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Transcriptome resilience predicts
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Katharina Jovic1†, Jacopo Grilli2,3,4†, Mark G. Sterken1, Basten L. Snoek1,5, Joost A. G. Riksen1, Stefano Allesina2* and
Jan E. Kammenga1*

Abstract

Background: The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the
return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme
temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While
heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge.

Results: Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and
predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression
profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a
quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a
basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during
recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience
parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress.

Conclusion: Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of
stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters
of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.
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Background
Temperature is a key factor that directly affects physio-
logical processes, life history, and behavior of many or-
ganisms. Ambient temperatures can rise suddenly,
inflicting physiological consequences often lasting far be-
yond the initial exposure. For instance, it has repeatedly
been shown that exposure to heat stress early in life can
have an effect on traits later in life such as reproductive
success and lifespan in the nematode Caenorhabditis ele-
gans and fruit fly Drosophila melanogaster [1–5]. The
ability to withstand the negative effects of heat stress is
called thermotolerance and requires instant regulatory
protective responses involving the well-studied heat-

shock response [6]. Since tolerance is a trait that results
in the absence of adverse effects, it is difficult to predict
tolerance levels of an organism before the negative ef-
fects of stress have become apparent.
Next to the induction of genes within specific stress

response pathways, recent studies in C. elegans have
shown that heat stress also induces a broad acclima-
tion of transcriptional patterns involving differential
expression of thousands of genes [7–9]. Furthermore,
during prolonged stress exposure, expression changed
continuously until lethal stress levels were reached
[8]. Those findings illustrate that the state of the
transcriptome directly reflects the stress levels the or-
ganism was exposed to. While the reactive processes
occurring during the heat-shock response are well
understood, much less is clear about how organisms
recover from a heat shock and how the genome-wide
transcriptional state might be used to predict long-
term outcome of a short bout of heat stress.
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Here, we quantify gene expression resilience during
and after heat stress in order to predict thermotoler-
ance in C. elegans. First, by measuring genome-wide
gene expression levels of the canonical laboratory
strain Bristol N2 in three high-resolution time series
(development, heat stress, and recovery from heat
stress), and applying a principal component analysis
to the data, we show that the state of the transcrip-
tome during and after the dynamic response to heat-
stress perturbations can be captured by a single par-
ameter. This finding provides the basis to evaluate
and compare complex transcriptional patterns after
stress in a straightforward and quantitative way.
Secondly, in order to generalize our findings beyond

the individual genotype, we expanded our analyses
across different genetic backgrounds. Previous research
shows that different genotypes are differently affected by
the heat stress [3, 9, 10], assumingly due to an intrinsic
difference in thermal tolerance. Our results show that
transcriptome resilience measured after a mild heat
stress early in the development of C. elegans is predictive
of its thermotolerance. Thermotolerance (based on long-
term survival) and transcriptional resilience were mea-
sured in independent populations of the same genotype,
emphasizing the genetically intrinsic nature of thermal
tolerance and the robustness of this approach to predict
thermal tolerance. Our methods are straightforward to
implement and allow to map gene expression data dur-
ing and after heat stress onto a few main quantitative
scales that have a clear biological interpretation.

Results and discussion
Using principal component analysis to infer a
developmental axis D and heat-stress axis H
C. elegans develops relatively fast—within ~ 65 h an indi-
vidual develops from an egg into a reproducing adult
[11]. The transition through the four larval stages is con-
trolled by highly dynamic transcriptional processes [12,
13]. To characterize the temporal dynamics in genome-
wide gene expression during heat stress and in recover-
ing C. elegans populations, we have to remove stress-
independent variation in gene expression patterns
caused by differences in development between samples
collected in a time series spanning several hours. For this
purpose, we compiled a data set of 71 gene expression
profiles measured in isogenic populations of the canon-
ical strain Bristol (N2) sampled in an approximately
hourly interval during exposure to three different treat-
ments: (i) during unperturbed development at 20 °C
[12], (ii) during prolonged exposure to heat-stress condi-
tions at 35 °C [8], or (iii) during a period of recovery at
20 °C after a 2-h heat stress at 35 °C (Fig. 1a). First, the
data was separated into training and testing sets (as indi-
cated in Additional file 1: Table S1). Second, through

the application of principal component analyses on ex-
pression profiles from unperturbed populations (n = 9
samples out of 18) and from heat-stressed populations
(n = 9 samples out of a total 39), we inferred the com-
bination of gene expression patterns that best character-
ized the overall expression dynamics of each treatment
(Fig. 1b; for background information on principal com-
ponents see Additional file 2).
For the unperturbed data, we found that the second

principal component shows a clear trend with the devel-
opmental age of the samples (Additional file 2: Figure
S3). Therefore, while also the third and fourth principal
components capture time-dependent expression changes
(Additional file 2: Figure S2C), the second principal
component is sufficient to capture the transcriptional
age of the age-synchronized N2 populations used. From
here on, the second principal component obtained from
the unperturbed data is named developmental axis D,
describing the temporal expression dynamics during
development.
Subsequently, the developmental influences captured

by D were removed from the data set of heat-stressed
nematodes, allowing for the inference of the heat-stress
axis H. H describes temporal expression patterns in-
duced by heat stress, while disregarding heat-stress-
independent temporal transcriptional patterns. Hence,
by combining the data of perturbed and unperturbed
populations, we were able to disentangle the effects of
development and heat stress in time.

Heat-stress axis H reflects exposure duration, as well as
recovery from heat stress
By projecting gene expression profiles on the heat-stress
axis H, each sample can be associated with a value h.
While only 18 samples were used to infer the axis, all 71
samples from all three time-series align along the axis ac-
cording to treatment and exposure duration (Fig. 1c, and
Additional file 2: Figure S5), showing that h is a quantita-
tive measure of the transcriptional stress response. The
value of h increased with increasing heat-stress duration
(Fig. 1c, orange) until h started to saturate after long ex-
posure (> 4 h). The unperturbed worms had a constant
value of h (Fig. 1c, blue), showing that we were able to
successfully remove the signal caused by developmental
differences on gene expression. Strikingly, even though
samples collected during recovery were not used to deter-
mine the axis H, the gene expression during recovery from
a 2-h heat stress was also well-explained with samples
returning to the level of h typical of unperturbed worms
within about 4 h (Fig. 1c, purple). We concluded that h
quantitatively reflects exposure duration, as well as the
time elapsed since the end of exposure. Note that al-
though samples returned to the pre-stress treatment level
of h after recovery, this does not imply that recovered C.
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elegans populations are transcriptionally indistinguishable
from unperturbed ones (as, for instance, can be seen by
projecting recovery samples onto D, and their failure to
return to the pattern of unperturbed development see
Additional file 2: Figure S3B). Therefore, in this context,
recovery was defined and measured here by the ability to
depart from stress response dynamics.
So far, the results have shown that the transcriptional

recovery process after a mild stress can be followed over
time using the heat-shock axis H. To exclude the possibil-
ity that H only captured time since the end of the heat
stress without biological meaning towards phenotypic re-
covery or resilience, we expanded the dataset to include
four additional time-series tracking the transcriptome re-
covery for 4 h following four different heat-stress inten-
sities (2, 3, 4, and 6 h at 35 °C). The long-term effects of

these stress intensities on survival, reproduction, and mo-
bility have been shown to range from mild after short (2
h) exposure to 100% mortality within 24 h after 6 h at
35 °C [8]. Figure 1 d shows that mildly stressed population
transcriptionally returned to pre-stress levels of h during
the observed recovery period, while increasing stress dur-
ation led to a slowing down of the transcriptional recovery
process, and severely stressed populations remained at a
constant high value of h. Therefore, H can distinct be-
tween the progress of the recovering transcriptome and a
non-recovering transcriptome.

Heat-stress axis H retains essential features of the biology
of the heat-stress response
Having shown that the axis H recapitulates the transcrip-
tional state during and after exposure to heat stress, we

Fig. 1 Experimental setup and expression dynamics during heat-stress perturbations. a Experimental design of the three main treatments: control
(blue; 20 °C throughout development), heat stress (orange; populations shifted to 35 °C after 46 h of development at 20 °C), and recovery (purple;
at 20 °C after heat stress). b A subset of samples from heat stress and control treatments was used for the inference of the heat-stress axis, H,
describing the gene expression dynamics during heat stress. c Projection of the data on this axis describes the dynamics of the response to heat
stress. Notably, this is true also for the recovery data that was not used to infer axis H. d Projection of transcriptome data of the recovery process
after 2, 3, 4, and 6 h of heat stress shows a decrease in recovery dynamics. e Axis H also describes the transcriptional heat-stress response for
strains other than N2
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investigated the biological properties of the axis H. To this
end, we performed an enrichment analysis to determine
which groups of genes contributed the most to the axis H
(Fig. 2; full enrichment output in Additional file 1: Table
S3). Consistent with expectations, genes encoding for
stress response proteins (in particular heat-shock proteins
hsp) and nucleosomes (in particular histones his) were up-
regulated. These gene classes have previously been shown
to be highly activated by heat stress [7–9, 14]. Similarly,
the value of h is negatively correlated with some genes

involved in cell metabolism such as ATPase transmem-
brane proteins. This analysis shows that the axis H retains
essential features of the biology of the heat-stress re-
sponse, while summarizing these complex biological dy-
namics into a single quantitative parameter.

Heat-stress axis H reflects the average heat-stress
response across multiple genotypes
Next, we tested whether heat-stress axis H can also reflect
the change in gene expression for different genotypes. We

Fig. 2 Single gene contribution to heat-stress axis, H. a Distribution of the entries of the heat-stress axis (top of the figure). The distribution is not
symmetric, which means that more genes contributing to this axis (relatively to their unperturbed level of expression) are upregulated as a
response to heat stress. Examples of gene expression dynamics of selected GO terms during heat stress shown in heat-maps, as well as two
examples of genes with negative and positive components (gene expression measured during heat stress in orange, during recovery in purple,
and blue corresponds to development). b Results of an enrichment analysis performed with DAVID 6.8 of the top 5% of genes with the highest
contribution to H. Shown here are GO terms with a Bonferroni-corrected p value below 0.05
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used expression profiles of the strain CB4856 (Hawaii),
which is genetically distinct from N2, as well as 54 recom-
binant inbred lines (RILs) [9], which are genetic mosaics
derived from a cross between CB4856 and N2 [15, 16].
Gene expression in these different genotypes was measured
in control conditions, during heat stress, and in recovery.
Projections of the expression profiles onto H followed a
similar pattern as N2 (Fig. 1e). To further analyze the vari-
ation in projections among genotypes, we compared the
standard deviation of the projection in N2 replicas with the
variation found between RILs (this comprised computing
the distribution of SDs of the projection of 5000 randomly
selected subsets of RIL data for each separate treatment of
the same sample size as the corresponding N2 data; see
Additional file 2: Section S3 and Fig. S7). We found that
the heat-stress axis H does not resolve genotype-
dependent differences in the response to stress, but rather
successfully recapitulates the average dynamic transcrip-
tional response of these different genotypes. The robust-
ness of the pattern across genotypes reflects the high
degree of conservation in transcriptional resilience.
A common use of the CB4856 x N2 recombinant pop-

ulations is the genetic mapping of traits to determine
which genetic regions are responsible for trait variation,
a method called quantitative trait loci (QTL) mapping
(for more information, see [17, 18]). It should be noted
that, in the present study, the RILs were not used for the
genetic mapping of traits, but rather as a genotypic li-
brary. To link our findings to genetic mapping of gene
expression conducted previously in N2 x CB4856 RIL
populations at various ages and in different treatments
[9, 15, 19–22], we performed an enrichment analysis of
genes contributing to H. There is a strong enrichment of
H in cis- and trans-eQTL mapped in the RIL heat-shock
experiment of Snoek and Sterken [9] (Additional file 3:
Figure S10). This indicates that genetic variation in RIL
panels affects expression of genes that strongly contrib-
ute to H (also supported by enrichment analysis on poly-
morphic genes; Additional file 3: Figure S11).
Interestingly, the upregulated genes in H are enriched
for in 7 out of 11 (cis-)eQTL experiments, suggesting
that genetic variation in N2 x CB4856 populations is
linked to differences in stress response.

Variation in stress resilience across genotypes is captured
in a genetic heat-stress axis (GH)
We have shown that the heat-stress axis H, inferred using
solely the isogenic strain N2, describes the average con-
served stress response of a library of highly divergent geno-
types. On the other hand, there is large natural variation in
long-term effects of heat-stress exposure across genotypes,
for example marked by differences in the stressed tran-
scriptome [9], survival rates [3, 23], and reproductive rates
[3]. Considering that trait variation is genotype dependent,

it implies a difference in transcriptional resilience during
and/or after stress. Next, we ask if a single axis could also
capture the natural variation in heat-stress response across
genotypes. Since genotypes differ in more traits than their
transcriptional response to stress, such as developmental
timing and size, we needed to isolate stress-induced vari-
ation in expression levels from other intrinsic differences
in the transcriptome between genotypes. For this purpose,
we used gene expression data of RILs collected before and
after 2 h of heat stress [9]. Analogous to our approach
above in inferring the heat-stress axis H for N2 by remov-
ing developmental differences, we corrected the heat-stress
response of the RILs for their intrinsic gene expression dif-
ferences in unperturbed conditions (see Additional file 2:
Section S3). We inferred a genetic heat-stress axis (GH)
that isolates and describes the variability across strains in
their stress response.
To substantiate this observation, we conducted an en-

richment analysis of genes strongly contributing to GH
(Additional file 1: Tables S2-S4) and found a strong en-
richment for trans-eQTL in heat-shock induced eQTL
[9] (Additional file 3: Figure S10). This indicates that GH
captures multiple genes of which the expression was af-
fected by natural variation. In support, analysis of poly-
morphisms in the GH genes revealed that these genes
often had polymorphisms in the 5′ regulatory region
(Additional file 3: Figure S11). In conclusion, we propose
that GH is a summary of the trans-eQTL architecture.
The strength of relationship between the genetic axis GH

and the environmental heat-stress axis H measures the
proportion of the variation of heat-stress response across
RILs that is due to timing differences. We found a positive
correlation between the two axes (Spearman rho = 0.36,
p = 0.01) implying that different strains respond as if they
were exposed to the heat stress for different durations. This
was confirmed by analyzing a second set of heat-stressed
gene expression profiles from a separate alternative panel
of inbred lines [24, 25] (Introgression Lines, ILs; Spearman
rho = 0.44, p = 8 × 10− 4) (Fig. 3). These results show that
the genetic differences also lead to difference in the timing
or magnitude of the transcriptional response. The presence
of a correlation between the axes H and GH also implies
that the value of gh (the projection of the gene expression
profile on the axis GH) recapitulates the relative strength
of the heat-stress response: the higher the value of gh, the
farther away is the gene expression profile from the unper-
turbed state or, in other words, the lower its transcriptional
resilience to heat stress.

Transcriptional resilience on a short timescale is
predictive of the variability in thermotolerance on a
longer timescale
Heat stress affects gene expression dynamics and resili-
ence in the short term in a predictable way, which is
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recapitulated by axes H and GH. On the other hand, in
the long run, heat stress also affects developmental
speed, aging, behavior, and vitality—for instance by dras-
tically reducing lifespan. We set out to explore how the
variability in gene expression dynamics following heat
stress on a short timescale is predictive of variability in
thermotolerance measured on a longer timescale. Ther-
motolerance in C. elegans can be recorded by its survival
rates. Therefore, in a parallel experiment, we collected
lifespan data of over 200 different RILs and ILs with and
without exposure to heat stress. While 2 h at 35 °C are
sufficient to induce a strong transcriptional response,
previous experiments have shown that overall lifespan is
not necessarily shortened at this intensity [8]. Therefore,
we increased the exposure duration to 4 h at 35 °C for
lifespan measurements as this duration is known to
affect lifespan [3, 8], allowing us to make a better esti-
mate of difference in thermotolerance across genotypes.

As expected, both RILs and ILs show high variability in
their lifespan after heat stress and in control conditions.
On average, the lifespan following a heat stress was
lower than what was found for unperturbed populations
(Fig. 4; logrank p < 0.001 for RILs as well as ILs). When
comparing individual genotypes, 53 lines were signifi-
cantly affected by heat stress (logrank, FDR < 0.05), while
28 lines were not strongly affected (i.e., they displayed a
higher thermotolerance; for lifespan curves of the indi-
vidual lines see Additional file 4, and for the full statis-
tical output see Additional file 1: Table S6).
Next, we compared the effect of heat stress on the life-

span of different RILs with the difference in transcrip-
tional resilience, measured by projecting the recovery
data of the RILs on the genetic heat-stress axis GH. Fig-
ure 4 shows that the ability of different strains to recover
from heat stress is predictive of thermotolerance (Spear-
man rho = − 0.41, p = 0.02; Fig. 4). In order to test the

Fig. 3 Derivation of the genetic heat-stress axis, GH, and relation with environmental heat-stress axis, H. a For each RIL and IL, we measured gene
expression in absence of perturbation, after 2 h exposure to heat stress and during recovery (after 2 h of the end of a 2-h heat stress). Using only
RIL data, we obtained the genetic heat-stress axis (GH), describing the difference between RILs in heat-stress response (discounting their
differences in gene expression in the unperturbed case). b Correlation between genetic heat-stress axis and the environmental heat-stress axis
shown for heat-stress samples of RILs and ILs
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robustness of this result, we also performed the same
analysis on ILs, which are genetically mostly derived
from one strain (N2) and were not used to infer the axis.
In this case, we also found a significant correlation
(Spearman rho = − 0.46, p = 10− 3), implying that the con-
nection between the ability to recover and lifespan was
robust across different inbred line panels. The projection
of the heat-stress data onto GH (which is related to the
speed at which worms react to heat stress) was not ro-
bustly correlated with lifespan (see Additional file 3:
S12-S15), showing that resilience measured based on re-
covery data was more directly linked to tolerance.

Conclusions
This study sheds light on how organisms recover from
environmental stress perturbations, by means of a sys-
temic modus operandi based on using genome-wide
gene expression profiles. We conclude that a relatively
simple axis can measure stress resilience of a dynamic
transcriptome in a single quantitative variable and de-
scribes the capacity of an organism to recover from heat
stress. Our findings show that natural variation in tran-
scriptome resilience after mild stress exposure is predict-
ive of thermotolerance across a diverse set of genotypes
in C. elegans. The results imply that thermotolerance is

an intrinsic trait that largely pre-determines long-term
effects of heat-stress exposure. Operationalizing the con-
cept of resilience in higher organisms, like mammals,
has been difficult because it includes a range of many
different phenotypic traits [26]. Our approach represents
a novel way in understanding resilience in a living sys-
tem, and we show how the inherent complexity of stress
recovery can be exploited to predict the chance of sur-
vival. We anticipate that our finding will accelerate pro-
gress in the study of resilience of complex living
systems, opening up new avenues of research in stress,
aging, and disease across other species.

Methods
Strains and maintenance
The wild-type C. elegans strains N2 (Bristol) and
CB4856 (Hawaii) were used in this study, as well as 54
CB4856 x N2 recombinant inbred lines (RILs; each line
is a genetic mosaic with contributions of the two paren-
tal strains [9, 15, 16], and 47 CB4856 x N2 introgression
lines (ILs; one individual locus of the CB4856 genome
introgressed into an otherwise N2 genetic background
[24]). Strains were maintained under standard culturing
conditions on (9 cm diameter) Petri dishes with Nema-
tode Growth Medium (NGM) containing Escherichia

Fig. 4 Effect of heat stress on lifespan and correlation with gene expression recovery. a Experimental setup used to collect lifespan data of 40
RILs and 54 ILs. An average of 31 animals were scored per genotype and treatment combination. b Comparison of the cumulative lifespan
distribution of unperturbed (blue) and perturbed (orange) RILs and ILs. Thick lines correspond to the average, while the shaded area displays the
95% confidence interval. c Effect of heat stress on lifespan (measured as the ratio of the average lifespan after perturbation and without
perturbation) correlates with the projection of recovery data on the genetic heat-stress axis for RILs and ILs. Strains recovering faster from heat
stress experience a weaker effect on their lifespan
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coli OP50 as food source [27]. To prepare populations
for the start of an experiment, maintenance populations
were chunked to fresh 9-cm NGM plates with food and
kept at 20 °C for exactly 1 week to induce starvation.
This was done to assure that all populations received the
same treatment before the experiment.

Lifespan under heat stress and control conditions
Starved populations were transferred to fresh NGM dishes
seeded with E. coli OP50 by chunking and grown at 16 °C
or 20 °C (depending on the desired growth rate) for 3–4
days to obtain proliferating populations. The populations
were age synchronized by hypochlorite treatment accord-
ing to standard protocols [27] and grown at 20 °C until
the fourth larval stage was reached. At 47 h post age
synchronization, the larvae were collected from the plates
with M9 buffer, and 30–40 individuals were transferred to
new NGM dishes containing 5-fluorodeoxyuridine [28].
At 48 h post age synchronization, the heat-stress-treated
group was exposed to 35 °C for 4 h. Control and post-
heat-stress conditions were set to 20 °C. Survival was
scored every day by checking the response to touch with a
picking needle. For each genotype, an average number of
31 animals were scored for each treatment.
For each genotype and treatment, the individual sur-

vival curves are reported in Additional file 4 with corre-
sponding logrank statistics in Additional file 1: Table S6.
For each genotype and treatment, we computed the
average lifespan. The average effect of heat stress on life-
span (i.e., thermotolerance, reported in Fig. 4c) is the ra-
tio between the average lifespan after heat stress and the
average lifespan in the control.

Transcriptome profile of heat stress, recovery, and
developmental state
Data retrieval
Subsets of the transcriptomic profiles (measured with
Agilent C. elegans (V2) Gene Expression Microarray
4X44K slides) used in this study have previously been
described. These subsets include the developmental time
series previously described in Snoek et al. [12], retrieved
from Array Express under accession number E-MTAB-
7019 [29], which includes 22 transcription profiles of N2
populations sampled in hourly intervals between 44 and
58 h post synchronization. The heat-stress time series
was described in Jovic et al. [8], which includes 29 tran-
scription profiles established after an exposure to 35 °C
for 0, 0.5, 1, 2, 3, 4, 6, 8, or 12 h starting at 46 h after age
synchronization (retrieved from ArrayExpress under ac-
cession number E-MTAB-5753 [30]). Transcription pro-
files of the RILs and ILs including the parental lines (N2
and CB4856) in control conditions (sampled 48 h post
age synchronization), after a 2-h heat stress starting at
46 h post age synchronization, and after a subsequent 2-

h recovery period were first presented by Snoek et al.
([9]; data retrieved from ArrayExpress, accession number
E-MTAB-5779 [31]) and Sterken et al., ([25]; ArrayEx-
press, accession number E-MTAB-7424 [32]), respect-
ively. A detailed overview of data sets and the according
publications can be found in Additional file 1: Table S1.

Stress treatment and sampling for transcriptome analysis
The above-described transcriptome dataset was ex-
tended with a heat-stress time series for CB4856, and a
recovery time series for N2 using protocols adapted
from Snoek et al. [9, 12] and Jovic et al. [8]. Starved pop-
ulations were transferred onto fresh NGM dishes seeded
with E. coli OP50 by chunking and grown at 16 °C or
20 °C for 3–4 days depending on the desired growth rate
to obtain gravid hermaphrodites. Age-synchronized pop-
ulations were obtained by hypochlorite treatment ac-
cording to standard protocols [27] and maintained at
20 °C until the begin of the heat-stress exposure of 35 °C
starting at 46 h post age synchronization. For the
CB4856 heat-stress time series, samples were taken after
0, 0.5, 1, 2, 4, and 6 h at 35 °C by rinsing the populations
of the NGM plates with M9 buffer. For the N2 recovery
time series, samples were transferred to 20 °C after 2, 3,
4, or 6 h at 35 °C. After 2 h of heat stress, samples were
taken 0, 0.5, 1, 1.5, 2, 4, and 6 h into the recovery period.
For 3, 4, or 6 h of heat stress, samples were taken in an
hourly interval up to 4 h post-exposure. All samples
were immediately flash frozen in liquid nitrogen at the
time of collection and stored at − 80 °C until further use.

RNA isolation
mRNA was isolated from frozen samples using the Max-
well® 16 AS2000 instrument with a Maxwell® 16 LEV
simplyRNA Tissue Kit (both Promega Corporation,
Madison, WI, USA). The mRNA was isolated according
to protocol with a modified lysis step as described in
Snoek et al. and Jovic et al. Two hundred microliters
homogenization buffer, 200 μl lysis buffer, and 10 μl of a
20 mg/ml stock solution of proteinase K were added to
each sample. The samples were then incubated for 10
min at 65 °C and 1000 rpm in a Thermomixer (Eppen-
dorf, Hamburg, Germany) before cooling on ice for 1
min. At this point, the samples were pipetted into the
cartridges resuming with the standard protocol.

Sample preparation and scanning
For cDNA synthesis, labelling, and the hybridization re-
action, the ‘Two-Color Microarray-Based Gene Expres-
sion Analysis; Low Input Quick Amp Labeling’ -
protocol, version 6.0 from Agilent (Agilent Technolo-
gies, Santa Clara, CA, USA) was followed, starting at
step 5. The Agilent C. elegans (V2) Gene Expression
Microarray 4X44K slides were used in combination with
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an Agilent High-Resolution C Scanner using the recom-
mended settings. Data was extracted with the Agilent
Feature Extraction Software (version 10.7.1.1) following
the manufacturers’ guidelines.

Data normalization and preparation
Microarray data were normalized using a within array
normalization using a standard function of the R pack-
age limma (using “loess” method) [33]. The datasets
were prepared for further analysis by removing genes
with low average expression levels because of the level of
noise they introduce into the data sets. Based on the bi-
modal distribution of gene expression levels (log2 inten-
sity), a threshold was set at 4.5.

Derivation of axes
To derive quantitative axes that measure the transcrip-
tional response to heat stress, four datasets were used:
developmental time series, L4-stage RILs, heat-stress
time series, and RILs in heat-stress at L4 stage. Each
dataset was subsetted; one part was used to derive an
axes and the other part was used to test the axes (see
Additional file 1: Table S1). A principal component ana-
lysis (using R function prcomp()) was performed on the
four separate, centered, and scaled data sets. In each
case, the second principal axis captured the variation of
interest resulting in the axis D (variation in development
in time), axis GD (variation across genotypes in control
conditions at 48 h), and two more axes capturing the
variation within each of the two heat-stress datasets.
This variation in gene expression levels within the heat-
stress data sets is also caused by confounding influences
such as development. D and GD were used to correct
for the confounding influences and to isolate the stress-
induced variation in time and between RILs, respectively.
This was done by finding the axis H (GH), orthogonal to
D (GD), that best explained the time variation of expres-
sion during heat stress. More specifically, we defined
H =Ĥ − (Ĥ ·D) D, where Ĥ is the principal component
axis obtained from the heat-shock data and (Ĥ ·D) is the
scalar product between Ĥ and D. The rationale behind
this choice is that the change in expression during heat
stress could be affected by both stress response and de-
velopment. This method provides a way to disentangle
the two effects. Note however that the projection of the
heat-stress (and recovery) data on the developmental
axis do not show a time dependence and show small
variation (see Additional file 2: Figure S3), strongly sug-
gesting that the developmental changes during stress are
small. A detailed description and explanation of the
methods can be found in the supplementary methods
(Additional file 2). The code needed to replicate all the
results presented here can be found at https://github.
com/jacopogrilli/resiliencevitality.git.

Using derived principal axes to measure stress response
By projecting the gene expression levels on the in-
ferred axis, we can deduce where a particular sample/
time-point places in comparison with the others. The
projections on these axes display a clear time depend-
ence, strongly suggesting that the axis capture the
time variability of gene expression during time. Note,
however, that this dependence does not correspond to
any trivial properties about the actual dynamics of
gene expression level. More explicitly, a monotonicity
of the relation between the projection and time does
not imply a monotonic dependence of gene expres-
sion levels on time [34].

Comparison with eQTL experiments
We compared the axes H, D, GD, and GH with expres-
sion QTL experiments in C. elegans. This analysis was
conducted on re-mapped experiments downloaded from
WormQTL [35, 36] and WormQTL2 [37]. These data-
sets consist of six different experiments representing 11
life-stage and temperature conditions: (i) L3-stage ani-
mals at 16 °C [15], (ii) L4-stage animals at 20 °C [9], (iii)
60-h-old young adults at 20 °C [21], (iv) 72-h-old adults
at 20 °C [22], (v) L3-stage animals at 24 °C [15], (vi) late
L3-stage animals at 24 °C [19], (vii) L4-stage animals
grown at 24 °C [20], (viii) 96-h-old adults at 24 °C [20],
(ix) 214-h-old adults at 24 °C [20], (x) L4-stage animals
exposed to a 2-h 35 °C heat-shock [9], and (xi) L4-stage
animals exposed to a 2-h 35 °C heat shock that have re-
covered for 2 h [9].
For all these experiments, mapped eQTL were ob-

tained from WormQTL2 (based on WS258). We tested
enrichment of the top 5% contributing genes of each of
the four axes in genes with an eQTL in these experi-
ments. We calculated the significance of the overlap
using a hypergeometric tests. The p values were called
significant at a Bonferroni-corrected threshold of p <
0.001 and an overlap of more than 10 genes.

Enrichment analysis
Enrichment analyses on the four axes (H, D, GD, and
GH) were done using a hypergeometric test on the
contributing genes. Enriched categories were filtered
according to the following criteria: Bonferroni-
corrected p < 0.05; size of the category, n > 3; and size
of the overlap, n > 2.
We used the following databases: the WormBase

[38] WS258 gene class names, anatomy terms, pheno-
types, RNAi phenotypes, developmental stage expres-
sion, and disease-related genes [39]; the ModERN
resource transcription-factor binding sites [40], which
were mapped to transcription start sites (according to
[41]). Additionally, we performed an enrichment ana-
lysis with DAVID 6.8 with the pre-defined selection
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of settings: Functional Categories (COG_Ontology,
UP_keywords, Up_seq_feature), Gene_ontology
(goterm_bp_direct, goterm_cc_direct, goterm_mf_dir-
ect), Pathways (KEGG_pathway), Protein_domains
(Interpro, Pir_superfamiy, smart) [42, 43].

Analysis of polymorphisms between N2 and CB4856
Polymorphisms between N2 and CB4856 were ob-
tained from Thompson et al. [16]. We tested enrich-
ment of the top 5% contributing genes of each of the
four axes in genes with polymorphisms related to dif-
ferent features (deletion of an exon, frameshifts, full
deletion of a gene, located in the 5′ or 3′ regulatory
region, affecting splicing, leading to gained or lost
stops, in-frame insertions/deletions, and (non-)syn-
onymous substitutions).
We calculated the significance of the overlap using a

hypergeometric test. The p values were called significant
at a Bonferroni-corrected threshold of p < 0.001 and an
overlap of more than 10 genes.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-019-0725-6.

Additional file 1: Table S1. Overview of microarray samples used in this
study. Includes detailed information on the treatment conditions,
previous publications, ArrayExpress accession numbers, and whether they
were used for deriving the different axes (H, GH, D, GD). Table S2. Top 5%
of genes contributing to the different axes. Table S3. Full output of the
enrichment analysis using the webtool DAVID 6.8. Enrichment categories
(using standard settings) include: Functional Categories (COG_Ontology,
UP_keywords, Up_seq_feature), Gene_ontology (goterm_bp_direct,
goterm_cc_direct, goterm_mf_direct), Pathways (KEGG_pathway),
Protein_domains (Interpro, Pir_superfamiy, smart). Table S4. Additional
enrichment output. The following resources were used: WormBase
(https://wormbase.org/) version WS258 gene class names, anatomy terms,
phenotypes, RNAi phenotypes, developmental stage expression, and
disease-related genes, and the ModERN resource transcription-factor
binding sites (http://epic.gs.washington.edu/modERN/). Table S5. Lifespan
data. Columns X1-X51 gives the accumulative number of dead worms on
day 1-51 post age-synchronization. Each row represents a different geno-
type. Control conditions are continuous 20°C; heat-stress animals were
exposed to 35°C for 4h starting 46h after age-synchronization, after which
they were returned to 20°C. Table S6. Lifespan statistics. Output of log-
rank test comparing lifespan in control conditions and after heat-stress.
Tests were performed using the R package “survival” (vs. 2.42-6). The table
also includes the FDR-adjusted p-values.

Additional file 2:. Background information on the methods used to
derive the axes including supplementary figures S1-S9. Figure S1. Distribu-
tion of the logarithm of gene expression levels of developmental data.
Figure S2. Analysis of principal components obtained from developmen-
tal data. Figure S3. Projections of N2 data on the second principal axis
(developmental axis, D) vs. time. Figure S4. Components of the first prin-
cipal axis inferred using a subset of the heat-stress vs. the corresponding
average expression level. Figure S5. Projection on the second principal
axis (heat-stress axis, H) vs. time. Figure S6. Projection of IL- and RIL-
samples on the heat-stress axis H. Figure S7. Comparison between the
variability of the projection on the heat-stress axis of RILs, ILs and N2. Fig-
ure S8. Projection of RILs and ILs data on the RIL axis. Fig S9 - Projection
of RILs and ILs data on the RIL heat-stress axis, GH.

Additional file 3: Figure S10. Comparison with previous expression QTL
studies. Heatmap comparing the top contributing genes of the axes H, D,
GD, and GH with eQTL experiments from studies using C. elegans at
various ages and treatments. Figure S11. Enrichment of the top
contributors of axes H, D, GD, and GH with genes containing
polymorphisms between N2 and CB4856. Figure S12. Projections of RIL
data on GD and GH vs. the effect of a 4h heat-stress on lifespan. The ef-
fect of heat-stress on lifespan was given as the average lifespan in control
conditions divided by average lifespan when exposed to a short heat-
stress. Each point represents a different genotype. Correlations marked
with a red cross were significant (i.e. Spearman; p < 0.05). Figure S13. Pro-
jections of IL data on axis GD and axis GH vs. the effect of heat-stress on
lifespan. Figure S14. Projection of RIL data on D and H vs. the effect of
heat-stress on lifespan. Figure S15. Projections of IL data on D and H vs.
the effect of heat-stress on lifespan.

Additional file 4. PDF file containing 85 figures (i.e. one figure for each
genotype) depicting survival curves in heat-stress and control conditions.
Associated statistics output can be found in Additional file 1: Table S6.
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