA copy number to control for RNA
loading.

Yeast two-hybrid assay

The human a-dystrobrevin bait constructs comprise seg-
ments of human a-dystrobrevin cDNA inserted into the
Ncol/BamHI sites of vector pGBKT7 (Clontech, Mountain
View, California, USA). These consist of the last 12 codons
of exon 10, then either exon 11b (isoform b), exons 12
and 13 (isoform c), or neither (isoform a), followed by
exon 14 and the first seven codons of exon 15 (see Addi-
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tional file 2 for details). These wild-type constructs were
then mutated at one or both of the SBSs, using a muta-
genic PCR primer to introduce a leucine-to-proline muta-
tion. Wild-type and mutant pGBKI7-ADyb constructs
were co-transformed into AH109 host yeast cells with
either empty pGAD10 prey vector (as a negative control)
or a pGAD10 construct containing the entire rat f1-syn-
trophin coding sequence (as the experiment). Co-trans-
formed yeast was plated onto minimal media plates
lacking either leucine and tryptophan (LT-, as a control for
transformation efficiency) or adenine, histidine, leucine
and tryptophan (AHLT-, as a test for interaction). Only
yeast containing bait and prey constructs which encode
interacting proteins should grow on AHLT- plates. Co-
transformation of pGBKT7-p53 and pGAD7-T-antigen
(Clontech) was used as a positive control.

New GenBank accession numbers
[GenBank: FI535564], [GenBank: FI535565], [GenBank:
FI535566], [GenBank: FI535567]

Results

The vertebrate a-dystrobrevin gene has a complex gene
structure, with multiple promoters, alternative 3' exons
and alternatively spliced exons. Throughout this paper, we
will use the exon nomenclature described by Ambrose et
al. [41] and isoform nomenclature from Peters et al. [42].
The particularly complex central region of the gene is rep-
resented in Figures 1A and 1B - features include an alter-
native first exon in intron 7 (which initiates the N-
terminally truncated isoforms o-dystrobrevin-4 and -5)
[8], alternative splicing of exons 9, 12 and 13 [6,8], and an
alternative last exon (exon 11) whose use results in the C-
terminally truncated a-dystrobrevin isoform (c-dystro-
brevin-3) [8]. Exons 13 and 14 encode SBS1 and SBS2,
respectively, with exon 13 having arisen through duplica-
tion and divergence of the ancestral invertebrate exon 14.
We distinguish between coarse isoform variants (those
which differ at a gross structural level through the use of
alternative promoters or alternative last exons; indicated
by numerical isoforms 1-5) and fine isoform variants
(those which differ subtly through alternative internal
exon usage) - see Figure 1, right hand side.

Discovery of a novel -dystrobrevin coding exon

We were studying the genomic sequence of a-dystrobre-
vin genes in order to assess the conservation of exon 11,
with a view to identifying 3' untranslated regions for a
zebrafish expression study [17]. During this process, we
noted that most amniote a-dystrobrevin genes contained,
adjacent to exon 11, an unannotated patch of sequence
which was strongly conserved from human to chicken.
Closer examination revealed conserved consensus splice
sites and a strong resemblance of the encoded peptide to
those encoded by exons 13 and 14. We call this exon exon
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Comparison of a-dystrobrevin gene structure and isoforms in humans and mice. The central genomic DNA struc-
ture and observed transcript isoforms are shown for A) most tetrapods, including humans, and B) mice and rats. In each
instance, the partial genomic DNA structure (not to scale) is shown at the top, with the coarse isoforms (numbered as in
Peters et al. [42]) shown below. To the right are shown the fine isoforms generated by alternative splicing of the SBS-encoding
region, labelled from 'a' to 'c' according to the SBS content, and '+' or '-' according to whether tiny exon 9 is included. We sug-
gest an extension to the existing nomenclature system, such that, for example, a transcript starting with exon 7b and ending at
the polyadenylation site in intron 18, containing exon | Ib spliced to exon 14 and including exon 9, would be called 'a.-dystro-
brevin-5b+'. Red boxes - constitutive coding exons. Orange boxes - alternatively spliced coding regions. White boxes -
untranslated regions. Green boxes - encoded SBSs. Black crosses - exons disrupted in murids. Exon numbering according to
Ambrose et al. [41], apart from exons 7b and | Ib, which are described first here.

11b and its encoded SBS SBS1 (Figures 1A and 2A). The
immediate implication of this is that the a-dystrobrevin
gene has the potential to encode not two, but three SBSs.

Sequence characteristics, conservation and destruction of
exon | Ib

Exon 11b is observed in genomic sequences between
exons 10 and 12 of a-dystrobrevin genes from almost all
sequenced amniote genomes. Thus it is seen in most

mammals (including opossum and platypus), and in
chicken and anole lizard (Figure 2A). Although the
genomic a-dystrobrevin sequence of the amphibian Xeno-
pus tropicalis does not appear in the current build of the
genome, there is a candidate exon 11b sequence in the
NCBI trace archive. Exon 11b could not be found in tele-
ost (bony) fish a-dystrobrevin gene sequences, but tele-
osts have notoriously derived genomes and may have lost
exon 11b secondarily. No complete genomic sequence for
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Exon | 1b and exon 7b are highly conserved but disrupted in murids. A) The murid exon | Ib sequence has experi-
enced multiple catastrophic defects, including frameshifting deletions and mutation of acceptor (mouse), donor (rat) and lariat
branch (both species) sites. Red boxes - probable deleterious mutations. Yellow box - exon | Ib. Arrow - unusual pyrimidine at
+3 position. Broad taxonomy is shown at left; E - superorder Euarchontoglires; L - order Lagomorphia; R - order Rodentia; M
- family Muridae. B) Selected phylogeny of superorder Euarchontoglires (based on Huchon et al. [61]), showing species in
which exon 7b and exon | 1b are known to be intact (bold lines) or disrupted (faint lines). Red star indicates most parsimoni-
ous time of mutation of both elements. C) Disruption of murid exon 7b by retroviral insertion. The upper panel shows the
exon structure present in most mammals (to scale), while the lower shows that found in murids. Large horizontal arrow -
majority transcriptional start site observed in non-murid transcript sequences. Red cross - donor splice site mutation. Small

vertical arrows - murid-specific substitutions in exon 7. A detailed annotated alignment of this mammalian genomic region

appears in Additional file 3.

cartilaginous fish o-dystrobrevin is available, and
although the single lamprey dystrobrevin gene has a copy
of exon 13, there is a gap in the Petromyzon marinus
genome sequence between exons 10 and 12. Thus exon
11b is likely to be present in most amniotes, but may have
originated earlier (and may be present in amphibia and/
or cartilaginous fish). No obvious equivalent of exon 11b
is seen in vertebrate -dystrobrevin or fish y-dystrobrevin
genes.

The only mammalian genomes found to lack an intact
exon 11b sequence were the mouse (Mus musculus) and
rat (Rattus norvegicus), in which splice sites were mutated
(acceptor AG—GG in the mouse, donor GT—>GA in the
rat, and lariat branch site deleted in both species) and
multiple independent reading frame shifts (two in rat,
one in mouse) have occurred (Figure 2A). This, combined
with the fact that expression of a-dystrobrevin has been
most intensively studied in the mouse [43], probably

accounts for the historical failure to recognise exon 11b.
By contrast, the exon's reading frame and splice sites are
intact in other rodents (the guinea pig Cavia porcellus, the
squirrel Spermophilus tridecemlineatus and the kangaroo rat
Dipodomys ordii). As rats and mice form part of a mono-
phyletic group (family Muridae, subfamily Murinae)
within the order Rodentia, it seems that exon 11b func-
tion was specifically lost in a common ancestor of these
two species (Figure 2B).

Previous reports and GenBank entries have described two
main isoforms of a-dystrobrevin transcript in the SBS-
encoding region, namely those with one SBS (SBS2) in
which exon 10 is spliced directly onto exon 14, and those
with two SBSs (SBS1 and SBS2) which include exons 12
and 13 between exons 10 and 14. A BLASTn search for
human expressed sequence tags (ESTs) (in the EST data-
base, dbEST, Sept 2007 release) using an artificial com-
posite transcript sequence (exons 8-9-10-11b-12-13-14-
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15) revealed, surprisingly, many more sequences contain-
ing exon 11b than containing exon 12 and/or 13. Indeed,
of those ESTs which traverse exons 10 and 14, 10 out of
45 (22%) contain exon 11b; most of the remainder splice
exon 10 directly onto exon 14. Exons 12 and/or 13 are
only seen in two ESTs. Thus exon 11b usage in human tis-
sues seems to be significant.

Like the alternatively spliced exon 13 of all a- and B-dys-
trobrevin genes (and exon 78 of the dystrophin gene), but
unlike the constitutively spliced exon 13 of all y-dystro-
brevin genes, all exon 11b sequences examined have the
atypical pyrimidine at position +3 of the donor splice site
(Figure 2A). We have previously speculated [1] that this
sub-optimal donor splice site (base +3 is only a pyrimi-
dine in <4% of vertebrate splice sites [44]) might render
the cellular decision whether to include or exclude such
exons more sensitive to the presence of particular SR pro-
teins or other trans-acting factors [45].

Intron 7 ( -dystrobrevin-4 and -5) transcripts

When the human a-dystrobrevin gene was first described
over ten years ago [8], two N-terminally truncated iso-
forms, now known as oa-dystrobrevin-4 and -5, were
noted. These start from an isoform-specific first exon in
canonical intron 7. Strangely, despite their frequent repre-
sentation in a-dystrobrevin isoform diagrams, these iso-
forms have barely been studied since (their apparent
absence from mice is noted in passing by Peters et al.
[42]). We noted that a major difference between the
human and mouse dbEST content (in addition to the
absence of exon 11b in mouse) is the existence of large
numbers of human ESTs which commence in intron 7
(i.e. isoforms a-dystrobrevin-4 and -5); in contrast, no
mouse ESTs start in intron 7. This constitutes the major
difference between the EST profiles of the human and
mouse genes, and most other differences arise from this
skewing of the transcript population.

We decided to examine further the structure and preva-
lence of ESTs which start in intron 7. The vast majority (37
out of 50) of the human intron 7 ESTs start within a 30-
bp window about 25 bp 3' of exon 7, suggesting a rela-
tively tight transcriptional start site. Two of these are
derived from cap-trapped libraries, indicating a genuine
transcriptional start event rather than artifactual reverse
transcriptase stalling. In addition, eight clustered human
CAGE (cap analysis of gene expression) tags, which are
also cap-trapped, lie in this 30-bp region [46]http://
gerg01.gsc.riken.jp/cage/hgl 7prmtr/ (Additional file 3).
All informative ESTs used the same donor splice site, 317
bp after the end of exon 7. This builds a picture of the first
exon of the a-dystrobrevin-4 and -5 transcripts as a region
of 270-290 bp lying 25 bp downstream of exon 7 (Figure
2C, and Additional file 3). All ESTs using this exon are
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derived from libraries prepared from the brain or parts
thereof. We call this exon 'exon 7b'.

We found that dbEST (Oct 2007 release) contains, in
addition to these human ESTs, three exon 7b-containing
ESTs from chimpanzee (Pan troglodytes), one from the rhe-
sus macaque (Macaca mulatta) and three from cattle (Bos
taurus). All of these start very soon after exon 7 and then
splice onto exon 8 using the same donor splice site as the
human ESTs (Additional file 3). Like their human coun-
terparts, they all derive from brain cDNA libraries. Given
that there are similar proportions of exon 7b ESTs for
human (34 out of ~8 million) and cattle (3 out of ~1.5
million) but not for mouse (0 out of ~4.8 million), it
seems a safe assumption that transcription from this
region is ancestral in eutherian mammals but disrupted in
mice. A single opossum EST (EC290283) with the same
start site but using a distinct donor splice site suggests an
even earlier origin for this promoter. Chicken and frog
have potential donor splice sites but there is no database
evidence for their use.

Analysis of an alignment of the exon 7/exon 7b region
from a range of mammalian species shows the exon 7b
donor splice site to be conserved in most species (includ-
ing platypus, a monotreme, and to a certain extent,
chicken and lizard; Additional file 3). It is, however,
absent from the opossum (which uses an upstream
donor), and almost certainly compromised in mouse and
rat (where an insertion of an A residue, GTAAGT—G-
TAAAGT, means that it lacks the G+5 present in 84% of
mammalian splice sites[44]). The mouse and rat also
share a ~360-460-bp insertion of a representative of the
Mammalian Apparent LTR-Retrotransposon (MaLR) fam-
ily [47] (Figure 2C and Additional file 3). As is the case for
exon 11b, in the other available rodent genome sequences
(S. tridecemlineatus, C. porcellus, and D. ordii) the MaLR
insertion is absent and the donor splice site intact, sug-
gesting that loss of exon 7b function is murid-specific
(Figure 2B).

The site of the promoter itself is not obvious - we used
MultiTF http://multitf.dcode.org/ to search for transcrip-
tion factor binding sites (TFBSs) conserved between mam-
malian species known to express exon 7b transcripts. This
revealed conserved TFBSs only within exon 7 itself.
Indeed, although exon 7 is spectacularly highly conserved
(97% identical between human and elephant), it has
incurred four murid-specific subsitutions (vertical arrows
in Figure 2C, cyan boxes in Additional file 3), reducing
identity to only 92% between human and mouse. These
disrupt three otherwise absolutely conserved TFBSs (for
the transcription factors MSX1, MEIS1 and NF«B). The
candidate promoter contains no TATA box or CpG island.
We attempted amplification of mouse a-dystrobrevin-4
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and -5 transcripts from a range of tissues using primers
orthologous to those used in our human study (see
below), but these yielded no products.

Assessment of -dystrobrevin transcript diversity in human
tissues

We decided to use quantitative RT-PCR to assess the struc-
ture and representation of human a-dystrobrevin tran-
scripts in four major sites of expression, namely skeletal
muscle, heart, brain and colon. As a preliminary study we
devised a semi-quantitative RT-PCR method which aimed
to avoid several potential sources of bias (Additional file
1). Products were assessed for their approximate quantity
and sequence to ascertain their structure and thereby
broadly establish the transcript repertoire. These data
showed that exon 10 is spliced faithfully onto exon 11b in
a substantial proportion of brain transcripts, and that
exon 11b is generally followed by either exon 14 (in the
majority product [GenBank: F]535565]) or very rarely by
exon 12 (in the minority product [GenBank: FI535564]).
Exon 12 is almost always followed by exon 13, so that the
three main fine isoforms observed are (in descending
order of abundance) E10-E14, E10-E11b-E14, E10-E12-

A

[l Eo+isoforms
[] E9-isoforms
[] E9+/-isoforms
[] o-Dystrobrevin-3
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E13-E14. These isoforms contain one, two, and two SBSs,
respectively. We suggest a refinement of the nomenclature
to capture this complexity, namely that these three most
prevalent fine isoforms should be given the suffix a, b and
¢, respectively (Figure 1, right). All three of these fine iso-
forms were seen either with (in the minority) or without
(in the majority) the tiny 9-bp exon 9; we suggest that
these be indicated by the additional suffix '+' and '-,
respectively. Thus a transcript starting with exon 7b, end-
ing in intron 18, containing exon 9 and splicing E10-
E11b-E14 would be called 'a-dystrobrevin-5b+'.

Cloned products were used to generate dilution series as
standards for quantitative nested RT-PCR. The outer reac-
tions for this were deliberately chosen to be large, thereby
avoiding size-dependent bias due to SBS splicing. In order
to be able to ascribe SBS fine isoform splicing behaviour
to their cognate coarse isoforms, we used outer reactions
specific for the four relevant a-dystrobrevin coarse iso-
forms (Additional file 1, Tables S1 and S3) and inner reac-
tions specific for the fine isoforms (Additional file 1,
Tables S2 and S4). The relative quantities of all of these
isoforms are presented in Figure 3A. As negligible

B

Relative
abundance
Tissues,
“Fine” isoforms
“Coarse”
isoforms

a-Dyb

abc abc abc abc abc abc abc

sk. muscle brain heart colon sk. muscle brain heart colon
N J N J
Y Y
Human Mouse
Figure 3

Expression of o-dystrobrevin isoforms in human and mouse tissues. The relative expression of the discernable coarse
and fine isoforms in A) human and B) mouse heart, brain, skeletal muscle and colon, as determined by quantitative RT-PCR. As
indicated, horizontal axes show the tissues tested and the coarse and fine isoforms, while the vertical axis shows the relative
expression level in arbitrary units. For human tissues, presence and absence of exon 9 (+ and -) was also assessed; these are
shown as differently coloured portions of the bars. Asterisks in mouse indicate isoforms which while present in other mam-
mals, are non-existent in murids. For display purposes, brain a-dystrobrevin-la was used to normalise between species.
Although a-dystrobrevin-3 is not directly comparable to the other reactions, heart a-dystrobrevin-3 has been normalised to
brain a-dystrobrevin-la, an approximate equivalence that is evident in published northern blots.
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amounts of E10-E12-E14 and the potential three-SBS 'd'
isoform E10-E11b-E12-E13-E14 were observed, these are
omitted.

Notable features of this isoform map include: a) expres-
sion of a-dystrobrevin-4 and -5 is entirely brain-specific
(signal in brain is 3,000-12,000 times that in other tis-
sues) and constitutes ~25% of the total brain a-dystrobre-
vin; b) the novel 'b' form, which contains exon 11b,
makes up a fairly consistent 6% of isoforms in all tissues
(9% in brain, where it is the second most abundant fine
isoform); ¢) the canonical 'c' isoform seems to be largely
heart-specific (33% of isoforms), with less in muscle and
colon (14%, 7%) and very little in brain (3%); d) the
ratios between a-dystrobrevin-1 and -2 and between a-
dystrobrevin-4, -5 (i.e. the relative usage of the tyrosine-
phosphorylated C-terminus) are relatively consistent
between tissues, except for colon, where the C-terminus is
always retained; e) the tiny 9-bp exon 9 is included in
~40% of brain a-dystrobrevin-1a and a-dystrobrevin-2a,
but usually excluded elsewhere; f) a-dystrobrevin-3
expression is substantial in heart and brain.

Comparison with mouse and other animals

We repeated this process, using orthologous primers
where possible, in the cognate mouse tissues. The data are
presented in Figure 3B. The principal differences from the
human pattern are: a) absence of all 'b' isoforms as exon
11b is multiply disrupted (we did not attempt amplifica-
tion of this isoform); b) absence of dystrobrevin-4 and -5
as exon 7b is not used (we attempted amplification of this
isoform in all four tissues, but were unsuccessful); c) the
'c' isoform is the major fine isoform in skeletal muscle and
heart (86%, 75%), as opposed to the 'a' isoform, which
predominates in mouse brain and colon (98%, 97%) and
in all human tissues tested; d) unlike humans, a-dystro-
brevin-3 is highly expressed in mouse skeletal muscle.

The most distantly related organism to possess two dystro-
brevin SBSs is the lamprey (Petromyzon marinus), which
has sequences orthologous to exon 12 and exon 13 in its
genome. Those animals more divergent than the lamprey
(amphioxus, sea squirts and all other invertebrates) have
the single E14 SBS [1], while all those more closely related
to mammals (all vertebrates including cartilaginous fish)
have multiple paralogous dystrobrevins [1], each with two
or three SBSs. We used primers based on the P. marinus
sequence to amplify dystrobrevin transcripts from whole-
body RNA of the closely related species Lampetra planeri.
This gave a fairly equal mixture of two isoforms, corre-
sponding exactly to the mammalian 'a' and 'c' fine iso-
forms ([GenBank: FI535567] and [GenBank: FI535566],
respectively), showing that this pattern of alternative
splicing is ancient (Figure 4B). By comparison, our work
on zebrafish a-dystrobrevin shows that most transcripts
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contain E12 but not E13, and that inclusion of exon 9 is
rare [1]. Splicing of exon 10 to exon 14 (the 'a' form) was
not observed in zebrafish.

The novel SBS binds syntrophin

In order to assess whether exon 11b is likely to be able to
bind syntrophins, we compiled an alignment of represent-
ative known and suspected SBSs from vertebrate dystro-
brevins (Figure 4A), and generated sequence "logos" from
a range of tetrapod representatives of each category of SBS
using WebLogo [48]. Dystrobrevin exon 14, which
encodes SBS2, is extremely highly conserved across all
species, with a core SBS (an almost invariant 15-residue
LDEEHRLIARYAARL motif) set within an extended con-
served consensus. Exons 11b from a-dystrobrevins
(encoding SBS1') and exons 13 from a-, - and y-dystro-
brevins (encoding SBS1) each form their own conserved
clades with their own characteristic variants of the SBS
motif. Thus within the generalised consensus of LA+EHx-
LIxxYVxxL, B-dystrobrevin SBS1 have LADEHALIASY-
VARL, o-dystrobrevin SBS1 have LADEHVLIGLYVNML,
and o-dystrobrevin SBS1' have VAEEHSLIKLYVNQL.
Within each sequence family, this motif is virtually invar-
iant (Figure 4A). Phylogenetic analysis (data not shown)
places the amino acid sequence of SBS1' firmly within the
dystrobrevin SBSs, and specifically suggests that it arose
through a serial duplication of a-dystrobrevin SBS1 rather
than by a parallel independent duplication of SBS2. This
is confirmed by phylogenetic analysis of the encoding
exonic DNA sequences. A striking feature of SBS1', when
compared with all others, is the invariant presence of the
lysine residue at position 9. This position contains a small
amino acid (either alanine or glycine) in all other dystro-
brevin SBSs, suggesting that the introduction of the large,
positively charged lysine might have a substantial impact
on binding specificity.

To test whether the newly identified SBS1' encoded by
exon 11b can actually bind syntrophin, we generated a
series of a-dystrobrevin yeast two-hybrid (Y2H) con-
structs corresponding to each of the human one- or two-
SBS isoforms. We also generated mutants bearing leucine-
to-proline substitutions at position 7 in one or both SBSs
(arrow in Figure 4A; see Additional file 2 for details).
These were tested for their ability to interact with full-
length rat B1-syntrophin (encoded by a clone previously
identified from a Y2H screen using DRP2 as a bait [49]).
These experiments showed that, at least in the context of a
yeast nucleus, B1-syntrophin interacts robustly with all
three a-dystrobrevin SBSs, and that the leucine-to-proline
mutations ablate this interaction in each case (Figure 4C).
Critically, the b-isoform still interacts when a mutation
known to abrogate binding via SBS2 is introduced (com-
pare a¥ and a™ with b¥w and b¥m), and this interaction is
in turn abolished when an analogous mutation is intro-
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Figure 4

The exon | 1b encoded sequence is a functional SBS. A) Comparison of exon | 1b encoded protein sequence (contain-
ing SBS1') with those of other vertebrate SBS-encoding dystrobrevin exons. Vertical dotted lines delimit the |5-residue pan-
SBS consensus, and specific SBS consensus sequence logos are presented below the alignment. Arrow at top indicates the leu-
cine mutated to proline in the yeast two-hybrid constructs. B) Schematic diagram showing observed a.-dystrobrevin SBS iso-
form repertoires in various vertebrates. 'a*' is a one-SBS isoform seen in zebrafish, where the 'a' form is not observed. C)
Yeast two-hybrid analysis of the interactions between mutant and wildtype o.-dystrobrevin constructs and full-length Bl-syn-
trophin. Fine isoforms are shown as 'a', 'b', 'c', 'd"; mutant status of respective SBSs is shown as superscript 'w' (wild-type) or 'm'

(mutant) and by green and red boxes, respectlvely. Growth on AHLT- plates was scored as '

(100-1000) or '+++' (>1000).

-' (0-10 colonies), '+' (10-100), '++'

duced into SBS1' (compare b¥™ and bmm). Thus, in the
context of the Y2H system, exon 11b encodes a functional
SBS. Also, even in this relatively non-quantitative assay,
constructs with two intact SBSs resulted in substantially
higher growth than those with one (compare b*¥and c¥w
with other constructs), suggestive of the simultaneous
binding of multiple syntrophin molecules per dystrobre-
vin molecule, as expected [37].

Discussion
The most novel aspect of this study is the description of a
previously unrecognised third SBS (SBS1') encoded by the

o-dystrobrevin gene of most tetrapods. We assume that
the late recognition of a major novel coding exon in a
gene which has been intensely studied since its discovery
thirteen years ago [6,8] is due to the predominance of the
mouse as the model organism and the ablation of SBS1'-
encoding exon 11b in the murid lineage. An interesting
implication of the existence of two alternative two-SBS a-
dystrobrevin isoforms ('b' and 'c’, i.e. containing exons
10-11b-14 and 10-12-13-14) is that the regulation of a-
dystrobrevin SBS composition seems to be about more
than mere stoichiometry. Indeed this suggests that there is
substantial specificity of syntrophin-SBS interaction such
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that not only the stoichiometry, but also the flavour of the
DGC can be manipulated; this is consistent with a previ-
ous study of interactions between SBSs and the five verte-
brate syntrophins, which shows a certain degree of
binding specificity [39]. The typical vertebrate has eleven
SBSs, which fall into roughly seven distinct sequence
classes (Roberts, unpublished observations); within each
sequence class, idiosyncrasies have been strongly main-
tained over hundreds of millions of years (see sequence
logos at bottom of Figure 4A), suggesting that some sort
of functional specificity is to be expected. Only trace
amounts of a three-SBS 'd' isoform of a-dystrobrevin,
which would increase the potential stoichiometry of syn-
trophins up to five per DGC, were observed in the tissues
tested. It has to be said that although apparently strin-
gently regulated, the consequences of variable SBS and
syntrophin composition for DGC function remain far
from clear.

A second major aspect of this study is the conclusion that
brain-specific transcription commencing in intron 7 of
the o-dystrobrevin gene (using exon 7b), also first
described thirteen years ago [8], probably occurs in most
tetrapods, but not in mice. This transcription represents a
substantial proportion of all a-dystrobrevin transcription
in human brain, and should give rise to the severely N-ter-
minally truncated a-dystrobrevin-4 and -5 isoforms [8].
Translation is likely to start at the methionine 319 codon
in exon 8, a residue which is conserved in most a-dystro-
brevins. These brain-specific proteins would range in size
from 22 kDa for the shortest a-dystrobrevin-5 to 48 kDa
for the longest a-dystrobrevin-4 isoform. They would be
able to bind syntrophins and dystrophins, but would lack
the EF hands and ZZ domain. It is interesting that since
the first description of a-dystrobrevin-4 and -5 [8], and
despite their frequent depiction in diagrams in the litera-
ture, these isoforms have barely been studied. We
attribute this omission, like our ignorance of exon 11b, to
the predominance of mouse as a model organism.

The recent availability of several rodent genome
sequences has allowed us to refine the period during
which the simplification of the a-dystrobrevin gene
occurred. Both exon 11b and exon 7b are intactin S. tride-
cemlineatus, C. porcellus, and D. ordii but clearly disrupted
in M. musculus and R. norvegicus. Dating of the flanking
divergence events (M. musculus/R. norvegicus and
Muroidia/Geomyoidia) constrains these events to ~20-60
million years ago (Mya) [50]. Further constraint is possi-
ble in the case of exon 7b, which is also found to be dis-
rupted in the deer mouse Peromyscus maniculatus (exon
11b is missing from this animal's sequence trace archive).
The finding of this mutation in P. maniculatus, which is in
family Cricetidae, is the first indication that some non-
murid members of superfamily Muroidea (including
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hamsters and voles) are also highly likely to have a simpli-
fied a-dystrobrevin repertoire; it also narrows the muta-
tion events to ~30-60 Mya [50]. We are currently unable
to resolve the order of the two disruptions, and it is possi-
ble that they occurred in quick succession in common
response to a single ancestral change in brain-specific a-
dystrobrevin requirements.

Conclusion

A major consequence of our findings is the supposition
that of all mammals, mouse (and its relatives the rat and
hamster) is likely to be a particularly poor model in which
to study the function of both a-dystrobrevin and the DGC
in the nervous system. Although much emphasis has been
rightly placed on the effects of DGC disruption on skeletal
and cardiac muscle, many DMD patients have substantial
neurological problems, including learning difficulties
[12,13] (30% of DMD patients have an IQ<70, and in 6%,
1Q<50; this correlates strongly with mutation site, impli-
cating short dystrophin isoforms in cognitive function
[13]), congenital stationary night-blindness [51], defec-
tive colour vision [52] and a suggestion of personality dis-
orders [53-55]. In addition, a-dystrobrevin binds
dysbindin (also known as DTNBP1) [56], a protein whose
gene has been associated with schizophrenia and other
psychiatric disorders [57,58]. The brain is the major site of
a-dystrobrevin expression, a-dystrobrevin is the predom-
inant dystrophin partner in the brain, and a-dystrobrevin
coarse isoforms have been shown to be expressed in a
stringently cell-type-specific manner in the brain [59,60];
the absence from mouse of >50% of the brain a-dystro-
brevin isoforms means that the mouse brain DGCs are
highly atypical in composition.

Abbreviations

cDNA: complementary deoxyribonucleic acid; CNS: cen-
tral nervous system; DGC: dystrophin glycoprotein com-
plex;, DMD: Duchenne muscular dystrophy; DRP2:
dystrophin-related protein 2; EST: expressed sequence tag;
MaLR: mammalian apparent LTR-retrotransposon; Mya:
million years ago; NMJ: neuromuscular junction; nNOS:
neuronal nitric oxide synthase; PDZ: postsynaptic density
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