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during evolution of larval development in
echinoderms
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Abstract

Background: Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal
anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms
have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine
animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are
microscopic, feeding within the plankton until they metamorphose into their adult forms.

Results: We describe here the localization of 14 transcription factors within the ectoderm during early
embryogenesis in Patiria miniata, a sea star with an indirectly developing planktonic bipinnaria larva. We find that
the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that
we observe throughout the ectoderm generally corresponds to that of “head/anterior brain” patterning known for
hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that
aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in
retinal determination is absent from the ectoderm of these echinoderms and instead operates within the
mesoderm.

Conclusions: Our findings therefore extend, for the first time, evidence of a conserved axial pattering to
echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning
from “retinal specification” in echinoderm blastulae might reflect modular changes to a developmental gene
regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae.

Background
The astonishing diversity of animal forms, coupled with
the complex life histories typical of many marine inverte-
brates, presents numerous challenges in inferring the
ancestral character of members of the closely related
phyla collectively known as the deuterostomes. Modern
molecular phylogenies place four phyla within the mono-
phyletic deuterostomes: Echinodermata and Hemichor-
data comprise a distinct clade called the Ambulacraria
[1-3] that is a sister group to Chordata [4]. Xenoturbella
is a recent out-group addition to the Ambulacraria [5].
Within the Ambulacraria, the free-swimming, bilater-

ally symmetric larvae of echinoderms, especially the
bipinnaria larva of sea stars and the auricularia larva of

sea cucumbers, share many similarities with the tornaria
larva of indirectly developing hemichordates. These
microscopic larvae have an apical concentration of sero-
tonergic neurons [6] and one or two concentrations, or
bands, of cilia used to feed and swim in the plankton
[7,8]. Neurons lie beneath this ciliated epithelium and
innervate the bands [9]. Similarities in larval form initi-
ally provided the basis for many of the hypotheses sur-
rounding the evolutionary origins of the chordates and,
in particular, the centralized nervous system. These
hypotheses, in which a microscopic larval stage is
assumed ancestral to the entire deuterostome clade, pro-
pose that a centralized nervous system evolved from an
infolding of the larval ciliary bands [10-12].
Not all Ambulacrarians develop through a larval stage,

however, and recent comparisons of regulatory gene
expression have revealed that orthologs of many genes
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and signaling molecules involved in vertebrate neural
patterning are expressed in spatially restricted domains
along the anterior-posterior (AP) axis of the direct
developing vermiform hemichordate juvenile Saccoglos-
sus kowalevskii [13,14], a species that does not develop
via a tornaria larva. This general correspondence in AP
position of orthologs between the vertebrate and hemi-
chordate nervous systems implies some homology in
axial patterning. In addition, the broad ectodermal
expression of these genes in hemichordates suggests
that a diffuse panectodermal neural domain was the
ancestral state of the deuterostome nervous system and
that the centralization event occurred later within the
lineage leading to the chordates. These findings and
those of other researchers (reviewed in [15,16]) therefore
negate the need to invoke a ciliated ancestor for deuter-
ostomes as suggested by Garstang [10]. In addition, gen-
eral homologies in axial expression patterns between
vertebrates and direct developing protostomes have
been observed as well [17], suggesting that common pat-
terning mechanisms have been employed since the
radiation of Bilaterians. Indirect developing larval forms
have less obviously distinguished body axes and no
strong homology of axial patterning and, as a result,
appear derived and possibly secondarily simplified in
comparison.
Here we examine the expression of regulatory gene

orthologs that have known or suspected roles in pat-
terning the axial neuroectoderm of many protostome
and deuterostome embryos within the indirectly devel-
oping sea star, Patiria miniata (previously Asterina min-
iata), which forms a typical bipinnaria larva. We show
that these genes are expressed in diffuse concentric
ectodermal domains that pattern the early embryonic
axis. Furthermore, we observe in the sea star a general
correspondence of domains of orthologous gene expres-
sion to those found along the AP and dorsal-ventral
(DV) axis of direct developing deuterostomes. In addi-
tion, we detect expression of retinal determining gene
orthologs in the mesoderm of echinoderm larvae, but
not within the ectoderm of gastrulating embryos. We
discuss the role of this implied modularity of regulatory
patterning during evolution.

Results and discussion
Isolation of sea star transcription factors
P. miniata orthologs of regulatory genes that have
known or suspected roles in patterning the axial neu-
roectoderm of many protostome and deuterostome
embryos were isolated using a candidate gene approach.
Recombinants for the following seven genes that encode
homeodomain proteins were obtained: retinal homeobox
(rx), optix-like homeobox 3 (six3), gastrulation and
brain-specific homeobox (gbx), lim domain homeobox 2

(lhx2) and paired box homeobox 6 (pax6), as well as
members of the Nkx gene family, nk2.1 and nk1. We
also identified partial sequences of eyes absent (eya), the
ets family gene pea3, and two C2H2 zinc-finger genes,
zic and krupple-like factor 13 (klf13). The following four
winged-helix forkhead box genes were isolated: foxq2,
foxj1, foxd and foxg. A complete list of orthologs,
sequence lengths, and orthology of gene sequences is
provided in Additional file 1.

Animal-vegetal patterning of the sea star blastula
ectoderm
Sea star late blastulae have a morphologically distinct
animal-vegetal (AV) axis that is first readily observed
when elongation of cells at the vegetal pole results in a
noticeable thickening of epithelium termed the vegetal
plate [18]. During gastrulation, the vegetal plate invagi-
nates to produce the mesoderm and endoderm of the
larva, leaving the remaining animal epithelium as
ciliated ectoderm [18]. At this stage, no obvious mor-
phological differences in ectodermal cell type have been
observed, but we nonetheless reveal here a remarkable
complexity of regulatory states within the ectoderm
(summarized in Figure 1).
Transcripts of sea star regulatory genes are localized

throughout the animal ectoderm in overlapping con-
centric domains along the AV axis. Some of these tran-
scripts, such as those of zic, foxq2, rx and nk2.1, are
found only in the animal-most ectoderm (Figures 2A-
2D). Of these genes, zic appears to be most closely loca-
lized to the animal pole, while expression of foxq2 and rx
overlaps with zic, yet extends further. Transcripts of six3
and klf13 (Figures 2E and 2F) also are detected in the ani-
mal-most ectoderm of blastulae; however, they show a
still broader distribution. Although there is no clear cell
morphology that demarcates the boundary between the
animal ectoderm and the vegetal plate endomesoderm,
we observe a ring of nk1 expression above the vegetal
plate (Figure 2G) that partially overlaps with endoder-
mally localized gatae transcripts (Figure 2H). The nk1
expression domain therefore likely marks the vegetal-
most ectoderm of the blastula. foxj1 and pea3 (Figures 2I
and 2J) are expressed throughout the ectoderm.
Taken together, the spatial expression of these regula-

tory genes demonstrates that the ectoderm of the sea star
blastula is patterned along the AV axis in at least five
nested concentric domains (summarized in Figure 2K).

Regulatory gene expression within the ectoderm of the
ciliary bands and animal pole domain
During gastrulation, the ectoderm appears to undergo
very little morphological change other than the coales-
cence of cilia within two bands: a preoral ciliary band
that loops above the opening of the mouth and a postoral
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ciliary band that loops below it and around the aboral
surface at the “back” of the embryo (Figure 3A) [7,18].
Transcripts of several genes that were distributed broadly
throughout the ectoderm prior to gastrulation are later
expressed within the ectoderm of the ciliary bands of the

larva following gastrulation (for example, foxj1 and klf13
in Figures 3B-3E, pea3 as summarized in Figure 1 and as
previously reported for otx and hnf-6/onecut expression
[18,19]). At present, it is unclear if these patterns of
expression reflect a migration of ectodermal cells to the
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Figure 1 Comparison of orthologous neuroectodermal gene expression domains among the deuterostomes. (A-E) Indirectly developing
echinoderms. (F) Directly developing hemichordate. (G) Generalized vertebrate. Sea stars (Figures 1A-1C) and sea urchins (Figures 1D and 1E) are
viewed laterally; animal pole is up and oral side is right. Figures 1F and 1G are dorsal views; anterior is up. Genes are listed beside their cognate
expression domains. Vertical bars in Figures 1A, 1B, 1F and 1G approximate domain boundaries. The orange to yellow gradient in Figures 1A, 1F
and 1G reflects a general conservation of anterior (animal)-most axial patterning among the three phyla. (A) Nested, concentric expression
domains pattern the animal-vegetal (AV) axis of blastulae; asterisks denote previously reported expression [18,19]. (B) Concentric domains of zic,
foxq2, rx and six3 persist in gastrulae (orange to peach gradient); additional oral (for example, foxg, foxd and gbx; light orange) and aboral (for
example, lhx2; purple) domains are evident. Genes (left) are broadly expressed. (C) Expression in larval animal pole domain (orange to peach)
and/or ciliary bands (gold). (D) Sea urchin animal pole (orange and light orange), ciliary band (gold), aboral ectoderm (turquoise) and oral
ectoderm (foxg; gray) are molecularly distinct territories in blastulae. (E) Expression is maintained in gastrulae animal pole (orange) and ciliary
band (gold). (D and E) Pink circles represent skeletogenic mesoderm. See references [20,22,23,41-49]. (F) Orthologs expressed in hemichordate
anterior, middle and posterior body segments show corresponding expression in the vertebrate forebrain, midbrain and hindbrain, respectively;
data are summarized from Lowe et al. [13]. (G) Expression in generalized vertebrate centralized nervous system. F, forebrain; M, midbrain; R1-R8,
rhombomeres of hindbrain. zic [50]; pea3 [51]; hnf-6/onecut [52]; and tbr [53]; foxj1 [54]; hox genes [55]. See references [24] and [26-32].
Echinoderm gene names (quotations) are substituted for simplicity in Figures 1F and 1G.
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sites of the future ciliary bands or if there is another pat-
terning mechanism that restricts the earlier broad expres-
sion. Other transcripts are first detected at this stage
within the ectoderm on the oral side of the gastrula and
then later within the ciliary bands (for example, tran-
scripts of foxg, foxd and gbx; Figures 3F and 3G, 3H and
3I, and 3J and 3K, respectively). A two-probe whole
mount in situ hybridization (WMISH) of foxg and lhx2, a
gene localized to the aboral ectoderm, further highlights
the oral side restriction of foxg transcripts in the gastrula
(Figure 3).
The expression patterns at this later stage also show

that the regulatory state of the early larval ciliary bands
is heterogeneous, for example, nk2.1 and foxd are
expressed in part of the preoral ciliary band directly
above the mouth (Figures 3G and 3I, respectively), while
gbx and nk1 are localized to part of the postoral ciliary
band below the mouth (Figures 3K and 3L, respectively).
Therefore, while the regulatory state of the ciliary band
ectoderm can be defined by a suite of transcription fac-
tors (that is, klf13, foxj1, pea3, foxg, otx and hnf-6/one-
cut), they are further subdivided into pre- and postoral
regions on the basis of the localization of foxd, nk2.1,
nk1 and gbx.

Other transcripts that we detected within the ecto-
derm of the blastula remained within the animal ecto-
derm as gastrulation proceeded in what we define here
as the animal pole domain. Unlike sea urchins, the sea
star, P. miniata, does not appear to have a morphologi-
cally distinct animal pole domain at this stage. Tran-
scripts of foxq2, pax6 and pea3 (Figures 4A-4C) tightly
localize to the animal pole ectoderm, although their
vegetal boundaries do not exactly coincide. Transcripts
of zic, rx and six3 are expressed within the animal pole
domain as well, but even more vegetally throughout the
animal ectoderm (Figures 4D-4F). The vegetal boundary
of the animal pole domain therefore is not clearly
defined by regulatory gene expression. The preoral and
postoral ciliary bands run through the sea star animal
pole domain as demonstrated by a two-probe fluores-
cence in situ hybridization (FISH) using the ciliary band
marker, foxg, and the animal pole domain gene, pax6
(Figure 4G). Thus, despite its lack of morphological
regionalization, the animal pole has a distinct regulatory
state, as defined by foxq2, pax6, pea3, zic, rx and six3
expression, suggesting that it is a unique territory within
the sea star. It is not yet clear whether these genes
remain expressed in all cells of the sea star animal pole

Figure 2 Nested concentric expression domains pattern the axial ectoderm of sea star, P. miniata, blastulae. Embryos are oriented with
the animal pole up. (A-G) Whole mount in situ hybridization (WMISH). (A) zic, (B) foxq2, (C) rx, and (D) nk2.1 expression is restricted to the
animal-most ectoderm. Transcripts of (E) six3 and (F) klf13 are detected in the ectoderm and in the vegetal plate endomesoderm. Arrows in (E)
and (F) point to a clearing above the vegetal pole where no or few transcripts are detected. (G) nk1 transcripts are localized to a ring above the
vegetal pole. (H) The boundary between the vegetal-most ectoderm (nk1, red) and the endoderm (gatae, green) as visualized by fluorescence in
situ hybridization (FISH). Colocalization is in yellow. (I and J) WMISH. Transcripts of (I) foxj1 and (J) pea3 are detected throughout the entire
ectoderm. pea3 is weakly detected in the vegetal plate endomesoderm. Arrows in Figure 1J point to the limits of foxj1 expression. (K) Schematic
shows the patterns described above as five nested domains of expression along the AV axis. For simplicity, nk2.1 is grouped here with the
concentric domains of foxq2 and rx expression. Gene names are listed next to their cognate expression domains. Vertical bars approximate the
expression boundaries of associated genes. The color gradient spans the animal (orange) to vegetal (yellow) limits of the ectoderm.
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Figure 3 Heterogeneous regulatory patterning of the larval ciliary bands as visualized by WMISH. (A) Schematic describes the position of
the two larval ciliary bands (red) from oral (left) and lateral (right) views. A, anus; CB, ciliary band; M, mouth. (B-F) WMISH. Expression of (B and
C) foxj1 and (D and E) klf13 is initially broad throughout (B and D) the ectoderm of gastrulae, then later is restricted to (C and E) the larval
ciliary bands. Arrows in Figure 3B show the vegetal limits of foxj1 expression. Arrows in Figure 3D point to a clearing above the vegetal pole
where transcripts of klf13 were detected. klf13 transcripts are additionally detected in an ectodermal territory near the mouth (arrows in Figure
3E). (F) foxg is first expressed within two ectodermal domains on the oral side of gastrulae. (G) FISH of nk2.1 (green) and ciliary band marker foxg
(red) highlights nk2.1 expression in only the transverse preoral ciliary band. Colocalization is shown in yellow. (H-M) WMISH. foxd is expressed
within a single domain in (H) the oral side ectoderm of gastrulae and (I) in the transverse, preoral larval ciliary band. gbx is expressed in one
domain in (J) the oral side ectoderm in gastrulae and in (K) the transverse postoral larval ciliary band. (L) nk1 is expressed in the transverse
postoral ciliary band in the larva. (M) A two-probe WMISH shows lhx2 expression in a spotted pattern in the aboral ectoderm (arrows, left)
opposite of foxg expression (arrowheads, right). Embryos are oriented with the animal pole up and laterally, except in Figures 3E, 3G, 3I and 3K,
which are oral views. In lateral views, the oral side is to the right.
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domain during later stages of larval development or if
expression becomes refined to only subsets of cells
within this domain.

Comparisons of ectodermal patterning between sea
urchin and sea star embryos
At first inspection, the expression patterns of many
genes appear markedly different in the earlier blastula
stages of sea urchin and sea star embryos. The later
restrictions within the animal pole or ciliary bands are,
with some exceptions, more similar (Figure 1). We sug-
gest that the sea urchin embryo may simply undergo a
relatively more rapid specification of these territories,
with an associated loss of intermediate domains that we
observe in the sea star. Indeed, a careful examination of
expression patterns in sea urchin has recently shown
that the apical plate in sea urchin consists of at least
two regulatory domains: an inner animal pole domain

flanked by a ring of six3 expression [20]. These two
domains in the sea urchin hatched blastula may there-
fore represent a more apically compressed version of the
nested, concentric regulatory domains found in the sea
star blastula.
Some of the patterning differences between sea urchin

and sea star ectoderm also seem to account for the dif-
ferences observed in the localization of the pan-neuronal
marker, synaptotagmin-B [21]. For example, similar to
the patterns of gene expression that we describe here,
synaptotagmin-B is detected broadly throughout the
ectoderm of the sea star gastrula, but in the larva it is
found primarily in neurons associated with the ciliary
bands and animal pole [9]. In the sea urchin, however,
synaptotagmin-B is already localized to the animal pole
domain and the presumptive ciliary band by the gastrula
stage [9].
Although expression of many of the genes within the

ciliary bands of the sea star appears conserved in the sea
urchin, nk2.1 and foxd show clear differences in expres-
sion that may be associated with the evolutionary transi-
tion from a double looping of the ciliary band around
the body of the sea star bipinnaria and hemichordate
tornaria to a single looping of the ciliary band observed
in sea urchins. This single ciliary band in the sea urchin
develops at the junction between oral and aboral ecto-
derm. nk2.1 and foxd are expressed in part of the pre-
oral ciliary band of the oral hood of the sea star, while
sea urchin orthologs of these are found in the animal
plate ectoderm (compare Figures 1C-1E). Interestingly,
both of these genes in sea urchin appear enriched on
the oral side of the embryos [22,23]. Thus, we speculate
that the preoral ciliary band may have been compressed
into the oral-side animal plate territory in sea urchins
and that this region within the sea urchin may therefore
constitute a different territory than the remaining ani-
mal plate.

Conservation of anterior (animal)-most regulatory
patterning with other deuterostomes
Comparisons of the regulatory gene expression patterns
that we observed in these indirectly developing sea star
embryos with those known in directly developing bilater-
ians illuminate additional surprising patterns of conserva-
tion. We observe a general mapping of gene expression
patterns along body axes (compare Figures 1A-1C with
Figures 1F-1G). For instance, in the sea star, foxq2, rx,
pax6 and six3 orthologs are apically expressed within the
ectoderm. foxq2 expression in the amphioxus, a basal
chordate, is restricted to the anterior-most end of the
embryo [24]. Orthologs of rx and pax6 are expressed in
the anterior-most neuroectoderm in the hemichordate
Saccoglossus [13], and they also pattern the anteriorly
localized eye primordium in vertebrates [25,26]. The
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zic rx
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pax6foxq2

(d) (e)

(g)

(b)(a)

pea3
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Figure 4 Gene expression molecularly defines the animal pole
domain in the sea star. Embryos are shown laterally, with the
animal pole up and oral side to the right. (A-F) WMISH. Expression
of (A) foxq2, (B) pax6, (C) pea3, (D) zic, (E) rx and (F) six3 within the
apical-most ectoderm defines the animal pole domain within late
gastrulae (Figures 4A, 4D and 4F) and early larvae (Figures 4B, 4C
and 4E). The vegetal limits of this domain are variable (see dotted
lines in Figures 4E and 4F). Transcripts of pea3 additionally localize
within the ectoderm of the larval ciliary bands (arrows in Figure 4C).
pax6 expression in mesodermally derived coelom (arrow in Figure
4B). (G) FISH demonstrates that the ciliary bands, as marked by foxg
(red), run through the ectoderm of the animal pole domain, as
marked by pax6 (green). Colocalization is shown in yellow.
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Drosophila rx ortholog is required for brain development
[27]. Orthologs of six3 and otx are expressed in anterior
neuroectoderm in members of all three deuterostome
phyla [13,28,29]. The most vegetal ectoderm in sea stars
is characterized by the presence of nk1 and gbx tran-
scripts. In vertebrates, a gbx ortholog establishes the mid-
brain-hindbrain boundary [30]. The zebrafish ortholog of
nk1, sax2, is expressed within the midbrain-hindbrain
boundary as well, although its expression is not exclusive
to this territory [31]. Expression of nk1 and gbx in sea
stars, and possibly sea urchins, marks the vegetal (poster-
ior)-most ectoderm.
There is some evidence of additional conservation

between the DV and oral-aboral axes as well. The mouse
ortholog of nk2.1 (nkx2.1) is involved in the formation of
motor neurons in the ventral telencephalon [32]. Sacco-
glossus nk2.1 orthologs also show a ventral bias in expres-
sion [13]. Furthermore, foxg plays a role in ventral
forebrain development, while lhx2 specifies dorsal telence-
phalic fates [32]. We similarly show that expression of sea
star orthologs of foxg and nk2.1 is restricted to the oral
(ventral) ectoderm, while lhx2 orthologs are expressed
within the aboral (dorsal) ectoderm (Figure 1B).
While in these comparisons we do not intend to con-

vey a tight homology in gene expression patterns across
deuterostome phyla, we predict that similarities in the
overall patterning are an ancestral innovation and per-
haps evidence of maintenance of some elements of a
developmental gene regulatory network (GRN) inherited
from a common ancestor. Conservation, however, is not
maintained for orthologs of genes expressed within
regions posterior to the midbrain-hindbrain boundary in
chordates and hemichordates as nk1 marks the vegetal-
most ectoderm. Also, the overlapping expression of hox
gene orthologs needed to pattern the posterior of many
embryos are found only later in echinoderm develop-
ment within the mesoderm of the rudiment [33].

Separation of “retinal” from “anterior neural” regulatory
patterning
Vertebrate orthologs of transcription factors such as
pax6, six3 and rx play known roles in pattering and spe-
cifying anterior vertebrate sensory systems, most notably
the eyes [25,26,34]. Furthermore, orthologs of pax6, the
six gene family members and eya operate in a similar
gene network for retinal determination in both verte-
brates and Drosophila (as reviewed in [35]).
Having established that orthologs of many regulatory

genes involved in anterior neural specification are also
expressed within the anterior ectoderm of sea star
embryos, we sought to determine if orthologs of tran-
scription factors involved within the retinal determina-
tion network are also expressed within echinoderm
embryos.

We have already shown that the sea star pax6 ortholog
is expressed within the animal pole domain (Figure 4B),
although it is not expressed within the ectoderm of the
sea urchin embryo (Figure 5). Transcripts of both pax6
and eya in both sea urchins and sea stars, however, are
detected in the mesoderm of midgastrulae and then
more prominently in one mesodermally derived coelom
in late gastrulae (Figures 5A-5D and Figures 5G-5L).
While we were unable to obtain a six1.2 ortholog from
the sea star, this gene is expressed also within the meso-
dermal coelom in the sea urchin (Figures 5E and 5F).
In the sea urchin, expression of two members of the

light-sensing rhodopsin family of G-coupled protein
receptors, opsin1 and opsin4, has been shown as early as
1 week [36]. We were unable to obtain sea star opsin
sequences; however, we confirmed the expression of
opsin1 and opsin4 1-week-old sea urchin larvae (Figures
5M and 5N). The morphology of the late larval sea
urchin embryos makes it difficult to decipher the precise
location of these transcripts within the embryo. We
therefore sought to determine if opsins collocalize with
eya, which we show is expressed likely within one or
both coeloms (depending on developmental timing) in
1-week-old larvae (Figure 5O). Using a two-probe FISH,
we observe that transcripts of opsin1 colocalized with
those of eya in 1-week-old sea urchin larvae (Figures 5P-
5R). Expression of retinal determination orthologs within
the mesoderm of gastrulae and larvae allow for the possi-
bility that these genes operate within a common GRN.
The tightly coupled GRNs for anterior neural and

visual sensory structures that are found in vertebrates
and also in invertebrates, such as Drosophila, therefore
are spatially separated in echinoderms. The presence of
gene transcripts of pax6, rx and six3, but not, for exam-
ple, eya, within the animal ectoderm of sea star bipin-
naria larva may indicate a partial retention of an
ancestral retinal determination network that once oper-
ated within this embryonic territory. This might also
explain the absence of apically localized rhabdomeric
eyespots, which are characteristic of the indirectly devel-
oping tornaria larvae of some hemichordates but were
likely lost in the echinoderm lineage [16].

Conclusions
Inferring ancestral states
The detailed expression analyses reported here support
the hypothesis that indirectly developing planktonic
echinoderm embryos likely utilize ancient regulatory
mechanisms for various anterior neuroectodermal and/
or sensory developmental processes that are potentially
conserved throughout the Bilateria. Compared to verte-
brates and well-studied protostome model organisms
such as Drosophila, however, echinoderm embryos sepa-
rate the deployment of these subcircuits in space and/or
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time. Thus, echinoderm embryos may have conserved
sets of genetic regulatory relationships for “head/anterior
brain” within the ectoderm of the early blastula and
others for “retinal determination” within the mesoder-
mal coelom of the gastrula.
Much of the difficulty in inferring the ancestral state

of the deuterostomes and the mysteries of the origin of
the phylum to which we belong arises from the com-
plex life histories found within extant lineages [37].
Given the conservation of complex sensory and AP
patterning between protostomes such as Drosophila

and vertebrates, the parsimonious explanation is that
ancestral developmental regulatory interactions, per-
haps even entire GRN subcircuits, have been
uncoupled along the lineage of echinoderms, possibly
coincident with a simplification in early development.
However, until a greater breath of taxa have resolved
GRNs, we cannot know the flexibility with which mod-
ular subcircuits can be deployed during evolution of
alternative body plans or if intercalation of GRN sub-
circuits occurs independently or coincident with an
increase in complexity.
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Methods
Sea star and sea urchin embryo culture and
characterization of gene expression
P. miniata embryos, previously named Asterina miniata,
and Strongylocentrotus purpuratus embryos were cul-
tured as described previously [18,38]. Partial gene
sequences were obtained via screening a 3-day-old (late-
gastrula stage) P. miniata arrayed cDNA library using
S. purpuratus sequence-specific probes and low strin-
gency conditions as previously described [39]. Whole
mount in situ hybridization (WMISH) was performed as
described previously [18].

Two-color FISH
WMISH was performed essentially as described by Hin-
man et al. [18], with modifications to detect riboprobes
using fluorescence as described by Denkers et al. [40].
In brief, both digoxygenin (DIG) and 2,4-dinitrophenol
(DNP) labeled riboprobes were used. Hybridized probes
were detected using anti-DIG antibody (1:2,000; Roche:
Indianapolis, IN, USA) and anti-DNP antibody (1:1,000;
PerkinElmer: Chicago, IL, USA), both conjugated to
horseradish peroxidase, and the Tyramide Signal Ampli-
fication (TSA) Plus Fluorescence Systems Kit (PerkinEl-
mer). A CyIII- or fluorescein-labeled tyramide was
deposited near the in situ riboprobe in a reaction cata-
lyzed by horseradish peroxidase, allowing for fluores-
cence detection of DIG- and DNP-labeled riboprobes.

Additional material

Additional file 1: Table 1. List of sea star, P. miniata, orthologs and
orthology of gene sequences.
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