
Modeling for biologists?
In his essay ‘Can a biologist fix a radio?’ molecular 
biologist Yuri Lazebnik highlighted the absurdity of some 
kinds of informal reasoning that pervade biology, and 
called for the development of biologist-accessible (if not 
exactly friendly) languages to promote more formal 
approaches to reasoning about and prediction of the 
behavior of molecular networks inside cells [1]. Although 
he suggested that the rise of systems biology might force 
biologists to change quickly, it is still a safe bet nearly a 
decade later that most experimental biologists are 
unlikely to be familiar with modeling and related software 
tools, let alone using them. This is despite the rapid rise 
of genomics and bioinformatics that has made the use of 
bioinformatics tools, such as BLAST, an essential part of 
training and practice.

I think that the development of rule-based modeling 
languages and tools, such as BioNetGen [2] and Kappa 
[3], in recent years represents a near-fulfillment of Lazeb-
nik’s vision of precise formal modeling languages for 

biology, at least at the molecular level. Modeling of 
biochemical networks is plagued by the problem of 
combinatorial complexity, which is the explosion in the 
number of possible species and reactions that may occur 
among molecules that have multiple components [4]. In 
conventional approaches to modeling reaction kinetics, 
such as ordinary differential equations, each species and 
reaction must be explicitly represented in the model - 
either entered into a file or drawn with a computer pro-
gram. The basic building blocks of a rule-based model, on 
the other hand, are structured objects or graphs. Various 
types of graphs are used and the general term ‘site graph’ 
has been proposed to refer to them [5]. In a site graph, 
vertices represent material components of proteins, such 
as sites of binding and chemical modification. Rules, 
which are composed of site graphs, describe interactions 
among components in a precise way (Figure 1). Because 
the rule-based modeling approach is based on a graphical 
formalism, it is easy to visualize models and link formal 
model elements to the material components being repre-
sented (Figure 1a) [6]. The domains and motifs of a 
signal ing protein correspond to vertices of a site graph, 
which provides a representation of the protein analagous 
to the graphs used to represent atomic structures in 
chemistry. Rules describe the interactions among model 
elements referring only to the sites that are involved and 
without reference to sites that are not (Figure 1b). This is 
similar to the way reactions are described in organic 
chemistry, where the parts of a molecule that do not 
participate in a reaction are left unspecified [5]. Combi-
na torial complexity can thus be avoided in the specifi-
cation of a model as long as most interactions are local, 
that is, they involve only a few of the possible sites of the 
interacting molecules, which is a reasonable assumption 
based on current knowledge.

Because of the development of general-purpose rule-
based languages and simulators, it is now possible to 
construct biochemical models of an arbitrary number of 
network components at a high level of resolution and to 
simulate the model in a reasonable amount of time on a 
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desktop computer [3,7,8]. Many challenges remain, not 
the least of which are making the tools more accessible to 
bench biologists and, perhaps more important, fostering 
a culture in which modeling is more commonly used as a 
reasoning aid. In the near future I envision that biologists 
will be able to construct models using tools very similar 
to those that are used to search the literature and online 
knowledge bases, and they will be able to use these 
models to predict the outcome of possible experiments 
and to gain insight into the possible mechanism through 
which the predicted effect may arise. Even researchers 

with limited mathematical or computational experience 
should be able to engage fully in the productive cycle of 
experimentation followed by modeling followed by 
further experimentation.

To summarize up to this point, rule-based modeling 
now provides a scalable way to model the complex 
molecular biochemistry that is employed by cells to 
process information. Incorporating such models into 
every day study of signaling systems could have a pro-
found impact on molecular biology. So far, however, I 
have considered only what goes on inside cells when they 

Figure 1. Rule-based model of early signaling events mediated by the epidermal growth factor receptor (EGFR). (a) Global view of the 
model with an Extended Contact Map (ECM) (see [7] for more detailed explanation of the notation), which shows protein components - catalytic 
domains and sites of binding and postranslational modification - and their interactions. (b) Translation of one interaction (shown in red) from the 
ECM into a reaction rule in a rule-based model. The rule indicates that a specific tyrosine residue on EGFR (Y1048) must be phosphorylated in order 
for GRB2 to bind through its SH2 domain. The absence of other components in the rule indicates that the rate of binding is not affected by the 
status of other components of either protein - in other words, this rule neglects cooperative or allosteric effects.
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are treated as well-mixed chemical bags, and not their 
internal organization or how they interact with each 
other, which of course is fundamental to biology. Further-
more, a fundamental challenge in biology, to understand 
the genetic basis of phenotype, requires coupling 
predictive models of intracellular biochemistry with 
models of higher levels of organization - cells, tissues, 
organs, and so on - in a bi-directional way. Since its 
inception, however, systems biology has been more 
oriented toward the molecular, intracellular level, which 
is reflected in the fact that most of the modeling tools 
that have been developed are aimed at the development 
of chemical network models and do not provide 
capabilities for constructing models that span multiple 
levels of resolution. For example, standardized exchange 
formats for systems biology models, such as Systems 
Biology Markup Language (SBML) [9], do not readily 
support such embedding.

‘Leveling up’
Maus et al. [10] have addressed a growing need for 
model ing tools that span multiple biological levels of 
organization by developing a multi-level rule-based 
language, called ML-Rules. As in other rule-based lan-
guages, structured objects represent proteins and their 
components, but they may also represent higher levels of 
organization, such as organelles and cells. The key 
extension in comparison to other rule-based languages is 
that objects may contain collections of other objects, and 
this embedding relationship can affect the behavior of 
both container and contents (Figure  2). For example, a 
cell may contain a collection of molecules representing 
the regulatory components of the cell cycle (Figure  2a), 
and progression of the cell through the cell cycle can be 
coupled to the collective properties of the cell cycle 
network, that is, the level of active maturation promoting 
factor (MPF) (Figure  2b). This is an example of upward 
causation, in which properties of the lower level 
components affect the behavior of the higher level. In the 
other direction, properties of the cell, such as its volume, 
can affect the reaction rates of the enclosed network 
(Figure 2c). This is an example of downward causation.

Both forms of causation may be concisely represented 
in ML-Rules (Figure 2b,c), allowing for the specification 
of multi-level models. For example, a population of 
interacting cells may be modeled as a collection of cells, 
each of which contains a collection of molecules that 
interact via globally defined rules. The movement, growth, 
and division of cells may be defined by rules that act at 
the cell level, whereas binding, uptake, and secretion of 
molecules may be defined by rules that span the cell and 
molecular levels. The description of the intracellular level 
could be further refined by inclusion of such processes as 
endocytosis and nuclear import/export, which would 

also require additional levels of representation for endo-
somes, nucleus, and so on.

ML-Rules is the first fully implemented rule-based 
model ing language that has been described in the litera-
ture and is capable of integrating detailed molecular bio-
chemistry into multi-level models. The hierarchical 
repre sentation used in ML-Rules is related to a more 
general formulation called reactive bigraphs, which also 
uses a nested object hierarchy and reaction rules to 
represent the interactions that can take place in a 
complex network [11]. Several biological languages based 

Figure 2. Multi-level rule-based model of yeast cell cycle 
regulation (after [10]). (a) Nested view of the model structure. The 
world node contains a population of cells, each of which has two 
attributes, volume and cell cycle state. Stacking of boxes representing 
each entity indicates a variable number of instances. Each cell 
contains a population of molecules that comprise the biochemical 
components of the cell cycle. (b) Upward causation - components of 
the molecular layer influence dynamics of the cell layer. The number 
of MPF molecules in the I state (for ‘inactive’) controls the passage 
from G1 to S. The formula beneath the arrow must be true in order 
for the rule to fire. (c) Downward causation - the state of the cell 
influences the rate of a biochemical transformation of contained 
molecules.
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on reactive bigraphs have been proposed (for example, 
[12]), but software implementations have so far not been 
presented.

There are, however, other general-purpose tools 
available for the integration of rule-based biochemistry, 
as described above, into multi-level models (for example, 
[13,14]). These tools use different mathematical and 
computational models to describe the dynamics at each 
level of the system, and can in this sense be termed 
‘heterogeneous’. Of these, the most accessible for a 
general audience is probably the Simmune platform, 
which has a graphical interface that integrates all stages 
of modeling from model construction to data analysis 
and allows embedding of rule-based biochemical descrip-
tions into cellular agents [14]. There are also other 
general purpose tools for multi-level modeling; an 
example is CompuCell3D [15], which allows reaction 
networks described in SBML to be embedded in cellular 
simulations of varying sophistication but cannot yet 
handle rule-based specifications of the biochemistry.

The cell cycle example presented by Maus et al. could 
probably be implemented in each of the heterogeneous 
tools mentioned, as well as others. Each of these imple-
mentations, however, would likely be more difficult to 
understand and less flexible than the corresponding ML-
Rules implementation because of the lack of a unifying 
language and adherence to a pre-defined level hierarchy. 
In most of the current frameworks, models are specified 
in the form of plain-text files and/or high-level program 
code in languages such as Python and C++. The 
embedding of levels is either fixed or achieved through 
calls to specific functions in a programming library. ML-
Rules, on the other hand, provides a formal biological 
language for expressing all parts of the model. The 
number of levels and the physical model for simulating 
each level can be achieved by refactoring the rules.

The flexibility of ML-Rules does come with a cost, 
however. Describing higher-level processes such as cell 
division with rules requires some sophistication on the 
part of the modeler; it is not simply a matter of translating 
knowledge about a specific molecular interaction into a 
rule. Such barriers could be overcome by defining rule 
templates that a modeler can use for specific types of 
behavior and creating libraries, but it remains to be seen 
whether the heterogeneous approaches mentioned above 
or the unified approach taken by ML-Rules provide a 
better basis for the development of intuitive modeling 
tools for the biologist. Simulation efficiency is also an 
issue that needs to be addressed before more realistic 
applications are possible. The stochastic simulation algo-
rithm implemented in the current version of ML-Rules is 
limited to relatively small populations of cells. Although 
no direct performance comparisons have been carried 
out, heterogeneous simulators, which usually have highly 

optimized simulators, are probably capable of performing 
much larger-scale simulations on the same system.

In search of the Killer App
What is needed for dynamical systems modeling of the 
type enabled by tools discussed here to take off among 
experimental biologists? Lowering the barrier to using 
tools and to using existing knowledge to create models is 
clearly a key requirement. At the level of molecular bio-
chemistry, rule-based modeling represents a key concep-
tual advance, although much work needs to be done to 
make it more broadly accessible. Languages for describ-
ing multi-level models are going to take more work and 
time because of the inherent complexity of the challenge, 
in terms of both representation and simulation. Finding 
the right balance of flexiblity and simplicity is difficult.

What is probably more critical for wider adoption, 
however, is the demonstration that these types of models 
can lead to new discoveries that could not otherwise be 
made - a ‘Killer App’. It could take the form of a model 
that a large community of biologists adopts for the study 
of a specific system - for example, yeast pheremone 
signaling, cell cyle, or bacterial chemotaxis. Such an 
example could be instrumental in convincing biologists 
to make rule-based modeling part of their standard tool-
kit for fixing radios.
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