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Abstract

Background: The classic central dogma in biology is the information flow from DNA to mRNA to protein, yet
complicated regulatory mechanisms underlying protein translation often lead to weak correlations between mRNA
and protein abundances. This is particularly the case in cancer samples and when evaluating the same gene across
multiple samples.

Results: Here, we report a method for predicting proteome from transcriptome, using a training dataset provided
by NCI-CPTAC and TCGA, consisting of transcriptome and proteome data from 77 breast and 105 ovarian cancer
samples. First, we establish a generic model capturing the correlation between mRNA and protein abundance of a
single gene. Second, we build a gene-specific model capturing the interdependencies among multiple genes in a
regulatory network. Third, we create a cross-tissue model by joint learning the information of shared regulatory
networks and pathways across cancer tissues. Our method ranked first in the NCI-CPTAC DREAM Proteogenomics

Challenge, and the predictive performance is close to the accuracy of experimental replicates. Key functional
pathways and network modules controlling the proteomic abundance in cancers were revealed, in particular

metabolism-related genes.

Conclusions: We present a method to predict proteome from transcriptome, leveraging data from different cancer
tissues to build a trans-tissue model, and suggest how to integrate information from multiple cancers to provide a

foundation for further research.
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Background

The central dogma of information flow from DNA to
mRNA to protein has been applied for nearly six decades
[1]. Yet, the cell functions as a whole: besides the trans-
lation from mRNA to protein, many other features are
important to the complex protein expression process,
including microRNA, upstream open reading frame [2],
cap-binding proteins [3], poly(A) tails [4], nonsense-
mediated decay [5], or alternative splicing [6]. In addition,
the mRNA and protein abundances are dynamic, due to
ubiquitination and other degradation mechanisms to fulfill
diverse condition-dependent functional requirements [7].
These complicated regulatory mechanisms underlying
protein translation lead to the weak correlations between
mRNA and protein abundances, when evaluating the
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same gene across multiple samples [7-12]. Identifying the
missing factors affecting transcriptomic and proteomic
correlation is important to understanding the biological
mechanisms behind phenotypic variances and diseases.
This is particularly true in cancers. Transcriptomic
and proteomic variations across individuals are expected
in diverse cancers, such as colorectal, breast, and ovarian
cancers [10-12]. These variations have important cli-
nical consequences and implications, due to activation
of different functional pathways, leading to different sub-
types in the same organ, and biomarkers indicative of
high- and low-risk patients in survival analysis [10-12].
These transcriptional and proteomic expression profiles
provide invaluable information to studying cancer mech-
anisms. However, compared with the fast, inexpensive
RNA sequencing profiles, large-scale high-quality pro-
teomic data are costly to obtain, despite remarkable
progress. Therefore, a computational model to predict
protein abundance from mRNA data could help not only
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to quickly obtain an estimation of proteomic data, but also
to understand what are the important players in cancers.

The National Cancer Institute (NCI) Clinical Prote-
omic Tumor Analysis Consortium (CPTAC) [13] and
The Cancer Genome Atlas (TCGA) provide large data-
sets of proteomic and transcriptomic data in many can-
cers, which is an unprecedented source for exploring the
regulatory process of protein expression. In 2017, the
Dialogue on Reverse Engineering Assessment and
Method (DREAM) [14] organized the NCI-CPTAC Pro-
teogenomics Challenge. This challenge provides a sys-
tematic benchmark to evaluate computational methods
for predicting proteomic profiles in breast and ovarian
cancers. Here, we describe the best-performing algo-
rithm in this challenge and reveal the insights derived.
Our approach pinpoints the relative importance of the
innate correlations between mRNA and protein levels,
and the global direct and indirect interactions across all
genes in controlling the expression level of a protein. Based
on the intuition that the regulatory mechanism may be
shared across different cancer types, we built a new model
that shares parameters across two cancers, and improved
prediction performance in both cancers. This reveals a
new, unexplored aspect of the regulatory mechanism that
is previously not captured in single tissue modeling
approaches. Pathway analysis and gene-gene interaction
network indicate that functionally different gene sets have
different predictability profiles and regulatory powers. In
sum, our approach offers a new field standard for protein
abundance prediction across cancer patients, and the key
features used in our model and the innovation of joint
learning across two cancer types will be instructive for
future method development and protein expression regula-
tory mechanism exploration.

Results

Overview of the experimental design for protein
abundance prediction

In this study, we use a training dataset provided by
NCI-CPTAC, which consists of the transcriptome and
proteome data from 77 breast and 105 ovarian cancer
samples. To unbiasedly evaluate prediction methods, a
docker image system was used in the NCI-CPTAC
DREAM challenge for participants to submit their code
and score on a held-out testing dataset of proteomic
data from 108 breast and 82 ovarian cancer samples
(Fig. 1 left). For each protein, the primary evaluation
metric was Pearson’s correlation between predictions
and observations across samples. The final score was
calculated by averaging the prediction correlations of
all proteins under consideration. In addition, the nor-
malized root mean square error (NRMSE) between pre-
dictions and observations was used as the secondary
scoring metrics to evaluate models.
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We developed three major components in order to ex-
tract informative features and exploit the training data
(Fig. 1 right). First, the intrinsic correlation between
mRNA and protein levels was considered in the generic
model. Second, for each protein under investigation, we
utilized the nonlinear interdependencies among all genes
in the gene-specific model. Third, the model weights
were interchangeable between cancer tissues, capturing
the shared regulatory mechanism in the trans-tissue
model. By integrating these components, we enhanced
the prediction of protein abundance in both breast and
ovarian cancers.

Dissection of critical components in determining protein
abundance

To quantify the relative contributions of features that
determine protein abundance, we investigated the per-
formance gain of each component. The average Pear-
son’s correlations of the generic model were 0.37 and
0.40 in breast and ovarian cancer, respectively (Fig. 2a
left; Additional file 1: Figure S1-S2; Additional file 2:
Table S1). By combining the predictions from the gen-
eric and the gene-specific models, we significantly im-
proved the correlations to 0.40 (breast) and 0.46 (ovary)
(Fig. 2a middle; p < 2.2e-16; see the “Methods” section).
To consider the similarity across cancer tissues, we fur-
ther integrated the predictions from the trans-tissue
model and achieved the highest correlations of 0.41
(breast) and 0.47 (ovary) (Fig. 2a right; p < 2.2e-16; see
the “Methods” section). In addition, the RMSEs of these
components were also calculated (Additional file 1:
Figure S3A and Figure S4-S5).

When we built the gene-specific model, a key question
was how many genes should be used as features for
predicting protein abundance. As we expected, as the
number of features increased (the top 10, 100, or 1000
expressed genes), the predictive performances consist-
ently improved in terms of both correlation (Add-
itional file 1: Figure S6-S8; Additional file 2: Table S2)
and RMSE (Additional file 1: Figure S9-S11). Interest-
ingly, filtering feature genes based on prior knowledge of
Gene Ontology (GO) [15, 16] related to “translation”
and “gene expression” did not improve the performance,
whereas using all genes as features achieved the highest
correlations (“GO-features” and “All-features” in Fig. 2b;
Additional file 1: Figure S12-S13) and lowest RMSEs
(Additional file 1: Figure S3B and Figure S14-S15). Of
note, the violins in Fig. 2a represent the ensemble pre-
dictions from (i) generic, (ii) generic and gene-specific,
and (iii) generic, gene-specific, and trans-tissue models,
whereas the violins in Fig. 2b represent the gene-specific
model without stacking any other models. As a result,
the correlations in Fig. 2a are overall higher than those
in Fig. 2b. These results indicate that the abundance of a
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Fig. 1 Overview of the algorithm design for predicting proteomic expression from transcriptomic data. The overall task of this study is to
transform the red matrix, representing the transcriptomic level expression across different individuals, to the blue-gray matrix, representing the
proteomic level expression (left). Three models are created to address this problem (right): (1) generic model, which captures the innate

correlation between mRNA and protein level; (2) gene-specific model, which captures how multiple genes work in a network to control the
protein level under investigation through random forest aggregation of multiple base learners; and (3) trans-tissue model, which captures the

single protein is regulated by the commonly existing
gene-gene associations; the regulatory contributions are
not from a small set of genes but universally distributed
among all genes.

To further investigate the contributions of these three
models, we performed the grid-search of various weights
of them (Additional file 2: Table S3—-S4). To be specific,
we used wl, w2, and w3 to denote the weights for pre-
dictions from the (i) generic, (ii) gene-specific, and (iii)
trans-tissue models, respectively. The sum of these three
weights was set to a constant of 10 and all possible com-
binations of non-negative integers were tested, resulting

in the grid-search triangles of three models in Fig. 2c, d.

In each triangle, the three edges represent three models
and the numbers along each edge represent the stacking
weights. Each grid within a triangle represents the com-
bination of three models and the distances to three
edges correspond to three weights. If a grid is far away
from an edge, it means the corresponding model has a
large weight. For example, in Fig. 2¢c, the golden star is 2
grids away from the right edge (yellow horizontal line),
corresponding to the weight of 2 for the generic model.
Similarly, we can calculate the distances from the golden
star to the other two edges and obtain the corresponding
weights of 3 and 5. The golden star therefore represents
the combination weights of 2:3:5 = generic:gene-specific:
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Fig. 2 The contributions of different models to proteome prediction in breast and ovarian cancers. a From left to right, the correlations were
calculated by assembling the following three models step by step (blue: breast; red: ovary): (1) The generic model, which only uses the transcript-level
expression of a target protein as the only feature; (2) the gene-specific model, which uses the transcript-level expressions of all genes as features for
predicting a target protein; and (3) the trans-tissue model, which is similar to the gene-specific model yet combines both breast and ovarian cancer
samples. b Dissection of the gene-specific model by using different sets of features and samples. (1) Sub-selecting all genes related to “gene
expression” as features. (2) Using all transcripts as features to predict the target protein. (3) Combining samples from two tissues to train. The
correlations between all pairs of models are significantly different (p < 2.2e—16) using Wilcoxon signed-rank test, after bootstrap sampling for 1000
times. ¢, d. The contributions of the generic, gene-specific, and trans-tissue models to the final predictions in the ¢ breast and d ovary. Each grid

0.5
0.4
c
g
©
e “Illr
8
i W '
o
&
©
(O]
o
cancer
0.2

. breast
. ovary

GO-features All-features Combined—samples

ovary
correlation
0.45
0.44
0.43
0.42
0.41
0.40

gene-specific

within a triangle represents the combination of three models, and the distances to three edges correspond to three weights. If a grid is far away from
an edge, it means the corresponding model has a large weight. The combination that achieves the highest correlation is labeled by the golden star,
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right arms of both triangles are in “darker” color (lower correlations), representing large correlation increases when the generic model are integrated

trans-tissue. We observed similar “dark” right arms of
the ternary plots in both breast and ovarian cancers
(Fig. 2c, d), where the correlations were relatively low.
This is because the gene-specific and trans-tissue models
captured non-redundant regulatory information, com-
pared with the generic model. When integrating differ-
ent types of models, we significantly improved the
correlations, leading to the sudden color change moving
from the right arms towards the left-bottom. Further-
more, when moving along the right arms towards the
bottom right, the correlation gradually increased (the

color becomes brighter), since the trans-tissue model
contributed more to the final prediction. The best com-
bination weights of the generic, gene-specific, and trans-
tissue models were 2:3:5 in breast and 1:4:5 in the ovary,
where the trans-tissue model had the largest weights in
both cancers (golden stars in Fig. 2c, d).

Regulatory information of protein abundance is
transferable between breast and ovarian cancers
Regulatory pathways are expected to be shared to a cer-
tain extent across different tissues, which motivates us
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to develop a model that shares the weights between tis-
sues. To investigate the effect of transferring information
between cancer tissues, we trained a “Combined-sam-
ples” model by combining samples from these two can-
cers and directly compared it with the model training on
one cancer only. The “Combined-samples” model largely
increased the prediction correlation from 0.27 to 0.32 in
the breast and from 0.36 to 0.49 in the ovary (“All-fea-
tures” and “Combined-samples” in Fig. 2b). In fact, the
performance was highly dependent on the number of
training samples. When we used 40%, 60%, 80%, or
100% of the samples to train the model, the perfor-
mances gradually increased in terms of both correlation
(Additional file 1: Figure S16-S18; Additional file 2:
Table S5) and RMSE (Additional file 1: Figure S19-S21).
These results demonstrate that current prediction per-
formance is limited by the relatively small sample size.
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Therefore, we combined samples from the two types of
cancers and trained the trans-tissue model, assuming
that the same protein is regulated in a similar fashion in
these two cancers. As we expected, the trans-tissue
model achieved higher correlations since it was trained
on more samples.

In addition to the transcriptomic data, we also investi-
gated other types of data that could potentially contrib-
ute to the prediction of protein abundance (Fig. 3). We
first considered DNA copy number variation (CNV) as
the approximation for proteome. Compared with RNA,
CNV provided much less information and the prediction
correlation of CNV itself was only 0.2 in both breast and
ovarian cancers (RNA and CNV in Fig. 3a, b). We next
used the RNA and CNV values of a gene as features and
trained a random forest model on all available proteins,
yet the performance was worse than RNA itself.
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Fig. 3 Prediction performance using different input features. a, b Pearson’s correlation between predictions and observations across patients in
the a breast and b ovary. The x-axis represents different methods. Specifically, RNA and CNV simply use the mRNA and DNA copy number
variation values as approximations for the proteomic values, respectively. RF is the random forest model trained across all available proteins using
two features, the corresponding RNA and CNV values of a protein. RF+cross1 and RF+cross?2 are the random forest models transferring
information cross breast and ovarian cancers. In RF+cross1, we trained two RF models on breast or ovary data separately and assembled the
predictions of them, while in RF+cross2, we only trained one RF model on the combined breast and ovary data. ¢, d. The prediction performance
using protein sequence and class information in the (c) breast and (d) ovary. In addition to RNA and CNV, in RF+aa, we add 20 features, each
representing the number of occurrence of an amino acid in a protein. In RF+aaKR, we add only the numbers of two amino acids, lysine (K) and
arginine (R), which are the cleavage targets of trypsin in proteomics mass spectrometry. In RF+class, we add four binary features, representing the
four protein classes defined by the CATH protein structure classification database. In RF+aaKR+class, we add features of both the number of
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Nevertheless, the cross-tissue models either trained on
separated or combined data improves the correlation
(“RF,” “RF+crossl,” and “RF+cross2” in Fig. 3a, b). These
results indicate that the RNA level itself is already a
good approximation for the protein abundance, better
than CNV or the simple model trained on RNA and
CNV. Therefore, the CNV data was not used in our final
model. To reduce the potential batch effects across indi-
viduals, different normalization methods were also tested
(Additional file 1: Figure S22).

We further explored the effects of adding features of
protein sequence and class. For each amino acid, we
counted the number of occurrence in a protein sequence
as an extra feature, improving the correlations in both
cancers (“RF+aa” and “RF+aaKR” in Fig. 3¢, d). The bio-
logical motivation of engineering these amino acid fea-
tures is that the expressions of different proteins are
assumed to be regulated by different functional path-
ways. These differences among different proteins should
be integrated into machine learning models, and the
amino acid composition is a simple and effective way to
encode this information. In addition, we focus on two
amino acids, lysine (K) and arginine (R), which are the
cleavage targets of trypsin in proteomics mass spectrom-
etry. Similarly, we considered the protein classes defined
by CATH protein structure classification database as
extra features, which also improved the performance
(“RF+class” and “RF+aaKR+class” in Fig. 3c, d). These
results indicate that biological knowledge, including
amino acid composition and protein classes, is helpful in
predicting protein abundance. In fact, a similar approach
of amino acid composition has been used previously in
predicting protein crystallization [17]. When assembling
models using these features into the final model, we did
not observe any improvement. These features were
therefore not used in our final model.

Joint learning approaches experimental replicate level
accuracy

Since proteomics data have intrinsic noises due to batch
effects and fluctuations, we further estimated the theor-
etical best performance based on the experimental repli-
cates for the overlapping samples measured at two
different cohorts. To be specific, there are 32 ovarian
cancer samples measured at both JHU and PNNL. For
these samples, we calculated Pearson’s correlation (0.59)
and RMSE (0.179) between the experimental replicates
at two cohorts (Additional file 2: Table S6). Meanwhile,
the prediction correlation and RMSE of our method on
the held-out testing dataset during the NCI-CPTAC
DREAM challenge (Additional file 2: Table S7) were
0.53 (Additional file 1: Figure S23—S24) and 0.186 (Add-
itional file 1: Figure S25-526), respectively. These results
indicate that the protein abundance prediction is a
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relatively hard task, due to the intrinsic noises of the
measurements across cancer samples. Although our
method only achieved a medium prediction correl-
ation of 0.53, it is in fact close to the correlation of
0.59 between experimental replicates. In terms of
RMSE, our method is even closer to the accuracy of
experimental replicates and the error is only 3.9%
higher, which is calculated from (0.186 - 0.179)/
0.179 = 3.9%. Currently, our method was built on 77
breast and 105 ovarian cancer samples by transfer
learning. We foresee that this method would become
even closer to the performance of experimental repli-
cates with more training samples, since we have ob-
served the gradually increased performance as the
training set becomes larger (Additional file 1: Figure
S16).

Functionally diverse gene sets display different
predictability spectrums

To investigate the relationship between protein func-
tions and ease of predictability, we performed functional
enrichment analysis of all considered proteins. We found
that gene sets of different predictability were functionally
enriched in different Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [18]. The overall distribu-
tions of correlations between our predictions and obser-
vations for breast and ovarian cancers are shown in
Fig. 4 a and b, respectively. Based on the predictability,
we partitioned the proteins into four groups: the top 0—
25% easiest proteins to predict, the median 25-50% and
50-75% predictable group, and the bottom 75-100%
hardest proteins to predict. For each group, the func-
tional enrichment analysis was performed against KEGG
pathways. In the breast cancer, the gene group easy to
predict was highly associated with the “Metabolism”
category, including pathways of amino acids and other
biomolecules metabolism (red genes in Fig. 4c). In con-
trast, the genes hard to predict were usually associated
with the “Genetic Information Processing” and “Human
Disease” categories, including pathways of ribosome,
spliceosome, proteasome, and three neurodegenerative
diseases (blue and purple genes in Fig. 4c, respectively).
Interestingly, it has been reported that cancers and neu-
rodegenerative disease share common mechanisms of
molecular abnormalities [19, 20]. In particular, micro-
RNA (miRNA)-based regulation of mRNA translation is
a potential common regulator of both cancer and neuro-
degenerative disease [21]. Mutations in genes associated
with cell cycle regulation, protein turnover, and DNA re-
pair have been implicated in these two types of diseases
[22]. We observed similar distribution of functionally
different gene sets in ovarian cancers (Fig. 4d). These re-
sults are consistent with the previous observations that
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stable and housekeeping proteins usually have weak
mRNA-protein correlations, whereas dynamic proteins
tend to have strong correlations [10-12].

To further understand the regulatory patterns of different
genes, we performed similar functional enrichment analysis
on genes ranked by the prediction improvement after inte-
grating the gene-gene interdependencies of the gene-
specific model. We found that in general the housekeeping
proteins, associated with RNA transport, ribosome, spliceo-
some, and proteasome, benefited more than the
metabolism-related genes in both cancers (Additional file 1:
Figure S27). In addition, several disease-related gene sets
gained relatively large improvements in the ovarian cancer,
including Parkinson’s, Alzheimer’s, and Huntington’s dis-
eases. In sum, we find similar mapping landscapes between
protein abundance prediction improvement and functional
pathways in breast and ovarian cancers.

Metabolism-related genes are essential in regulating the
protein abundance

Metabolism-related gene sets make major contributions
to predicting protein abundance. To evaluate the fea-
ture importance of a gene, the mRNA values of each
gene across samples were permuted and the prediction
performance was re-evaluated. Permutation of more
important genes resulted in larger drops in perfor-
mances, which were considered as the feature import-
ance (Additional file 2: Table S8-S9). Based on the
importance, we ranked all genes and performed func-
tional enrichment analysis on the important “driver”
genes. We found that genes of the KEGG “Metabolism”
category played an essential role (Fig. 5). As we ex-
pected, among pathways of carbon metabolism, biosyn-
thesis of amino acids was more critical in determining
the protein abundance.
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To further investigate these “driver” genes, we
mapped them to a gene functional network [23-25].
This network was constructed based on a Bayesian in-
tegration of diverse genetic and functional genomic
data. We extracted a subnetwork that contained only
the driver genes as well as edges that had high esti-
mated probability of the co-functioning relationship

(Fig. 6). The high-confidence connections encompassed
674 “driver” and “target” genes in ovarian cancer and 568
in breast cancer (Additional file 2: Table S10-S11). Then,
we applied the Girvan-Newman community clustering al-
gorithm to the subnetwork. The algorithm iteratively iden-
tifies and cuts the sparse connections that connect different
modules to maximize a modularity score [26, 27].
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The resulting clusters are a collection of gene modules
that are highly connected within the cluster but loosely
connected to other genes. The GO term enrichment ana-
lysis was further performed on the resulting modules. The
important enriched pathways fell into a number of natur-
ally forming groups. Specifically, the processes of gene ex-
pression, protein metabolics, transcription initiation, and
regulation were enriched. The initiation of protein transla-
tion is known to be the bottleneck step of the protein
synthesis [28]. The pathways of cell cycle regulation and
DNA/RNA modification were also prominently featured.
Additionally, the immune response, signal transduction,
response to wounds, and morphological development
were all enriched. Interestingly, it has been reported that
cellular stress responses and wound healing are related to
cancer treatment resistance and metastasis [29-31]. The
results confirmed our expectation that the nexus modules
formed by these genes are loosely but confidently associ-
ated with other genes. The translation level of a protein is
controlled by a complex network consisting of diverse
regulatory elements in the cells.

Discussion
From the central dogma to the complex protein functional
networks and pathways, our understanding of protein ex-
pression regulation has been revolutionized over the past 60
years. Although macromolecular interactions require spe-
cific physicochemical interfaces [32], indirect interactions
and high-level associations exist in cellular environment. In
terms of predicting protein abundance from transcriptomic
data, these ubiquitous associations among all genes play an
indispensable role. This indicates that in addition to the idea
of functional pathways and protein-protein interaction
networks, considering the general direct and indirect inter-
actions among all genes is a complement towards under-
standing the underlying mechanisms [33]. In addition, we
found that adding amino acid composition and protein class
as features improved prediction. A recent study also lever-
aged sequence-based features to predict protein-to-mRNA
ratios, including 5° untranslated region (UTR) folding
energy, coden frequency, and 5" end hydrophobicity [34].
We envision that these sequence-based features are poten-
tially helpful in future development of machine learning
models for predicting proteomes in cancer patients.
Technical advances in the past two decades have
enabled us to investigate the quantitative relationship
between the concentration of a transcript and the
concentration of a protein through transcriptomic and
proteomic profilings. There are two typical ways of cal-
culating the correlation between predictions and obser-
vations [7]. The first way is calculating the correlation
across genes within the same sample [8]. In previous
studies, the protein-to-mRNA ratios were first estimated
for each gene. Then, the protein level was predicted
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through multiplying the mRNA level by the gene-
specific protein-to-mRNA ratio [35, 36]. However, this
type of correlation cannot answer the key question about
protein expression regulation—to what extent the vari-
ation of mRNA levels influences the corresponding pro-
tein level [7]. In addition, it has been clearly pointed out
that this within-sample correlation was dramatically
overestimated [37]. The second way is calculating the
within-gene correlation across samples. In addition to
the understanding of protein expression regulation, the
cross-sample proteome prediction is especially useful in
cancer research (e.g., for distinguishing between high-
risk and low-risk cancer patients) [10, 11]. In the NCI-
CPTAC Proteogenomics DREAM Challenge, the
predictive performance was evaluated using the cross-
sample correlation, instead of the within-sample
correlation. Our joint training approach ranked first in
predicting both breast and ovarian cancer proteomes,
outperforming other methods including random forest
with features derived from KEGG pathways [18] and
Human Protein Reference Database (HPRD) [38] and
LASSO regression with features derived from Protein-
Protein interaction network (BioGRID) [39] and Protein
complex network (CORUM) [40].

Many pioneering efforts have been made to characterize
the proteogenomic features of various cancers [10-12, 41].
However, how to integrate information from multiple
cancers to foster cancer research remains unclear. In this
study, we propose a simple yet effective attempt to address
this problem, facilitating the prediction of protein abun-
dance. It would be interesting to see where the information
is shareable among diverse cancers or other diseases, be-
yond breast and ovarian cancers. Intriguingly, we observe
that protein subsets that are hard to predict are enriched in
several neural degenerative diseases.

The ideas of training models across two cancer tissues
are inspired by the transfer learning strategy widely used
in recent deep learning tasks, including computer vision
and natural language processing. Transfer learning refers
to the situation when a model is trained on one task
and used/adapted on another related task [42]. In this
work, we have one task of predicting protein abun-
dance but we need to build models for two cancer
tissues. We applied a joint learning strategy to build
the trans-tissue model, which is similar to transfer
learning in a broad sense.

Conclusions

We present a novel method to predict protein abun-
dance by transferring information across tissues. The
ideas embedded in our approach, including general
gene-gene associations and information transfer across
cancer types, will provide useful insights into protein ex-
pression regulation and cancer research.
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Methods

Data collection

For both breast and ovarian cancers, the proteome data
were acquired using the isobaric Tags for Relative and
Absolute Quantification protein quantification method.
The proteomics data were downloaded from CPTAC
data portal. For breast proteome, 77 samples were ana-
lyzed at the Broad Institute (BI). For ovarian proteome,
84 and 122 samples were analyzed at Pacific Northwest
National Laboratory (PNNL) and Johns Hopkins Univer-
sity (JHU), respectively. The protein log ratios of the
protein abundance were calculated including only pep-
tides that map unambiguously to the protein. Only 105
samples from different patients with TCGA RNA-seq
data were used in this work. The transcriptomics data
for the corresponding breast and ovarian cancer samples
were downloaded from TCGA firehose.

Proteomic data processing

The proteomic data were processed by the standard data
analysis pipeline from CPTAC, which was described in
detail in the original CPTAC publications [11, 12]. The
tumor sample tissues were first digested into peptide
with trypsin and the digested samples were labeled with
4-plex iTRAQ [43]. These labeled samples were subse-
quently fractionated by basic reversed phase liquid chro-
matography (LC) to reduce sample complexity. The LC
separated samples were used in the LC-MS/MS system
for proteome analysis. MS analysis was performed using
the Thermo Scientific LTQ Orbitrap Velos mass spec-
trometer. Thermo RAW files were processed with
DeconMSn (v2.3.0) to determine the m/z values and
charge of the precursor ions and saved as CDTA files.
Then, the CDTA files were processed with DT ARefinery
[44] to correct for instrument calibration errors. The
database search engine MSGF+ [45] was used to match
the CDTA files against the RefSeq human protein se-
quence database (release version 37). Subsequently, pep-
tides were identified and assembled into proteins using
IDPicker [46]. The maximum false discovery rate (FDR)
was set to 1% at peptide level, and a minimum of 3
unique peptides was required to identify a protein. The
intensities of iTRAQ reporter ions were extracted using
MASIC [47] and the ratio of sample abundance to refer-
ence abundance from ion intensities was calculated as
the relative protein abundance. The relative abundances
were further log2 transformed to obtain the relative
expression values. To reduce the sample-specific bias,
the protein abundances from the same sample were re-
centered to achieve a common median of zero.

Transcriptomic data processing
The transcriptomic data were processed by the standard
data analysis pipeline from TCGA, which was described in
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detail in the original publication [48]. The raw RNA se-
quencing data were generated using the Illumina HiSeq,
and the sequencing reads were aligned to the human
reference genome (hgl9) using MapSlice [49]. The gene
expression levels were first quantified for the transcript
models (TCGA GAF 2.13) using RSEM4 [50] and normal-
ized to a fixed upper quantile within each sample. Then,
the normalized data were further log2 transformed and
median centered by gene. If a gene had a value of zero be-
fore log2 transformation, then this gene was labeled by
“NA” (missing value) after log2 transformation.

Generic model

For each gene i, the mRNA levels across patients were
used as the baseline predictions for the corresponding
protein abundance across the same patients (top-left in
Fig. 1). If the mRNA values were missing, we used the
average of all non-missing RNA observations of the
same gene as the imputation:

Hnon-missing
Kmissing = § Xi /nnon—missing

i=0

where x; represents the mRNA level of a non-missing
sample and #,on-missing Te€presents the number of non-
missing samples.

Gene-specific model
The entire RNA-seq data is represented by a m-by-n
matrix X,

x11  x12 xln
x21 %22 x2n
xml xmn

where rows represent genes and columns represent sam-
ples. An element x; denotes the mRNA level of gene i
from sample j. Similar to mRNA, the proteomic data is
represented by a s-by-# matrix Y,

yll y12 yln
y21 22 y2n
ys1 o o ysm

where rows represent proteins and columns represent
samples. For each gene, we created a gene-specific ran-
dom forest (RF) model [51], with a maximum depth of 3
and 100 trees (bottom in Fig. 1). As one of the tree-
based models, RF has been reported to avoid overfitting
and capture nonlinear interactions between features
[52-55]. For example, for gene i, we treated the protein
levels of this gene across n samples (y;1, ¥iz, -.-» Yin) @S 1
targets. For each sample y;, we use its corresponding
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mRNA levels of all m genes (x1z X2p ---» i) @S @ vector
of m features. In this way, we trained a model using n
samples. And for a different gene j, we created a differ-
ent model since the target values across n samples (y;1,
Yj2s - Yjn) are different. Thus, we call this a gene-
specific model. After excluding genes with missing
mRNA values, the total numbers of feature genes are
8738 and 5837 in breast and ovarian cancers, respect-
ively. These models were implemented using the func-
tion called ensemble.RandomForestRegressor of python
module scikit learn.

Trans-tissue model

The numbers of proteins to be predicted are 10,006 and
7061 in breast and ovarian cancers, respectively. Among
them, 6934 proteins are common in the two cancers. To
pool regulatory information between two cancers, we
combined the patient samples for each common protein
and trained the trans-tissue random forest model in the
same way as the gene-specific model (top-right in Fig. 1).
The total number of training samples is 182 (77 breast
and 105 ovarian).

Statistical analysis

To compare the prediction correlations among different
models, the bootstrap sampling with replacement was per-
formed. Specifically, 5000 genes were randomly selected
to calculate the overall prediction correlation of a model
in each bootstrap sample. The sampling was performed
1000 times for each model, followed by the Wilcoxon
signed-rank test to compare two models. The differences
between all pairs of models in Fig. 2a, b were statistically
significant (p <2.2e-16). The p values were calculated
using the default function wilcox.test in R version 3.4.4.

Fivefold cross validation

To systematically compare the performance of different
models and features, fivefold cross validation was per-
formed on the training data of 77 breast and 105 ovarian
cancer samples. For each cancer, the entire training sam-
ples were randomly partitioned into five non-overlapping
subsets. In each validation, four subsets were used to train
a model and one subset was used to validate the perform-
ance of this model. This resulted in 5 scores, reflecting the
overall performance of a model on the entire dataset.

Comparing models using different numbers of features

To evaluate the effects of using different numbers of fea-
tures, the top 10, 100, and 1000 highly expressed genes
and all genes (8738 breast genes and 5837 ovarian genes)
were used to train the gene-specific models. We further
evaluated the filtered gene subset based on GO ter-
minology (GO 0010467: gene expression and GO
0010468: regulation of gene expression), resulting in
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4472 and 4473 feature genes in the GO breast and
ovarian cancer models.

Comparing models trained on different numbers of
samples

To evaluate the effects of training different numbers of
samples, 20%, 40%, 80%, and 100% of training samples
were randomly selected to train the gene-specific model.
Then, the samples from the breast and ovarian cancers
were combined and trained in the trans-tissue model.

Model ensemble

For each protein, the weighted average predictions from
the generic and the gene-specific models were calcu-
lated, with the weighting ratio of 1:3. For the 6934 com-
mon proteins, the predictions from the trans-tissue
model were added, with the weighting ratio of 1:1. It
should be noted that, for non-common proteins, the
trans-tissue model is not applicable. These weights were
used to generate predictions. To evaluate the effect of
different weighting ratios, we performed a grid-search of
all possible weights from O to 10 among the generic,
gene-specific, and trans-tissue models.

Evaluation metrics
To evaluate the performance of different models, Pear-
son’s correlation between observed and predicted abun-
dances across all samples was calculated for each
protein. We then took the mean correlations of all pro-
teins as the primary evaluation score. In addition, the
normalized root mean square error (NRMSE) was used
as the secondary metric to compare models.

The formula for computing the Pearson correlation r
is as follows:

1 e (xi—§)<yi—2)
Sk X S,

Hobs—1

i=1

The formula for computing NRMSE is as follows:

z@)s (yi_xi)z/nobs
NRMSE = \/Z !

Vmax ~Ymin

The observed and predicted values are denoted by y
and x, respectively. S, and S, are their standard devia-
tions. For each protein, 7, is the number of observed
samples. And Y. and yu;, are the respective maximal
and minimal value across all observed samples.

Correlations and RMSEs between experimental replicates
There were 32 overlapping ovarian cancer samples
measured at both JHU and PNNL. These overlapping
samples were used to estimate the theoretical best
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performance that could be achieved by a computational
prediction method. Pearson’s correlations and RMSEs
for all 5218 proteins under consideration were calculated
across the 32 ovarian cancer samples.

Feature importance

Random forest enables us to estimate the importance of
each chemical feature by permuting the values of a fea-
ture across samples and computing the increase in pre-
diction error, delta-error. More important feature genes
have larger delta-error. Based on the delta-error, we
evaluate the importance of all feature genes.

Functional enrichment analysis

All the evaluated proteins were quantile partitioned into
four subsets based on the prediction performance. For
each subset, functional annotation was performed using
DAVID. We further analyzed the functional enrichment
of proteins ranked by the improvement compared with
the baseline mRNA and protein levels and proteins play-
ing important roles in regulating the protein abundance
of all genes.

Functional network analysis

The top 500 genes with the highest feature importance
(“driver” genes) were mapped to a gene functional net-
work. A subset of highly connected genes were selected
for the clustering analysis (674 genes in the breast and
568 genes in the ovary). These genes, together with
edges among these genes, were extracted to a subnet-
work. The network was then fed into GLay community
clustering method. The clustering method is based on
the Girvan-Newman algorithm [23] and implemented in
ClusterMaker2, a Cytoscape plugin. The method dissects
the original subnetwork into multiple modules. Each of
the modules was then fed into BINGO, a Cytoscape plu-
gin, for GO term enrichment analysis.

Figure preparation

The figures were prepared using R package ggplot2,
ggtern and GGally. The protein structures shown as a
3D illustration in Fig. 1 are downloaded from Protein
Data Bank. Their IDs are lcr5, 1ctq, lgrn, 1jbb, 1kpc,
1tnd, 1yfp, and 1zho. These images were generated by
VMD 1.9.3.

Availability of code
Source code: https://github.com/GuanLab/proteome_
prediction

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512915-019-0730-9.
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Additional file 1: Extended methods and supplementary figures.
Figure S1. The distribution of correlations in breast. Figure S2. The
distribution of correlations in ovary. Figure S3. The RMSEs of different
models. Figure S4. The distribution of RMSEs in breast. Figure S5. The
distribution of RMSEs in ovary. Figure S6. Correlations using different
numbers of genes as features. Figure S7. The distribution of correlations
using different numbers of features in breast. Figure S8. The distribution
of correlations using different numbers of features in ovary. Figure S9.
RMSEs using different numbers of genes as features. Figure S10. The
distribution of RMSEs using different numbers of features in breast.
Figure S11. The distribution of RMSEs using different numbers of
features in ovary. Figure S12. The distribution of correlations of different
models in breast. Figure S13. The distribution of correlations of different
models in ovary. Figure S14. The distribution of RMSEs of different
models in breast. Figure S15. The distribution of RMSEs of different
models in ovary. Figure $16. Correlations using different numbers of
samples. Figure S17. The distribution of correlations using different
numbers of samples in breast. Figure S18. The distribution of
correlations different numbers of samples in ovary. Figure $19. RMSEs
using different numbers of samples. Figure S20. The distribution of
RMSEs using different numbers of samples in breast. Figure S21. The
distribution of RMSEs using different numbers of samples in ovary.
Figure S22. The effects of different training scenarios and normalization
strategies. Figure $23. The correlation comparison with experimental
replicates. Figure S24. The pair-wise correlation comparison with
experimental replicates. Figure $25. The RMSE comparison with
experimental replicates. Figure $26. The pair-wise RMSE comparison with
experimental replicates. Figure S27. The functional enrichment analysis
of gene sets with different correlation increases.

Additional file 2: Supplementary Tables. Table S1. The five-fold
Pearson’s correlations of the generic, gene-specific and trans-tissue
models. Table S2. The five-fold correlations of models using different
numbers of features. Table S3. The weighting ratios to stack the generic,
gene-specific and trans-tissue models and the corresponding prediction
correlations in breast. Table S4. The weighting ratios to stack the generic,
gene-specific and trans-tissue models and the corresponding prediction
correlations in ovary. Table S5. The five-fold correlations of models using
different numbers of samples. Table S6. The correlations and RMSEs
across 32 overlapping ovarian cancer samples measured at both JHU and
PNNL. Table S7. The correlations and RMSEs of our predictions on the
held-out testing dataset of 82 ovarian cancer samples during the NCI-
CPTAC DREAM challenge. Table S8. The feature importance of all genes
in breast. Table S9. The feature importance of all genes in ovary.

Table S10. The list of driver genes and their clusters in the breast
functional network. Table S11. The list of driver genes and their clusters
in the ovary functional network.
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