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The mitochondrial carrier pathway
transports non-canonical substrates with an
odd number of transmembrane segments
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Abstract

Background: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting
pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and
semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25).
The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway
and is dependent on their structure, which features an even number of transmembrane segments and both termini
in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of
transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22
carrier pathway but favors an import via the flexible presequence pathway.

Results: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an
expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane
segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small
TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the
mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction
with canonical carrier proteins.

Conclusions: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-
termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the
mitochondrial import pathway for non-cleavable inner membrane proteins.

Keywords: Mitochondrial pyruvate carrier, MPC, Mitochondrial protein biogenesis, Protein import, TIM22 complex,
Tim9, Tim10, TIM23 complex

Background
Despite its crucial role in physiology, the molecular iden-
tity of the mitochondrial pyruvate carrier (MPC) was un-
covered only in recent years [1, 2]. MPC enables transport
of pyruvate into the mitochondrial matrix for oxidative
metabolism via pyruvate dehydrogenase and the tricarb-
oxylic acid cycle. Due to this central position in energy
metabolism, the MPC plays a crucial role in metabolic
switches between glycolytic and respiratory growth and

affects cancer stemness [3–5]. The functional unit of the
MPC is an inner membrane-integrated heterodimer con-
sisting of MPC1 and MPC2 in mammals and of Mpc1
with either Mpc2 or Mpc3 in yeast [1, 2, 6, 7].
The inner mitochondrial membrane harbors a multi-

tude of carrier proteins that belong to the mitochondrial
carrier family (termed MCF or SLC25 for solute carrier
family 25) and transport nucleotides, amino acids, and
other metabolites across the inner membrane. These ca-
nonical, well-studied carrier proteins are characterized
by three structural modules, each consisting of two
transmembrane helices with a connecting matrix loop,
and expose both termini of the polypeptide chain to the
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intermembrane space (Fig. 1a) [8–10]. MPC proteins do
not belong to the established mitochondrial carrier family
but are related to the SWEET (sugars will eventually be
exported transporter) and semiSWEET sugar transporters
that function as two triple-helix bundles [11, 12]. In con-
trast to the canonical carriers with six transmembrane heli-
ces, Mpc2 and Mpc3 were shown to contain three
transmembrane helices with the N-terminus facing the
matrix, based on the accessibility to protease or to thiol

labeling (Fig. 1a) [6, 7]. The N-terminus of Mpc1 faces the
matrix; its exact number of transmembrane segments has
not been defined as biochemical approaches suggested the
presence of two transmembrane segments, whereas a re-
cent homology analysis indicated that Mpc1 displays a simi-
lar topology as Mpc2 and Mpc3 [6, 7]. The active MPC
complexes are heterodimers; Mpc1-Mpc3 promotes pyru-
vate transport during respiratory growth, whereas Mpc1-
Mpc2 functions during fermentable growth [6, 7, 13].

Fig. 1 Import of MPC precursors into the mitochondria. a Membrane topology of substrates of the carrier translocase TIM22 in the inner
mitochondrial membrane (IM). Left, all TIM22 substrates known so far possess a uniform topology with an even number of transmembrane
segments and both termini facing the intermembrane space (IMS): canonical mitochondrial carriers (black) and translocase components (green).
Right, the mitochondrial pyruvate carrier subunits Mpc2 and Mpc3 possess an odd number of transmembrane segments and expose the N-
terminus to the matrix. The N-terminus of Mpc1 is also located in the matrix, Mpc1 likely possesses three transmembrane segments like Mpc2/3.
b Overview of the presequence (TIM23) pathway and the carrier (TIM22) pathway to the IM. Precursors with N-terminal presequence are
recognized by the receptor Tom20, translocated through the TOM complex, and transferred to TIM23 for sorting to the IM or matrix. Precursors
of the mitochondrial carrier family are recognized by the receptor Tom70, translocated through TOM, and handed over to small TIM chaperones
in the IMS (TIM9·10, TIM8·13); the precursors are inserted into the IM by the TIM22 complex. Δψ, membrane potential across the IM; PAM,
presequence translocase-associated motor. c Mpc2 and Mpc3 precursors radiolabeled with [35S] methionine were imported at 25 °C into isolated
yeast wild-type mitochondria for the indicated periods. Non-imported precursors were degraded with proteinase K (PK) where indicated; the
mitochondria were analyzed by SDS-PAGE and autoradiography. d Mpc2 and Mpc3 import and assembly into a native complex is Δψ-dependent.
Radiolabeled Mpc2 and Mpc3 precursors were imported as in c; mitochondria were PK-treated and analyzed by BN-PAGE and autoradiography. e
Mpc2 and Mpc3 are not proteolytically processed upon import into mitochondria. Mpc2 and Mpc3 were imported into mitochondria as in c. The
reactions were analyzed by SDS-PAGE and autoradiography. For comparison, 20% of reticulocyte lysate (precursor) used in the import reactions
were included
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The import pathway of canonical carrier precursors
from the cytosol to the carrier translocase of the inner
mitochondrial membrane (TIM22) has been well estab-
lished (Fig. 1b) [14–16]. After recognition of internal,
non-cleavable signals by the receptor Tom70 of the
translocase of the outer membrane (TOM) [17–19], car-
rier precursors pass through the TOM channel into the
intermembrane space. There, the hydrophobic precur-
sors are bound by small TIM chaperones and are trans-
ferred to the TIM22 complex for membrane potential
(Δψ)-dependent insertion into the inner membrane
(Fig. 1b) [15, 20–24]. In contrast to the highly versatile
presequence translocase of the inner membrane
(TIM23) that handles a large variety of precursor pro-
teins, including cleavable and non-cleavable matrix and
inner membrane proteins with differing topologies, the
carrier translocase TIM22 is thought to have a narrow,
well-defined substrate repertoire (Fig. 1a, b). The only
known physiological substrates of the TIM22 pathway
are the mitochondrial carriers with 6 transmembrane
segments (> 30 members in fungi and > 50 members in
mammals [9]) and the translocase components Tim17,
Tim22, and Tim23 with 4 transmembrane segments, all
sharing the same topology with both termini facing the
intermembrane space (Fig. 1a) [14, 15]. Precursors
imported by the carrier pathway are bound and trans-
ported by the TOM complex in a modular fashion with
pairs of transmembrane helices being translocated [14,
18, 19, 23, 25]. Binding to the small TIM chaperones
also takes place in a modular fashion [26]. Mutational
studies with truncated carrier precursors indicated that
the cooperation of the 2-helix modules is crucial for im-
port and assembly via the carrier pathway [19, 27–29].
Truncated carrier precursors with 4 or less transmem-
brane segments were even mistargeted via the TIM23
complex into the matrix or remained in the intermem-
brane space [28, 29]. A remarkable exception in the car-
rier family is Ugo1 that contains an odd number of
transmembrane segments (3). Indeed, Ugo1 is not
imported by the TIM22 pathway but is an integral com-
ponent of the mitochondrial outer membrane [30–33].
The findings reported so far thus strongly support the
model of strict substrate selectivity of the TIM22
pathway.
The biogenesis pathway of MPC proteins from their

synthesis in the cytosol to their mature destination in
the inner membrane has not been elucidated. The odd
number of transmembrane segments and positioning of
the N-terminus in the matrix argues against an import
via the TIM22 carrier pathway but favors an import via
the flexible presequence pathway. Here, we systematic-
ally analyzed the import pathways of Mpc2 and Mpc3
and unexpectedly observed a clear dependence on the
carrier import pathway, including the receptor Tom70,

TIM chaperones, and TIM22 complex, but not on the
presequence pathway. These findings substantially ex-
pand the substrate spectrum and translocation flexibility
of the mitochondrial carrier pathway.

Results
Targeting and Δψ-dependent import of MPC precursors
into mitochondria
We synthesized and radiolabeled the precursors of Mpc2
and Mpc3 in a cell-free system and imported them into
isolated yeast wild-type mitochondria. The precursors
were transported to a protease-protected location
(Fig. 1c) and assembled into a complex migrating at ~
150 kDa in blue native gel electrophoresis (Fig. 1d) like
the mature assembled MPC dimers detected by Western
blotting (Additional file 1: Figure S1a-d) [1, 6]. The rela-
tively slow migration of the ~ 30 kDa MPC dimers on
blue native electrophoresis is likely due to considerable
amounts of lipids and detergent bound to MPC, similar
to observations with other small membrane proteins [7,
26, 34, 35]. In the absence of a membrane potential Δψ,
the transport to a protease-protected location was im-
paired and the assembly into the ~ 150 kDa complex was
blocked (Fig. 1c, d), demonstrating that Δψ across the
inner membrane was required for the biogenesis of the
MPC proteins in line with the inner membrane
localization of mature MPC. The strong Δψ dependence
of the formation of the 150 kDa MPC complex upon
importing radiolabeled precursors provided an efficient
assay for studying import and assembly of Mpc2 and
Mpc3 in organello. The imported proteins (+Δψ) showed
the identical SDS gel mobility as the non-imported pre-
cursors (−Δψ) and the precursors synthesized in the
cell-free system (Fig. 1c, e), indicating that neither Mpc2
nor Mpc3 carried a cleavable presequence, in agreement
with a systematic proteomic study that did not detect a
cleavable presequence in Mpc3 (termed Fmp43 before
the assignment as MPC subunit) [36].
Precursor proteins imported via the presequence

pathway are typically recognized by the receptor
Tom20, whereas canonical carrier precursors are rec-
ognized by Tom70 [17, 35, 37–42]. Import and as-
sembly of Mpc2 and Mpc3 into tom20Δ
mitochondria were not inhibited, but even slightly
better than that into wild-type mitochondria,
whereas import of the presequence pathway sub-
strate F1-ATPase subunit β (F1β) was inhibited in
the mutant mitochondria as expected (Fig. 2a–c,
Additional file 2: Figure S2a-c). When Mpc2 or
Mpc3 were imported into the mitochondria lacking
Tom70, however, we observed a reduction of import
and assembly similar to that observed for the ADP/
ATP carrier (AAC) (Fig. 2a–c, Additional file 2: Fig-
ure S2d-g). The individual TOM receptors do not
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exclusively recognize one defined substrate class but
possess an overlapping specificity [37, 43, 44]. In
particular, precursors with N-terminal presequences
recognized by Tom20 can contain additional internal
targeting signals that interact with Tom70, and thus,
these precursors employ both receptors [43–45]. The

selective dependence of Mpc2 and Mpc3 on Tom70
and not on Tom20 (Fig. 2a, b, Additional file 2: Fig-
ure S2 g), however, does not fit to the typical recep-
tor dependence of preproteins with N-terminal
targeting signals but to that of the mitochondrial
carrier family MCF/SLC25.

Fig. 2 Import of Mpc2 and Mpc3 precursors occurs via the receptor Tom70, not Tom20. Radiolabeled Mpc2 (a) and Mpc3 (b) were imported at
25 °C into mitochondria from wild-type (WT), tom20Δ, or tom70Δ yeast strains and analyzed as described in Fig. 1d. a, b (lower panels)
Quantification of import and assembly efficiency; the efficiency into WT mitochondria upon the longest import period was set to 100% (control);
n = 3 except Mpc2 import into tom70Δ: n = 4; error bars: SEM. As controls, the matrix-targeted precursor of F1β was imported into tom20Δ
mitochondria (c, left panel, with α-Ssc1 immunodecoration as a loading control), and the carrier protein AAC was imported into tom70Δ
mitochondria (c, right panel). In all experiments, non-imported precursors were degraded with proteinase K. m, mature form
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MPC precursors are imported via the TIM22 complex and
not the TIM23 complex
To directly determine whether the TIM22 complex or
the TIM23 complex is responsible for membrane inser-
tion of Mpc2 and Mpc3, we imported the precursor pro-
teins into mitochondria which were isolated from yeast
mutants that specifically affect one of the translocases.
To date, all imported mitochondrial proteins that ex-

pose the N-terminus to the matrix have been found to
be transported by the TIM23 pathway [14, 15]. Since the
MPC proteins also expose their N-termini to the matrix,
we analyzed the dependence on the TIM23 machinery.
The yeast mutants tim17-5 and tim17-4 selectively im-
pair TIM23-mediated matrix import or lateral sorting of
cleavable preproteins into the inner membrane, respect-
ively, without disturbing the inner membrane potential
and the canonical carrier import [46, 47]. Import and as-
sembly of Mpc2 and Mpc3, however, were not inhibited
in tim17-5 mitochondria after an in vitro heat shock at
37 °C (Fig. 3a, Additional file 3: Figure S3a; the corre-
sponding wild-type mitochondria were subjected to the
same heat shock conditions), whereas import of the
TIM23-dependent matrix protein F1β was considerably
impaired (Fig. 3b). Unexpectedly, heat-shocked tim17-4
mitochondria, which were impaired in the inner mem-
brane sorting of the TIM23 model substrate b2(220)-
DHFR [46, 47], efficiently imported and assembled
Mpc2 and Mpc3 in a Δψ-dependent manner (Fig. 3c, d;
Additional file 3: Figure S3b), indicating that the MPC
proteins are not imported by the presequence pathway.
The lack of the non-essential subunit Tim18 of the

TIM22 complex only mildly affected the import and as-
sembly of Mpc2, Mpc3, and AAC (Fig. 3e–g, Add-
itional file 3: Figure S3c) and thus did not provide an
answer on the translocase dependence. Therefore, we
used the yeast temperature-sensitive mutant tim22-14 of
the essential translocase subunit Tim22 at a permissive
temperature [48] (Additional file 3: Figure S3d). The
mutant mitochondria are disturbed in the assembly of
the carrier translocase TIM22 [48]. Despite mildly re-
duced levels of the TIM22 substrate Tim23 (Add-
itional file 3: Figure S3d), neither the presequence
import pathway (Fig. 3g, right panel) nor the inner
membrane potential is impaired [48]. Import and assem-
bly of Mpc2 and Mpc3, however, were partially reduced
in tim22-14 mitochondria, like import and assembly of
the canonical substrate AAC (Fig. 3e–g, Additional file 3:
Figure S3c, e, f), supporting the view that the MPC pro-
teins use the carrier import pathway.
Taken together, we conclude that the two MPC

proteins are imported via the TIM22 pathway into
the inner membrane despite their non-canonical car-
rier topology and their odd number of transmem-
brane segments.

Import of MPC precursors involves small TIM chaperones
of the intermembrane space
Canonical carrier proteins with their six hydrophobic
transmembrane segments rely on chaperoning by the
small TIM proteins during their transit through the aque-
ous intermembrane space, providing a strict difference to
the presequence import pathway where precursors are dir-
ectly transferred from the TOM complex to the TIM23
complex [20–23, 26, 45, 46, 49–53]. Carrier precursors are
preferentially bound by the essential Tim9-Tim10 com-
plex (TIM9·10), while the alternative Tim8-Tim13 com-
plex (TIM8·13) provides some redundancy and, together
with TIM9·10, promotes the import of β-barrel precursors
to the outer membrane [26, 54]. The association of carrier
precursors with the TIM22 complex is accomplished via a
membrane-bound module of TIM22 comprising Tim9,
Tim10, and Tim12 [20, 22, 24, 55].
The model of MPC import via the canonical carrier

import pathway implies that MPC precursors should de-
pend on small TIM chaperones for crossing the inter-
membrane space. We thus asked if any of the TIM
chaperones participated in the import of Mpc2 and
Mpc3. We used a yeast mutant of the TIM9·10 complex
containing an amino acid replacement in the chaperone
motif of the essential Tim10 protein, resulting in a
temperature-sensitive growth defect. Tim10-L26Q mu-
tant mitochondria are delayed in the import of canonical
carrier proteins and the four-transmembrane substrate
Tim23 under permissive conditions, whereas Δψ and the
presequence pathway are not affected [26]. Import and
assembly of Mpc2 and Mpc3 into the Tim10-L26Q
mitochondria at permissive temperature were reduced
both in the presence and in the absence of TIM8·13,
similarly to the biogenesis of AAC (Fig. 4a, Add-
itional file 4: Figure S4a-c). The lack of TIM8·13 alone
did not impede Mpc2/3 import (Fig. 4a). The steady-
state levels of Mpc1 and Mpc3 were reduced in the
Tim10-L26Q mutant strains, but not in the tim8Δ-
tim13Δ strain, similarly to the levels of the canonical
carrier protein Yhm2 (Additional file 4: Figure S4d). The
increased levels of Mpc2 in the Tim10-L26Q mutant
strains are likely due to the decreased levels of Mpc1 as
the lack of Mpc1 leads to a strong induction of Mpc2
levels (Additional file 1: Figure S1a-f) [1]. A preferential
dependence on the essential TIM9·10 chaperone and a
backup function of the non-essential TIM8·13 chaperone
are consistent with the import behavior of carrier path-
way substrates like AAC and Tim23 and distinguish
Mpc2/3 from the import characteristics of β-barrel pre-
cursors that typically use both TIM9·10 and TIM8·13
[26]. To address a possible requirement for inner
membrane-bound Tim12, we tested the import of the
MPC precursors into mitochondria from the
temperature-sensitive tim12-21 mutant, employing the
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Fig. 3 Mpc2 and Mpc3 are imported by TIM22 and are independent of TIM23. a Wild-type (WT) and tim17-5 mitochondria, which display a
specific defect in TIM23-mediated matrix import [46, 47], were heat-shocked for 10 min at 37 °C prior to import of radiolabeled Mpc2 or Mpc3 at
25 °C. Samples were analyzed by BN-PAGE and autoradiography. Quantification of import and assembly efficiency; the efficiency into WT
mitochondria after 30 min was set to 100% (control), n = 3; error bars: SEM. b As a control, the matrix protein F1β was imported into heat-shocked
WT and tim17-5 mitochondria. Samples were analyzed by SDS-PAGE and autoradiography. p, precursor; m, mature form. c Mpc2 and Mpc3 were
imported at 25 °C into heat-shocked WT mitochondria and tim17-4 mitochondria that display a defect in TIM23-mediated sorting into the inner
membrane [46, 47]. Samples were analyzed and quantitated as in a; n = 3; error bars: SEM. d As a control, the IM sorting substrate b2(220)-DHFR
was imported into heat-shocked WT and tim17-4 mitochondria. Samples were analyzed by SDS-PAGE and autoradiography. i, intermediate form;
m, mature form. e Mpc2 was imported at 25 °C into mitochondria from WT and TIM22-specific yeast mutant strains, tim18Δ or tim22-14, and
analyzed by BN-PAGE and autoradiography. Quantification of import and assembly efficiency as in a; n = 3; error bars: SEM. f Mpc3 was imported
at 25 °C into mitochondria from WT, tim18Δ and tim22-14 strains as in e. Quantification of import and assembly efficiency as in a; n = 3; error bars:
SEM. g The model carrier substrate AAC was imported at 25 °C into tim18Δ and tim22-14 mitochondria (left panel) and analyzed as the Mpc2/
Mpc3 import reactions. As a control, the matrix-targeted precursor of F1β was imported into these mitochondria (right panel) and analyzed by
SDS-PAGE and autoradiography. m, mature form. In all experiments, non-imported precursors were degraded with PK
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Fig. 4 Mpc2 and Mpc3 import depends on small TIM chaperones. a Radiolabeled Mpc2 and Mpc3 were imported at 25 °C into wild-type (WT)
mitochondria, mitochondria with the mutant form Tim10-L26Q, mitochondria lacking Tim8 and Tim13, or mitochondria affected in Tim10, Tim8,
and Tim13 [26]. Samples were analyzed by BN-PAGE and autoradiography. Quantification of import and assembly efficiency; the efficiency into
Tim10-WT/tim8Δtim13Δ mitochondria after 10 min was set to 100% (control); n = 3 for Mpc2 import, n = 4 for Mpc3 import; error bars: SEM. b
AAC (upper panel) and F1β (lower panel) were imported at 30 °C into wild-type or tim12-21 mutant mitochondria, followed by BN-PAGE (AAC) or
SDS-PAGE (F1β) analysis and autoradiography. m, mature form. c Mpc2 (upper panel) and Mpc3 (lower panel) were imported at 30 °C into wild-
type or tim12-21 mutant mitochondria and analyzed by BN-PAGE and autoradiography. d Mpc2 or Mpc3 were imported at 30 °C into wild-type or
tim12-21 mutant mitochondria. Mitoplasts were generated by hypo-osmotic swelling, treated with proteinase K, and analyzed by SDS-PAGE and
autoradiography (upper panel) or Coomassie Blue R-250 staining (Coom.) as a loading control (lower panel). Quantification (right panel) of
membrane potential (Δψ)-dependent import yield after 10 min relative to the WT control; n = 3; error bars: SEM. In all experiments, non-imported
precursors were degraded with proteinase K
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elevated temperature of 30 °C. The tim12-21 mutant
mitochondria were impaired in the carrier pathway
(AAC), but not in the presequence pathway (F1β)
(Fig. 4b) [55]. Import and assembly of Mpc2 were not
significantly diminished in the mutant mitochondria,
whereas Mpc3 was partially affected (Fig. 4c, d) and the
import of AAC was more strongly reduced (Fig. 4b).
These results suggest that the biogenesis of Mpc2/3 in-
volves small TIM proteins, in particular the major sol-
uble TIM chaperone, the TIM9·10 complex.
To directly determine if the MPC precursors depend

on the chaperone function of small TIMs, we synthe-
sized cysteine-free forms of the precursors in a cell-free
translation system [56] and performed an aggregation
assay. The majority of the hydrophobic Mpc2 and Mpc3
precursors aggregated in the cell-free system in the ab-
sence of detergent (Fig. 5a, b). Weinhäupl et al. [26]
showed that the TIM9·10 chaperone prevented the ag-
gregation of a canonical carrier precursor in vitro. We
thus added recombinantly produced TIM9·10 and ob-
served a significant improvement of the solubility of
Mpc2 and Mpc3 in a concentration-dependent manner
(Fig. 5a, b). Importantly, the positive effect of TIM9·10
on the solubility of MPC precursors was abrogated with
Tim10 point mutants in which hydrophobic residues in
the binding cleft were replaced by hydrophilic ones
(Fig. 5c–e). These mutant forms also disrupt the inter-
action with carrier precursors [26], suggesting that MPC
precursors bind to the same hydrophobic motif of the
chaperone as carriers. In addition, we studied the influ-
ence of TIM9·10 on Mpc1, whose topology has not been
fully clarified but based on a recent homology analysis is
likely similar to Mpc2/3, including the lack of a cleavable
presequence [6, 7, 36]. We observed a similar prevention
of aggregation and dependence on specific Tim10 resi-
dues for Mpc1 as for Mpc2 and Mpc3 (Additional file 5:
Figure S5a, b). The levels of Mpc1 are considerably re-
duced in tim22-14 mitochondria and partially reduced in
tim12-21 and Tim10-L26Q mitochondria (Add-
itional file 3: Figure S3d, Additional file 4: S4d), suggest-
ing that the biogenesis of Mpc1 occurs via the carrier
import pathway. Since Mpc1 levels are stable in the ab-
sence of Mpc2 and/or Mpc3 (Additional file 1: Figure
S1e, f), the observed decrease in tim22-14, tim12-21, and
Tim10-L26Q mitochondria likely reflects a defect in
Mpc1 biogenesis rather than an indirect destabilization.
In line with our in organello import results, the TIM8·13
complex only mildly improved the solubility of MPC
precursors (Additional file 5: Figure S5c). We conclude
that the TIM9·10 complex chaperones all MPC precur-
sors. Interaction of TIM9·10 with the MPC proteins is
mediated by the same conserved Tim10 motifs that are
responsible for the chaperone activity toward established
substrates [26].

Discussion
The mitochondrial pyruvate carrier differs substan-
tially from the well-characterized family of mitochon-
drial carriers, by both its topology and its
heterodimeric composition. In particular, all three
MPC proteins have their N-termini in the matrix, and
for Mpc2 and Mpc3, the presence of three transmem-
brane helices has been established [6, 7]. Proteins
with this topology have been expected to be imported
by the TIM23 pathway [14, 15]. In contrast, our re-
sults demonstrate that MPC subunits are imported
into the inner mitochondrial membrane by the carrier
pathway, using all of its characteristic components.
They are recognized on the mitochondrial surface by
the receptor Tom70, are chaperoned through the in-
termembrane space by the TIM9·10 complex, and are
inserted into the inner membrane by the carrier
translocase TIM22. This surprising finding strongly
changes the view of the substrate selection of this
major transport pathway to the mitochondrial inner
membrane.
All studies available so far supported the model that the

carrier pathway can only handle pairs of transmembrane
helices with their termini in the intermembrane space [18,
19, 23, 25, 26]. Different precursor forms such as trun-
cated carrier precursors or the three-helix Ugo1 are either
imported by the highly flexible TIM23 presequence path-
way (bypassing the small TIMs), remain in the intermem-
brane space, or are even directed to the mitochondrial
outer membrane [28–33]. The basic requirements of pro-
teins imported by the carrier pathway include paired
transmembrane helices with a defined topology, positively
charged matrix-exposed segments and the ability to inter-
act with the small TIM chaperones [14, 15, 19, 25–29, 57].
The MPC proteins display a fundamentally different top-
ology but are able to interact with the TIM chaperones,
and their matrix-exposed N-termini and loops (between
transmembrane helices 2 and 3) are positively charged [1,
2, 7]. The two C-terminal transmembrane helices of Mpc2
and Mpc3 may be handled by the TIM22 machinery simi-
larly to a paired helix of a canonical carrier. The N-
terminus of MPCs was suggested to form an amphipathic
helix whose function is unknown [7]. As observed for
mitochondrial matrix and inner membrane proteins, the
matrix-exposed positively charged amino acid residues are
likely involved in the translocation of preprotein segments
across the inner membrane by responding to Δψ (negative
on the matrix side) [24, 25, 57–59]. For the interaction
with TIM chaperones, the same residues in the hydropho-
bic substrate-binding cleft of the TIM9·10 complex are re-
quired for the interaction with both types of substrates,
MPC precursors and canonical carriers [26], providing
strong evidence that the MPCs are bona fide substrates of
the carrier import pathway.
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Fig. 5 (See legend on next page.)
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Conclusions
We conclude that the mitochondrial carrier pathway
possesses a much higher flexibility than anticipated and
can transport transmembrane helices in a paired or non-
paired fashion and direct the precursor N-termini into
the intermembrane space (canonical carriers, Tim17/22/
23) or matrix (MPC proteins). Due to their high conser-
vation, we expect that human MPC subunits [1, 2] are
similarly imported into mitochondria via the carrier
translocase pathway. These findings represent a striking
example that the search for non-canonical substrates
can change even long-established views of an essential
protein translocation pathway.

Material and methods
Yeast strains and growth
The Saccharomyces cerevisiae strains used in this study
are summarized in Table 1. The strains tom20Δ,
tom70Δ, tim18Δ, tim22-14, tim12-21, tim17-4, tim17-5,
Tim10-L26Q, tim8Δ tim13Δ, Tim10-L26Q tim8Δ
tim13Δ, mpc2Δ mpc3Δ, and mpc1Δ mpc2Δ mpc3Δ and
their corresponding wild types were described [6, 26, 46,
48, 55, 60–62]. Deletion strains mpc1Δ, mpc2Δ, and
mpc3Δ and the corresponding BY4741 wild-type strain
were obtained from Euroscarf. Cells for mitochondrial
import experiments were grown on YPG media (1% [w/
v] yeast extract, 2% [w/v] peptone, 3% [v/v] glycerol) or
on YPLac media (1% [w/v] yeast extract, 2% [w/v] pep-
tone, 3% [v/v] glycerol, 0.05% [w/v] CaCl2, 0.06% [w/v]
MgCl2, 0.1% [w/v] KH2PO4, 0.1% [w/v] NH4Cl, 0.05%
[w/v] NaCl, 0.05% [w/v] glucose, 2% [v/v] lactate). For
the analysis of mitochondrial protein and complex levels
in MPC deletion strains, cells were grown on YPG media
or on YPD media (1% [w/v] yeast extract, 2% [w/v] pep-
tone, 2% [w/v] glucose). The growth temperature was
30 °C except for the following strains: Tim10-L26Q,
tim8Δ tim13Δ, Tim10-L26Q tim8Δ tim13Δ, and the cor-
responding wild-type strain were grown at 21 °C; tim12-
21, tim17-4, tom20Δ, and the corresponding wild-type

strains were grown at 24 °C; and tim17-5 and the corre-
sponding wild-type strain were grown at 23 °C.

Isolation of mitochondria
Mitochondria were isolated by fractionation [64]. After
pre-treatment with DTT buffer (100 mM Tris-H2SO4

pH 9.4, 10 mM DTT) and digestion of the cell wall with
zymolyase in zymolyase buffer (20 mM potassium phos-
phate buffer pH 7.4, 1.2 M sorbitol), the cells were lysed
on ice in homogenization buffer (10 mM Tris-HCl pH
7.4, 0.6 M sorbitol, 1 mM EDTA, 0.2% bovine serum al-
bumin, 1 mM phenylmethylsulfonyl fluoride (PMSF))
with a glass Teflon homogenizer. After two centrifuga-
tion steps at 2000×g to remove the cell debris and nu-
clei, crude mitochondria were isolated from the
supernatant by centrifugation at 17,000×g. Mitochondria
were resuspended in SEM buffer (250 mM sucrose, 1
mM EDTA, 10 mM MOPS-KOH pH 7.2) and stored at
− 80 °C.

In organello import
In vitro synthesis of [35S]methionine-labeled precursor
proteins was performed with the mMessage mMachine
SP6 transcription kit (Ambion, Cat.# 1340) and the Flexi
rabbit reticulocyte translation kit (Promega, Cat. #
L4540), or with the TNT SP6 coupled reticulocyte tran-
scription/translation kit (Promega, Cat. # L2080). The
following plasmids were used as templates: pGEM4Z-
AAC (Neurospora crassa), pGEM-F1β (S. cerevisiae),
pGEM4Z-b2(220)-DHFR, pGEM4Z-Mpc1, pGEM4Z-
Mpc2, and pGEM4Z-Mpc3. The radiolabeled precursors
were imported into the isolated mitochondria at 25 °C in
import buffer (10 mM MOPS-KOH pH 7.2, 3% [w/v] bo-
vine serum albumin, 250 mM sucrose, 80 mM KCl, 5
mM MgCl2, 2 mM KH2PO4, 5 mM methionine) with 2–
4 mM NADH and an ATP-regenerating system includ-
ing 2–4 mM ATP, 5–10mM creatine phosphate, and
0.1–0.2 mg/ml creatine kinase. Import reactions into
tim12-21 and the control wild-type mitochondria were
performed at 30 °C. tim17-4 mitochondria and tim17-5

(See figure on previous page.)
Fig. 5 Interaction of Mpc2 and Mpc3 with the TIM9·10 chaperone in vitro. a Cell-free reaction mixtures producing Mpc2 (upper panel) or Mpc3
(lower panel) were supplemented with detergent (Brij35) or different concentrations of recombinantly produced TIM9·10 complex. Immunoblot of
the soluble (supernatant) and insoluble (pellet) fractions of the reaction mixtures. b Mpc2 and Mpc3 solubility quantification. In the presence of
detergent (absence of TIM9·10), both Mpc2 and Mpc3 were largely found in the soluble fraction. In the absence of detergent and chaperone, the
majority of Mpc2 and Mpc3 was found in the insoluble fraction. Increasing the concentration of TIM9·10 complex in the cell-free reaction mixture
resulted in increased solubility of Mpc2 and Mpc3; n = 4–5 for Mpc2; n = 3 for Mpc3; error bars indicate standard deviation. c Structural view of
the TIM9·10 complex [26, 68]. In the chaperone complex (left), Tim9 monomers are shown in dark gray and Tim10 in light gray. Altered amino
acids of the mutant variants in the TIM9·10 complex [26] are shown as colored spheres. Tim10 monomer (right) and altered amino acids in the
hydrophobic cleft of TIM9·10. d Immunoblot of the soluble and insoluble fractions of the cell-free reaction mixtures producing Mpc2 or Mpc3 in
the absence of TIM chaperones or in the presence of wild-type TIM9·10 (TIM9·10_WT) or mutant variants of Tim10 in the TIM9·10 complex
(TIM9·10_V29K, TIM9·10_F33Q, TIM9·10_M32K, TIM9·10_F70SF33Q). e Solubility quantification shows solubility of Mpc2 and Mpc3 in the presence
of TIM9·10 mutant variants comparable to the reaction condition without added chaperone complex. n = 3; error bars indicate standard deviation;
*** and ** indicate the significant difference with P < 0.001 and P < 0.005, respectively, in comparison with the reaction with the WT chaperone
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mitochondria and the corresponding wild-type mito-
chondria were heat-shocked for 10 min at 37 °C in
import buffer prior to the addition of NADH, the ATP-
regenerating system, and the radiolabeled precursor
proteins (in reticulocyte lysate), followed by the import
reaction at 25 °C. Reactions included a control sample
where the membrane potential was dissipated with AVO
mix (8 μM antimycin A, 1 μM valinomycin, 20 μM oligo-
mycin) before the addition of precursor. The import re-
actions were stopped by the addition of AVO and
transfer on ice. Non-imported precursor was removed
by a 15-min incubation with 50 μg/ml proteinase K on
ice, unless indicated otherwise. After the inactivation of
proteinase K with 2 mM PMSF, the mitochondria were
reisolated and washed in SEM buffer. To generate mito-
plasts after the import reaction, the mitochondria were
resuspended in hypotonic EM buffer (1 mM EDTA, 10
mM MOPS-KOH pH 7.2). The mitoplasts were treated
with 50 μg/ml proteinase K and subsequently treated
with PMSF and re-isolated as described above. Quantifi-
cation of import/assembly efficiency was performed with

Fiji ImageJ software. Replicates used for quantification
were independent import and assembly assays of incuba-
tion of isolated yeast mitochondria (wild-type and mu-
tant mitochondria) with radiolabeled precursor proteins,
followed by independent gel separation and analysis.
The individual data values from independent replicates
are listed in Additional file 6: Table S1 and Add-
itional file 7: Table S2.

Gel electrophoresis and Western blotting
Import reactions were analyzed by SDS-PAGE or blue
native gel electrophoresis (BN-PAGE) and autoradiog-
raphy. For BN-PAGE analysis [65], mitochondria were
solubilized in solubilization buffer (20 mM Tris-HCl
pH 7.4, 50 mM NaCl, 0.1 mM EDTA, 10% [v/v] gly-
cerol, 1% [w/v] digitonin, 1 mM PMSF) or in low-
ionic strength buffer (50 mM imidazole-HCl pH 7.0,
500 mM 6-aminohexanoic acid, 1 mM EDTA, 3% [w/
v] digitonin, 1 mm PMSF) [66] for 15 min on ice.
Analysis of protein levels and native protein com-
plexes was performed by SDS-PAGE or BN-PAGE,

Table 1 S. cerevisiae strains used in this study

Strain (lab ID no.) Genotype Reference

RL285-16C (SHY WT) (4928) MATa his3Δ1 ura3Δ0 [6]

mpc1Δ (SHY9) (4929) MATa his3Δ1 ura3Δ0 mpc1::kanMX [6]

mpc2Δmpc3Δ (SHY14) (4932) MATa his3Δ1 ura3Δ0 mpc2::natMX mpc3::hphMX [6]

mpc1Δmpc2Δmpc3Δ (SHY15) (4933) MATa his3Δ1 ura3Δ0 mpc1::kanMX mpc2::natMX mpc3::hphMX [6]

YPH499 (WT) (1501) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 [63]

tom20Δ (1273) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1
tom20::URA3 pYEP-TOM22

[62]

tom70Δ (1183) ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tom70::HIS3 [60, 61]

tim18Δ (1383) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim18::kanMX6 [48]

tim22-14 (1370) (YPH499 22-M4) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim22-M4
(amino acid alterations in Tim22-14: I11M, K16R, E21K, G31R, N37D, F63L,
A85T, T86A, K120R, C141S, Y153H, M193 T, K194Q)

[48], this study

tim12-21 (2462)
(YPH-BG-12-1)

MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim12::ADE2
pFL39-TIM12-1ts (amino acid alterations in Tim12-21: S7G, V14D, A22E, D64A)

[55]

tim17-4 (1758) (YPH-BG17-9d) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 BG17-9d (tim17-4)
(amino acid alteration in Tim17-4: C10R)

[46, 47], this study

tim17-5 (1759) (YPH-BG17-21-7) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 BG17-21-7 (tim17-5)
(amino acid alterations in Tim17-5: P42L, R109G, S115P)

[46, 47], this study

WT for Tim10 mutants (5118) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim10::ADE2 pFL39-TIM10 [26]

Tim10-L26Q (5210) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim10::ADE2 pFL39-TIM10-L26Q [26]

tim8Δtim13Δ (5084) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim8::natNT2 tim13::hphNT1
tim10::ADE2 pFL39-TIM10

[26]

Tim10-L26Q tim8Δtim13Δ (5206) MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1 tim8::natNT2 tim13::hphNT1
tim10::ADE2 pFL39-TIM10-L26Q

[26]

BY4741 (WT) (1354) MATa ura3Δ0 his3Δ1 leu2Δ0 met15Δ0 Euroscarf

mpc1Δ (4774) MATa ura3Δ0 his3Δ1 leu2Δ0 met15Δ0 mpc1::kanMX4 Euroscarf

mpc2Δ (4775) MATa ura3Δ0 his3Δ1 leu2Δ0 met15Δ0 mpc2::kanMX4 Euroscarf

mpc3Δ (4776) MATa ura3Δ0 his3Δ1 leu2Δ0 met15Δ0 mpc3::kanMX4 Euroscarf
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respectively, followed by Western blot analysis. The
following rabbit antisera were used (source: Pfanner
Lab, non-commercial antisera specifically prepared for
the lab): α-Mpc1 (GR5021-1, 1:100), α-Mpc2
(GR5024-4, affinity purified, 1:100), α-Mpc3 (GR5025-
5, affinity purified, 1:100), α-Tim22 (GR5113-4, 1:
250), α-Tim54 (GR2012-3, 1:200), α-Tim18 (GR5114-
3, 1:250), α-Tim12 (GR905-1, 1:500), α-Yhm2
(GR3053-5, 1:500), α-Ssc1 (GR1830-7, 1:250), α-
Tom70 (GR657-5, 1:500), α-Tom40 (168-12/5, 1:500),
α-Tom20 (GR3225-7, 1:5000), α-Tim23 (133-6, 1:500),
α-Tim17 (GR1844-4, 1:500), α-Cor1 (GR371-6, 1:500),
α-Tim13 (GR2044-5, 1:500), α-Tim10 (GR2041-7, 1:
250), and α-Atp4 (GR1958-4, 1:500). α-rabbit IgG-
peroxidase was obtained from Sigma-Aldrich (A6154,
1:5000–1:10,000).

Cell-free expression of MPC proteins in the absence or
presence of TIM chaperones
Genes coding for S. cerevisiae Mpc1(C87A), Mpc2(C86A,
C111S), and Mpc3(C87A) were cloned by GeneCust in
customized pIVEX2.3d cell-free expression plasmids be-
tween NdeI and XhoI cloning sites. Cysteine-free variants
were used since previous studies with the chaperoning
assay [26] indicated that the presence of Cys residues can
lead to enhanced aggregation, likely due to disulfide for-
mation. The plasmid codes for the TEV-protease-
cleavable N-terminal His6-tag, and it includes the stop
codon before the C-terminal His6-tag of the original plas-
mid. The produced MPC proteins contain a cleavable
His6-tag at the N-terminus.
MPC proteins were produced in 50 μl cell-free reac-

tion mixtures [67] for 2.5 h at 28 °C. The final compos-
ition of the cell-free reaction buffer was 0.08 mM rUTP,
0.08 mM rGTP, 0.08 mM rCTP, 0.55 mM HEPES, 0.12
mM ATP, 6.8 μM folinic acid, 0.064 mM cyclic AMP,
0.34 mM DTT, 2.75 mM NH4OAc, 80 mM phosphocrea-
tine, 0.208M potassium glutamate, 10.48 mM magne-
sium acetate, 1 mM of amino acid mix, 1.25 μg creatine
kinase, 0.25 μg T7 polymerase, 20 μl S30 E. coli extract,
0.5 μg plasmid DNA, and 0.175 mg/ml tRNAs. The reac-
tion condition with the detergent contained additionally
0.5% of Brij35. To test the specificity of the binding of
MPC proteins by TIM chaperones, the solubility of
MPC proteins was monitored at increasing concentra-
tion of either TIM8·13 or TIM9·10 complexes. The con-
centrations of the chaperones in the reaction mixtures
were 0, 0.2, 1, 2, and 4 mg/ml. To test the effect of se-
lected Tim10 mutant variants in the TIM9·10 chaperone
complex on the binding and subsequently the solubility
of MPC proteins, 4 mg/ml of the TIM9·10_WT,
TIM9·10_V29K, TIM9·10_F33Q, TIM9·10_M32K, and
TIM9·10_F70SF33Q were used. Chaperone complexes of
TIM8·13, TIM9·10, and mutant variants of TIM9·10 for

cell-free experiments were expressed and purified as de-
scribed previously [26].
The cell-free reaction was stopped after 2.5 h, and the

soluble fraction was separated from the insoluble pellet
by centrifugation at 16.800×g. The amount of His-tagged
MPC proteins in the soluble fraction and the pellet were
quantified from the membranes, after the immunode-
coration with anti-His antibody (Sigma-Aldrich mono-
clonal α-polyHistidine-peroxidase antibody; product no:
A7058), as relative band intensities using BioRad Image-
Lab program/software. The solubility of the proteins was
calculated from at least three experiments for each con-
dition, as a percentage of protein in the supernatant in
relation to the total amount of protein in the pellet and
supernatant. Significance of the difference in solubility
between wild-type TIM9·10 and the mutant variants was
analyzed with GraphPad Prism 5 using one-way
ANOVA and Tukey’s multiple comparison test. The in-
dividual data values from independent replicates are
listed in Additional file 6: Table S1 and in Add-
itional file 7: Table S2.
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