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Q&A: Understanding the composition of

behavior

Sandeep Robert Datta

Abstract

Understanding the brain requires understanding
behavior. New machine vision and learning techniques
are poised to revolutionize our ability to analyze
behaviors exhibited by animals in the laboratory. Here
we describe one such method, Motion Sequencing
(MoSeq), which combines three-dimensional (3D)
imaging with unsupervised machine learning
techniques to identify the syllables and grammar that
comprise mouse body language. This Q&A situates
MoSeq within the array of novel methods currently
being developed for behavioral analysis, enumerates its
relative strengths and weaknesses, and describes its
future trajectory.

Why do we need new methods to analyze the
behavior of animals in the lab?

We have long had powerful tools to condition ani-
mals and to measure their trained behavioral re-
sponses. Recent advances in computing have allowed
researchers to graft onto this basic framework all
sorts of bells and whistles—like graphics engines that
build complete virtual worlds for rodents to explore,
or systems that automatically train rodents for weeks
at a time in complex timing or discrimination tasks—
that are enabling ever deeper insight into brain func-
tion. What has been missing are equally powerful
tools for understanding the behavior of animals that
are unrestrained (both in the physical sense and in
the broader sense of not having been overtrained to
express a particular action in response to a cue). In
the wild, animals generate spontaneous and
self-directed actions to explore and interact with the
world, and arguably a main function of the brain is
to support these sorts of ethologically relevant and
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naturalistic patterns of action. However, it remains a
significant technical challenge both to estimate poses
and movement parameters of animals during unre-
strained behavior, and to characterize how these poses
and movements are meaningfully organized over time.

How is this problem being addressed with
modern tools?

There are many new approaches being developed to
measure and analyze spontaneous, unrestrained be-
havior. Let’s talk first about the input side, about how
we can measure things. If you are willing to mount
devices on your rats or mice, you can now get move-
ment data from accelerometers, which are often inte-
grated into headstages used for electrophysiology.
More complicated devices, combining mirrors and
miniaturized head-mounted cameras, enable ongoing
measurements of pupil dilation and whisking [1]. But
perhaps the most broadly impactful set of new
methods derives from improvements in computational
algorithms to perform point tracking in videos of be-
havior. Over the last few years several custom and
generalizable pipelines have been described (e.g.,
JABAA, Optimouse, LocoMouse, LEAP, and DeepLab-
Cut to name a few) that allow users to identify key-
points in videos (like the centroid of a mouse, or the
location of a paw), and to track the movement of
those keypoints across video frames automatically and
with high accuracy [2-6]. These approaches are trans-
formative for our ability to capture parametric behav-
ioral information from video, particularly given the
impressive deep learning-based performance of frame-
works like LEAP and DeepLabCut [5, 6]. In parallel
with the advent of better tracking code, improve-
ments have also been made in depth sensing technol-
ogy, thereby enabling facile 3D imaging of rodents as
they behave in the lab [7].
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Wait, | thought you said behavior wasn’t a solved
problem—it seems pretty solved to me! So, we
are done now, right?

Not quite—there is the issue of actually understanding
all these new datastreams. Which is something that none
of these tools, on their own, are designed to do.

What do you mean by “understanding” these
data?

“Understanding” behavior means different things to differ-
ent people, of course, and is very much dependent upon
the goals of the experimenter. If you are tracking paws
during reaches for pellets, for example, then what you care
about are the paw trajectories themselves; this means that
from a behavior perspective, point tracking alone gets you
very close to where you need to be. Problems like tracking
whisker movements (which allow rodents to probe their
environments through touch) or pupil dilation (which re-
flects arousal) fall into this category.

However, there are many problems for which behav-
ioral data aren’t so transparently informative on their
own, and instead have to be organized and parsed to
gain insight. Labeling behaviors is one such problem; in
this case, the experimental challenge is to associate pat-
terns in behavioral data (e.g., movement parameters ex-
tracted from a mouse behavioral video) with labels that
humans can directly or indirectly interpret (e.g., running,
rearing, eating, sleeping). The most straightforward way
to address this problem is through supervised machine
learning, where human-labeled video data are used to
train classifiers that automatically identify the behavioral
state being expressed at each point in time. However,
humans are notoriously bad animal psychologists, and
human supervision comes with inevitable biases about
what constitutes a meaningful unit of behavior—which
nearly always corresponds to behaviors for which
humans already have natural language descriptors.

To elide this limitation, many labs have begun apply-
ing recently developed unsupervised machine learning
techniques, which parse behavior into units of action
based upon underlying statistical structure without rely-
ing upon explicit human-supplied labels. These attempts
to identify regularities in behavioral data find their origin
in the work of the ethologists, who posited that behavior
is modular—that is, made up of repeated and stereo-
typed behavioral motifs—and who predicted that the
brain would flexibly compose behavior by stringing to-
gether behavioral modules or motifs into different se-
quences. As was true among the ethologists 50 years
ago, there are vigorous discussions underway about how
best to identify latent structure in behavioral data. My
lab’s participation in this conversation started several
years ago when we developed a technique called Motion
Sequencing, or MoSeq for short [7].
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What is MoSeq?

MoSeq is a technique that uses 3D machine vision and
unsupervised machine learning to automatically discover
the underlying modular structure of mouse behavior in
the lab [7-10]. It has two distinct and separable compo-
nents. The first is about measuring behavior—the
current versions of MoSeq use depth cameras (which
can be placed above any behavioral arena) to measure
how the 3D poses expressed by a mouse change over
time. These data constrain what MoSeq thinks a module
of behavior is, because the data being modeled arise
from a single 3D camera looking down at an arena from
a single axis of view, which captures only the top
two-thirds of the mouse’s body. As a consequence, these
data represent overall 3D body movements, but do not
directly capture many aspects of the mouse’s behavior.

The second component is about understanding behav-
ior. MoSeq is based upon a generative computational
model whose structure reflects the ethological hypoth-
esis that behavior is built out of a set of identifiable be-
havioral modules (which are described mathematically as
autoregressive processes through pose space) that
tumble one after the other somewhat predictably in time
(a process that is described through a semi- or
sticky-hidden Markov model). Based upon statistical re-
gularities in the pose dynamics expressed by mice in an
experiment, as well as the sequence over time in which
those pose dynamics are expressed, MoSeq uses prob-
abilistic fitting procedures to automatically identify the
behavioral modules and sequences that optimally explain
the observed pattern of behavior within any given ex-
perimental dataset (Fig. 1). MoSeq is also flexible, insofar
as the number and contents of the modules are not pre-
defined—they are learned from the data through un-
supervised machine learning methods.

The model underlying MoSeq asserts that mice can
only do one thing at a time, which means that if there is
a “chewing gum” module and a “walking” module, and
mice chew gum and walk at the same time, MoSeq will
identify a “walking and chewing gum” syllable that is dif-
ferent from its components. In addition, from the per-
spective of the model mice are always doing something:
as a consequence, each imaged frame is obligately
assigned to a single identified module. We refer to the
modules identified by MoSeq as behavioral syllables, and
the statistics that govern their interconnection over time
as behavioral grammar.

What do behavioral syllables and grammar look
like?

Syllables are brief, 3D motifs of behavior; typically these
are actions like a specific type of rear, or a head-bob to the
left, or a distinct form of pausing behavior (Fig. 1b). Each
instance of a MoSeq-identified syllable is stereotyped, but
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Fig. 1. a 3D imaging of mouse pose dynamics. MoSeq uses depth cameras to image the 3D pose dynamics of mice, which are then
used to identify behavioral syllables and grammar. b Plotting the imaged 3D behavioral data over time (compressed here using the
random projection technique, top row, grey) reveals that behavior self-organizes into blocks (apparent as vertical striations in the imaging
data). Plotting the mouse’s height at each point along its spine (middle row) similarly reveals the block-like dynamics of the mouse’s
behaviors during the experiment. Based upon the intrinsic structure present in the data, MoSeq uses a probabilistic modeling approach
to identify the complete set of behavioral syllables expressed within the experiment, and then takes advantage of this information to
label each frame of 3D video (bottom row, indicated as colored blocks). Each discovered behavioral syllable is a brief, reused, and
stereotyped motif of action (bottom); in a typical 30-min experiment in a featureless bucket approximately 40 such syllables are identified
that encapsulate 95% of the mouse’s behavior. ¢ Behavioral state maps generated by MoSeq depicting behavioral syllables (nodes,
diameter is proportional to syllable usage) and transitions (edges, thickness is proportional to transition likelihood) encapsulate all
behavior expressed within a given experiment captured by the camera and can be used to predict future behavior from present actions.
d Exposing mice to stimuli (or manipulating genes or neural circuits, not shown) causes changes in the overall usage of individual
syllables during an experiment. Here, mice were exposed to the fox odorant TMT, which causes fear-like behaviors in the mouse,
including avoidance of the odor source. Exposure induces a wholesale behavioral state change in the mouse, which can be captured as
differences in syllable expression (asterisk indicates syllables that pass a statistical test for difference with air-exposed mice). e Plotting out
behavioral state maps for control and TMT conditions (as in ¢), and then subtracting these state maps identifies new behavioral
trajectories through syllable space that are induced by exposure to the stimulus. Upregulated temporal connections between syllables
are shown in blue, while downregulated connections are shown in red. The new behaviors induced in mice by TMT—including freezing
and avoidance—are encoded by trajectories through the blue part of this state space. Figure (parts b-e) adapted from [7] Neuron 88(6),
Alexander B. Wiltschko, Matthew J. Johnson, Giuliano lurilli, Ralph E. Peterson, Jesse M. Katon, Stan L. Pashkovski, Victoria E. Abraira,

Ryan P. Adams, Sandeep Robert Datta, Mapping sub-second structure in mouse behavior, 1121-1135., Copyright 2015, reprinted with
permission from Elsevier

not perfectly, as MoSeq assigns each syllable its own spa-
tiotemporal distribution to account for intra-syllable vari-
ation. While the average duration of a behavioral syllable
is about 300 ms, this can vary quite a bit. The temporal re-
lationships between syllables can be visualized using a
state map, where the nodes are syllables and the edges are

observed transitions between syllables (Fig. 1c). One thing
that immediately pops out from generating such state
maps is that mouse behavior is highly structured—there
appear to be a set of rules that govern how different be-
havioral syllables can be put together over time to create
continuous patterns of action.
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How does MoSeq discover how many parts of
behavior there should be?

MoSeq is a generative model, which means that once
MoSeq identifies a candidate set of syllables and gram-
mar from a given dataset, a synthetic “movie” can be
played in which MoSeq predicts what a mouse’s behavior
should look like. During the fitting procedure MoSeq re-
peatedly updates its view of what mouse behavior is in
terms of the number, identity, and transition structure of
syllables (through a statistical procedure called Gibbs
sampling) to try to discover the best possible description
of behavior. MoSeq also has another trick up its sleeve—
it uses the hierarchical Dirichlet process, a Bayesian ap-
proach to statistical analysis, to cluster different in-
stances of behavior into specific syllables. One key
consequence of using this sort of probabilistic approach
is that the number of behavioral syllables discovered by
MoSeq sublinearly scales with the amount of data—if
you feed MoSeq a little data, you get a handful of sylla-
bles, but if you feed it more data the description of be-
havior emitted by MoSeq becomes correspondingly
more complex. This is, of course, exactly how ethologists
characterize behavior—when they first look at an animal
in the wild they divide behavior up into a small number
of parts because they aren’t exactly sure what they are
looking at or how repeatable their observations are, but
as they get more experience looking at a given animal in
a given context, their confidence grows, allowing them
to both better distinguish and group behaviors into cat-
egories. But this also means that there is no fixed answer
to the question “how many syllables are there?”: the an-
swer depends on how much data you have.

If MoSeq assigns every frame a single label, then
it by definition has to pick a single timescale at
which it thinks behavior is organized. What
timescale does MoSeq focus upon?

Behavior is, of course, organized at many timescales sim-
ultaneously. As a consequence, when segmenting behav-
ior into parts, a core problem one has to address is that
of timescale—do I want to know whether an animal is
asleep or awake, or do I want to understand all the
moment-to-moment fidgets during waking and sleep?
One of the key discoveries that led to the development
of MoSeq is that 3D mouse behavior is naturally rhyth-
mic at the sub-second timescale—if you just look by eye
(or with math), the presence of fast temporal structure
in 3D mouse imaging data is obvious (Fig. 1b). Because
of this finding, we have focused our analysis at the
sub-second timescale by tuning a parameter that roughly
defines the timescale at which MoSeq searches for be-
havioral structure within a given experiment; this prior
is very flexible, however, which allows MoSeq to identify
syllables whose mean duration ranges from 100 ms to
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more than a second. This sub-second timescale is par-
ticularly interesting because it corresponds to known
neural dynamics that are relevant to rodent behavior,
such as the amount of time it takes for information to
traverse a cortico-striato-thalamic loop.

So what has MoSeq taught us about the brain

and behavior?

In both published and unpublished work, MoSeq has
proved to be a flexible and general method for object-
ively describing the overall microstructure of behavior,
one which enables researchers to easily identify behav-
ioral changes (reflected as changes in the expression of
individual syllables or syllable sequences) that are in-
duced as a consequence of experimental manipulations
[7-10]. MoSeq can discover previously hidden pheno-
types in mutant mice, can explain the trial-by-trial be-
havioral consequences of optogenetic manipulations,
and can capture differences in pose dynamics elicited by
changes in the physical or sensory environment. It can
describe the effect of pharmacological agents on behav-
ior, and can identify both side effects and on-target ef-
fects in mouse models of disease. Increasingly, MoSeq is
being used to reveal behavioral patterns that are charac-
teristic of activation of particular neural circuits.

The structure of the behavioral model instantiated by
MoSeq explicitly corresponds to the foundational hy-
pothesis of ethology, that spontaneous and naturalistic
behaviors are flexibly composed by the brain from a set
of stereotyped parts. The finding that MoSeq discovers
an underlying modularity to behavior at the sub-second
timescale therefore suggests that the brain contains
neural correlates for behavioral syllables, grammar, or
both. To test this hypothesis, we have recently rendered
MoSeq compatible with tethered optical or electrical
neural recordings [10]. These experiments demonstrate
that the dorsolateral striatum (DLS) contains explicit
moment-to-moment neural correlates for behavioral syl-
lables and grammar; further, activity in the DLS is re-
quired for the appropriate execution of behavioral
sequences composed of syllables, but not for the imple-
mentation of syllables themselves. For example, mice ex-
posed to the fox odor TMT generate a dramatic set of
fear-related behaviors, including spatial avoidance of the
fox odor and freezing. These motivated, odor-driven be-
haviors are not a consequence of the mouse generating
new syllables, but rather are caused by changes in behav-
ioral grammar that create new sequences from the same
set of parts that is normally used during locomotor ex-
ploration (Fig. 1d, e). However, mice with DLS lesions
do not generate fear-related behaviors in response to
TMT, suggesting that the DLS is required to assemble
syllables into adaptive behavioral sequences. Together
these data suggest that MoSeq will be generally useful
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for characterizing complex relationships between the
brain and behavior.

Can’t behavior be divided up in many ways, all of
which are equally meaningful or useful?

This is one of the core challenges that has vexed ethol-
ogy since its founding—how does one decide how to
divvy up behavior into units to allow subsequent ana-
lysis? There is little agreement on how to go about this.
MoSeq takes a generative modeling approach, meaning
that it is ultimately optimizing predictions of future be-
havior. While the atomization of sub-second behavior
provided by MoSeq is certainly an approximation, we
have generated many lines of evidence consistent with
the notion that mouse behavior is modular, and that
MoSeq gives us at least some access to that modular
structure. From a modeling perspective, we have run a
type of control called a cross-likelihood analysis that
demonstrates that MoSeq does not invent modules
where none exist—if we feed MoSeq synthetic behavioral
data that lacks modules, MoSeq fails to impose structure
on the data [7]. In addition, we have run model compari-
sons that demonstrate that describing behavior as being
modular enables better predictions of future behavior
than models in which behavior is described as being
continuous. From a neurobiological perspective, the fact
that we can identify explicit neural correlates for both
syllables and grammar—and that the dorsolateral stri-
atum contains within it a neural rhythm that correlates
with switching from one syllable to the next—is a
powerful implicit validation of the segmentation of be-
havior provided by MoSeq; the fact that lesions of the
DLS alter syllable sequences but not the contents of the
behavioral syllables themselves is also consistent with
MoSeq capturing neural-driven structure in behavioral
data [10]. All this said, we remain open-minded about
our own core hypothesis, and continue to empirically
explore the idea that the brain organizes mouse behavior
out of modules.

What are some other methods for dividing up
spontaneous behaviors into units?

In the context of spontaneous behaviors expressed by unre-
strained flies and rodents, most prior attempts at identify-
ing behavioral modules have focused on grouping together
poses or pose dynamics in one way or another without ex-
plicit reference to how these potential behavioral motifs are
sequenced over time. The general approach is to take be-
havioral data, embed the data in a low dimensional space
so that it is easy to visualize and analyze, and then apply
some sort of clustering or segmentation algorithm to break
behavior into components. These methods tend to use
under-the-hood parameterization to specify the number of
behavioral components in a given dataset. One powerful
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and generalizable approach in this vein is called Motion-
Mapper, which takes video data, performs a wavelet trans-
formation (which includes certain assumptions about the
balance between spatial and temporal frequencies), embeds
those data using t-SNE, and then uses watershedding to
identify peaks in the t-SNE plot that correspond to behav-
ioral components [11]. This embedding-based approach
has an important advantage over MoSeq insofar as it can
capture behaviors that are organized at drastically different
timescales simultaneously; however, this benefit comes at
the cost (relative to MoSeq) of ignoring information about
behavioral sequences that helps to identify boundaries be-
tween behavioral components.

How might you objectively compare different
methods for categorizing mouse behavior?
Trained generative models make quantitative predictions
about the structure of held-out testing data; as a conse-
quence, prediction accuracy can be used as a yardstick
to compare the ability of different generative models to
capture how behavior might be organized within a given
dataset. We took advantage of this feature of generative
models in creating MoSeq; for example, we found that
modeling behavioral syllables as autoregressive processes
that evolve over time was superior (in terms of predict-
ing behavior) to simply clustering the data using Gauss-
ian mixture models [7]. As mentioned above, we also
found that describing behavior as being composed of
modules that switch one to the other over time made
better predictions than describing behavior as a continu-
ous process without any switching or modularity.

The ability to make these sorts of objective compari-
sons is, in and of itself, an argument for using these
kinds of generative models going forward. If you think
you have a better idea for how to describe behavior, you
can write it down in model form, train the model on be-
havioral data, and then objectively compare its predictive
performance to alternative generative models. This being
said, in creating MoSeq we did not seek to simply max-
imally predict behavior, but instead to balance predictive
power with interpretability, as our goal was to discover
modularity in behavior (and to compare a modular
model for behavior with alternatives). For example, one
could use deep networks (a type of generative model) to
model mouse behavior; these models would almost cer-
tainly outperform MoSeq at making predictions of fu-
ture behavior, but the internals of a trained deep
network model will lack the interpretability of a similarly
trained MoSeq model, which represents behavioral mod-
ules and grammar explicitly in the model structure itself.
Recent work from our lab attempts to blend the advan-
tages of neural networks with the explicit model struc-
ture of MoSeq, and we anticipate this will be a fruitful
avenue for future research [8].
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Significant challenges also remain in comparing the
performance of generative models like MoSeq with the
output of non-generative behavioral characterization
techniques like MotionMapper. Whether MoSeq,
MotionMapper, or any other behavioral characterization
approach is better or worse than any other will be
dependent on the specific goals of a given experiment,
and the specific data being fed each algorithm. Our la-
boratory has generated large-scale behavioral bench-
marking datasets and is actively exploring ways of using
these datasets to allow apples-to-apples comparisons
amongst generative and non-generative methods, which
in turn should vyield insight into the relative strengths
and weaknesses of each approach. As technical advances
on the hardware and software side inevitably evolve, it
will become more and more pressing to articulate ap-
proaches for rationally choosing amongst the diverse
array of methods for quantifying behavior.

OK, MoSeq sounds great, but 3D videos of mice
look kinda blurry. Isn’t a high-resolution 2D
image where | can see everything better than the
low-resolution 3D movies used by MoSeq?

Not necessarily, for two reasons. First, there is a ton of
covariance in mouse imaging data. Take the tail, for ex-
ample; while the tail can be quite informative about a
mouse’s behavioral state (such as the direction of a turn),
that information is often redundant with other changes
in the mouse’s body (like the specific pattern of bending
of the mouse’s back during a turn). We find that—from
a predictive perspective—there isn’t a lot of benefit to
including high spatial frequency information in our ana-
lysis (we get very similar answers with different cameras
whose spatiotemporal resolutions differ), and therefore
to keep the computing snappy we often smooth out
those details. Second, on a pixel-for-pixel basis, the low
spatial resolution 3D data can often tell you more about
pose dynamics than a high spatial resolution 2D image;
this is because mice aren’t worms or walking flies—they
naturalistically explore the world through 3D move-
ments of their bodies and so express pose dynamics in
3D. Indeed, if we perform principal components analysis
over the pixel data, the first principal component repre-
sents movement in the z-axis. That said, we can easily
imagine a world in which the current single 3D camera
setup used as input for MoSeq is surpassed by a differ-
ent imaging system or data type. The critical thing is to
have an objective and quantitative framework for under-
standing what a given change on the input side gives
you in terms of predictive or descriptive power; as men-
tioned above, we are actively building analytical frame-
works that will allow us and others to explicitly measure
the benefits (and costs) of changes to the dimensionality
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and spatiotemporal resolution of raw behavioral data of
different types.

MoSeq seems pretty complicated to actually
implement in my lab if | don’t already know how
to code. | want something like Noldus Ethovision,
where | press a button and analyzed data emerge.
Can you help with this?

Yes! We are working with engineers to build a
push-button system for MoSeq that also folds in much
of the functionality provided by more conventional sys-
tems. We are designing the new platform so that it will
be simple to use for beginners, but also will allow ex-
perts access to all important model parameters. We plan
to hold classes as well—with luck all of this will be avail-
able relatively soon—so stay tuned. It is our hope that
the availability of such a system will enable many labs
with diverse goals and interests to explore complex be-
havioral phenotypes, although a push-button MoSeq
platform will still require careful thinking about the
meaning of the output in the context of a particular ex-
periment. There are significant differences among the
new methods for behavioral analysis that are being de-
veloped by many groups, but one universal area of
agreement is that behavioral data—which is fundamen-
tally high-dimensional, dynamical, and organized at
timescales of milliseconds—should be given the same
analytical respect that has thus far been reserved for
neural data. And this means that any real understanding
of behavior and its relationship to neural activity will re-
quire the active participation of researchers, rather than
reliance upon automated systems. In our lab getting the
output of a MoSeq model marks the beginning of a dee-
per analysis of the data, rather than an end in and of
itself.

What are some limitations of MoSeq?

The current version of MoSeq acquires data using a sin-
gle, low temporal (e.g., 30 Hz) resolution 3D camera to
image individual mice exploring simple arenas in the ab-
sence of complex objects; the analytical engine under-
lying MoSeq, which assumes that behavioral syllables are
linear trajectories through pose space, then spits out a
description of behavior limited to a single timescale. In
addition, MoSeq cannot currently normalize differences
in pose dynamics that are the consequence of mice be-
ing different sizes, preventing comparisons between fat
and skinny mutant mice, for example, or a study of the
evolution of behavior across development. MoSeq also is
entirely concerned with global pose dynamics—it fails to
consider fast rhythms (e.g., whisking, breathing), and in
its current form has no access to limb dynamics, whose
organization may be sharply different from those for
pose. These constraints come on top of the natural
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challenges of working with any unsupervised description
of behavior, in which it is often difficult to understand
how a change in a behavioral component or sequence
induced by an experimental manipulation is “meaning-
ful” in the context of the animal’s ethology. It is import-
ant to note that alternative unsupervised behavioral
analysis methods address some of these MoSeq-specific
issues—MotionMapper, for example, captures behavior
at multiple timescales simultaneously, and can more eas-
ily accommodate animals of different sizes.

What is the future of Moseq?

We think of MoSeq as an evolving framework, in which
we can swap out different kinds of inputs and different
sorts of generative models to capture overall structure in
behavior. In other words, we view the current version of
MoSeq as an important first step, rather than a final
product, and we are actively working on addressing the
limitations to MoSeq articulated above by playing with
different types of data, pre-processing strategies, and
modeling approaches. We hope that ultimately MoSeq
will enable flexible modeling of behavioral data of all
sorts (ranging from ultrasonic vocalizations to
point-tracking data, from accelerometer traces to whisk-
ing data), at many hierarchical levels simultaneously, in
multiple ethologically relevant contexts, and across spe-
cies (not just mice and rats, but also primate models and
humans); we are also optimistic that MoSeq as a frame-
work will eventually allow inference of joint dependen-
cies (between stimuli and behavior, between pairs or
groups of animals, between brain and behavior). Prelim-
inary data suggest that reaching some or all of these
goals should be possible. There is lots of work ahead of
us, and of course there is a whole field that has been re-
cently created to address these kinds of issues for behav-
jor in general. It has been really exciting to watch
computational ethology slowly but surely become a real-
ity; we look forward to a future in which the resolution
with which we probe the brain is matched by the reso-
lution at which we characterize behavior.
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