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Fitness effects for Ace insecticide resistance
mutations are determined by ambient

temperature
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Abstract

Background: Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to
prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-
free environment, and their frequency is determined by the balance between insecticide treatment and cost of
resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several
species, three amino acid replacements (1161V, G265A, and F330Y) provide resistance against several insecticides.
Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance

could be modulated by ambient temperature.

Results: Experimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes
uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance
mutations were strongly counter selected (s =—0.055), but in a hot environment, the fitness costs of resistance
mutations were reduced by almost 50% (s = —0.031). We attribute this unexpected observation to the advantage of
the reduced enzymatic activity of resistance mutations in hot environments.

Conclusion: We show that fitness costs of insecticide resistance genes are temperature-dependent and suggest
that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs.
We suggest that such environment-dependent fitness effects may be more common than previously assumed and

pose a major challenge for modeling climate change.

Keywords: Drosophila, Experimental Evolution, Insecticide Resistance, Temperature

Background

Acetylcholinesterase (AChE) is a well-studied insecticide
target that is involved in the breakdown of the neuro-
transmitter acetylcholine. It is targeted by organophos-
phates and carbamates [1], which are widely used all
over the world. Soon after their introduction in the
1950s and 1960s, the first cases of insecticide resistance
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alleles of the Ace gene were reported [2]. In many
arthropod species, insecticide resistance is mediated by
insensitive Ace alleles [3-6]. A haplotype containing
three resistance mutations (I161V, G265A, F330Y) oc-
curs worldwide at high frequencies in Drosophila mela-
nogaster [7] and provides higher levels of resistance to
insecticides than haplotypes that contain only one or
two out of the three resistance mutations. The same
three resistance mutations were also identified in Dros-
ophila simulans [8]. Such new resistance mutations are
generally assumed to be deleterious in the absence of
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insecticides [9]. Considerable fitness costs have been
inferred for Ace resistance alleles [10, 11], which can
arise from various factors, such as reduced substrate
affinity, reduced chemical turnover, or lower protein
stability [10].

Understanding the fitness consequences of insecticide
resistance mutations is of key interest for management
strategies. With temperature being a major challenge for
neuronal signaling homeostasis [12] and AChE serving a
central role in neuronal signaling, we reasoned that the
fitness consequences of the Ace insecticide resistance al-
leles may be modulated by ambient temperature. We
tested this hypothesis by experimental evolution in an
insecticide-free environment. We exposed a natural D.
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simulans population to either a cold environment fluctu-
ating between 10 and 20 °C or a hot environment fluctuat-
ing between 18 and 28 °C (Fig. 1a) and followed the allele
frequency changes of Ace resistance alleles for 51 genera-
tions in five replicates in the cold regime and 59 genera-
tions in five replicates in the hot regime. This provided
the opportunity to determine the evolutionary response
under a stable temperature regime over much longer
times than typically possible in natural populations.

Results

The D. simulans founder population, which is a sample
from a natural Portuguese population, has a pronounced
haplotype structure at the Ace locus (Fig. 1b).
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Fig. 1 Experimental design and characteristics of the founder population. a The ancestral experimental population was composed of 250 isofemale
lines from a natural Portuguese D. simulans population. Five replicated experimental populations were maintained at two temperature regimes. In the
hot regime (red), populations are exposed to 12 h of light (28 °C) and 12 h of darkness (18 °C). In the cold regime (blue), populations are exposed to
12 h of light (20°C) and 12 h of darkness (10 °C). All populations were maintained at a constant census size (at least 1000 flies) and non-overlapping
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generations. Genomic sequences (Pool-seq [13]) were obtained from the ancestral population (generation 0) and at generations 15, 37, and 59 for the
hot regime and generations 11, 21, 31,41, and 51 for the cold regime. b Haplotype structure at the Ace locus: The x-axis shows the genomic position
on chromosome 3R in Mb around the Ace locus. Each single row shows the haplotype information of one isofemale line originating from the natural
Portuguese D. simulans population. Isofemale line identifiers are colored by the assigned haplotype class (2 in blue, 1a in orange, and 1b in magenta).
Each column represents one exonic SNP at the Ace locus. Reference alleles (M252) are colored in dark gray and alternative alleles in light gray. The four
previously reported resistant mutations 1161V, G265A, F330Y, and G368A [7] are highlighted in orange, with 1161V/G265A/F330Y being specific to
haplotype class 1a. ¢ Single-dose bioassays for malathion (left column) and propoxur (right column) for the reconstituted ancestral population (anc)
and five evolved replicates from the hot regime (ev-1 to ev-5, generation 132). Bars show the average mortality (24 h after insecticide exposure) for
each experimental population; the error bars show the standard error of the mean
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Haplotypes belonging to the most abundant haplotype
class (class 1) were highly similar with very few segregat-
ing variants (7 =0.0004). The second haplotype class
(class 2) showed normal levels of variation (7 =0.0082)
[14] and no apparent pattern of linkage disequilibrium
(Fig. 1b). The highly reduced variability of the first
haplotype class suggests recent strong selection, as ex-
pected for insecticide resistance alleles. The majority
(59%) of the sequences carried the same three insecticide
resistance mutations (I161V, G265A, F330Y) that are
also highly abundant in D. melanogaster [7]. No haplo-
type with only a subset of these variants was detected.
We further identified an additional resistance mutation
(G368A), which was also described for D. melanogaster
[7]. This resistance allele was not detected on haplo-
types carrying the three other resistance mutations
(Fig. 1b) and segregated at a frequency of 31% in the
founder population (frequency estimates are based on
Pool-seq data).

The founder population was highly resistant against
two different classes of insecticides, carbamate (propo-
xur) and organophosphate (malathion), both targeting
AChE [1]. Consistent with a significant cost of insecti-
cide resistance mutations, insecticide resistance was
strongly reduced in all replicates after evolution in the
insecticide-free laboratory environment (Fig. 1c). Resist-
ance levels of the evolved populations were similar to
the strain M252 from Madagascar, the presumed origin
of D. simulans, which does not carry any resistance mu-
tation at the Ace locus (M252 LDs, propoxur = 0.5 pg,
M252 LDsy malathion = 0.1 pg) [15]. We used Pool-seq
[13] to follow the allele frequency trajectories in all repli-
cates of the two temperature regimes. On the genomic
level, we find a pronounced frequency drop of the three
resistance mutations (I161V, G265A, F330Y) at gener-
ation 51 in the cold regime and generation 59 in the hot
regime (on average 28.79%). The heterogeneous trajec-
tories of the resistance variant G368A across replicates
does, however, not result in a mean frequency change
(2% in the hot regime, 1% in the cold regime). We con-
clude that 1161V, G265A, and F330Y come with a cost
in insecticide-free environments, but the mutation
G368A does not. Furthermore, the resistance assays do
not show a significant effect of G368A because evolved
populations were highly susceptible to the tested insecti-
cides, similar to M252, which lacks this mutation. In
contrast to the 1161V/G265A/F330Y triple mutant, the
single G368A mutation was reported previously to pro-
vide resistance to only a moderate number of insecti-
cides (e.g., not against propoxur) [7], which could
explain why evolved populations are highly susceptible
although G368A is segregating. We did not consider the
mutation G368A in further analyses.
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The special haplotype structure in the founder popula-
tion provided an excellent framework to further test the
fitness effects of insecticide resistance. The two highly
similar haplotype classes (1a, 1b) which are segregating
in the founder population differ by the presence/absence
of the three resistance mutations. The relative frequency
change of the two haplotype classes therefore provides a
direct readout of their relative fitness. Because the same
founder population evolved in hot and cold environ-
ments, it is possible to determine the temperature de-
pendence of the fitness costs. In the cold temperature
regime, we observed the expected fitness cost of the re-
sistance alleles (s=-0.055). However, in the hot
temperature regime, the fitness costs of the three resist-
ance mutations decreased by almost 50% (s =-0.031)
(Fig. 2a), indicating that temperature modulates the ef-
fect of the resistance mutations in an insecticide-free
environment.

The temperature-dependent fitness effect of the three
resistance mutations was inferred in the presence of a
third haplotype class (class 2), which is the fittest haplo-
type class, independent of environmental temperature
(Fig. 2b, ¢; Additional file 1: Figure S1, and S2). To rule
out that an interaction with haplotype class 2 is respon-
sible for this discovery, we confirmed the relative fitness
change of haplotype class 1a and 1b in an independent ex-
periment. We measured the fitness components fecundity
and egg to adult viability for eleven isofemale lines from
the founder population that were homozygous at the Ace
locus but differed in the presence/absence of the resist-
ance mutations. Because we observed in the founder
population only haplotypes with either all three resistance
mutations or none, we focused on these two haplotype
classes. We expect a significant interaction between haplo-
type class and temperature regime for at least one fitness
component, if the fitness cost of the three resistance
mutations is temperature-dependent. Unlike fecundity
(Fig. 2d, Additional file 1: Table S1), we found a significant
interaction between haplotype class and temperature re-
gime for the viability fitness component (full-null model
comparison x* = 14.479, df = 1, p < 0.001, Additional file 1:
Table S2) with haplotype class 1b performing better in the
cold regime (Fig. 2e). The high consistency between viabil-
ity and the selection strength inferred by experimental
evolution (Fig. 2a, f) confirms that the cost of insecticide
resistance is temperature-dependent.

Another very interesting pattern emerged from the
highly polymorphic haplotype class 2. While having the
lowest frequency in the founder population, this haplotype
class dominated the evolved populations, independent of
the temperature regime (Fig. 2b, c¢; Additional file 1: Figure
S1, and S2). The selective advantage of this haplotype class
was on average 1.7 times higher than the absolute fitness
difference between haplotype classes with and without
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Fig. 2 Genomic and phenotypic analysis. a Selection coefficient of the three resistance mutations (1161V, G265A, and F330Y) in the two temperature regimes
determined by the comparison of haplotype class 1a to class 1b. The selection coefficient was defined as s;,— s;,. Bars show the average selection coefficient
of the three resistance mutations over five replicated experimental populations; single points show the selection coefficient for individual experimental
replicates. b Haplotype class trajectories in the hot regime. In each experimental population, the haplotype class frequency is determined by the median
frequency of all marker SNPs. Dots show the haplotype class frequency averaged across replicated experimental populations; error bars indicate the standard
error of the mean (see Additional file 1: Figure S1 for replicate-specific haplotype class trajectories). ¢ Haplotype class trajectories in the cold regime (see
Additional file 1: Figure S2 for replicate-specific haplotype class trajectories). d Average fecundity in the two temperature regimes, for haplotype classes 1a and
1b. The fitted model (log;o transformed eggs per female) is shown as black dots with 95% confidence intervals (determined by parametric bootstrapping; n =
1000). e Average viability estimated as the proportion of eclosed flies in the two temperature regimes, for haplotype classes 1a and 1b. The fitted model is
shown as black dots with 95% confidence intervals (parametric bootstrapping; n = 1000). f Selection coefficients of the two haplotype classes differing only by
the presence/absence of the three resistance mutations (1a, 1b) in the two temperature regimes. Selection coefficients were estimated for the haplotype class
frequencies (= median frequency of all marker SNPs) in each of the five replicated experimental populations. Colored bars show the average selection
coefficients, error bars show the standard error of the mean among replicated experimental populations, and single points show the selection coefficients for
individual experimental replicates
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Discussion

Temperature modulates fitness effects of Ace insecticide
resistance mutations

We show that haplotype class 1a and haplotype class 1b,
which mainly differ by the presence of three insecticide

insecticide resistance. Thus, the two haplotype classes
without the three resistance mutations had very different
fitness. Why haplotype class 2 outperformed all other
haplotype classes in the experimental evolution setting,
but not in the wild, requires further investigations.



Langmdiller et al. BMC Biology (2020) 18:157

resistance mutations, have different fitness costs at hot
and cold temperatures (Fig. 2a, f). Such temperature-
specific fitness effects have been noted before for ex-
ample in mosquitos [16], the Australian sheep blowfly
Lucilia cuprina [17], the aphid Myzus persicae [18], and
the grasshopper Melanoplus differentialis [19]. A major
challenge for the wunambiguous demonstration of
temperature-specific effects in natural populations is
confounding factors, such as environmental heterogen-
eity and migration [16, 20]. Experimental evolution stud-
ies overcome these limitations, but their relevance has
been challenged due to a benign environment [21, 22].
The temperature stress used in this study is one strategy
to reduce this potential caveat. Our results are a vivid
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Fig. 3 Schematic overview of resistance mutations with
temperature-specific effects. An increased activity of AChE at higher
temperature results in a major challenge for neuronal signaling
homeostasis because acetylcholine is degraded at higher levels (top
panel). Because insecticide resistance mutations destabilize AChE,
less acetylcholine is degraded in individuals carrying the resistance
mutations (1a), independent of the temperature. In the hot, this
provides them with a fitness advantage compared to individuals
without the destabilizing resistance mutations (1b) since those suffer
from the excess activity of the fully functional enzyme at high
temperature. The inverse applies to the cold environment in which
the fully functional 1b haplotype class can better compensate for
the reduced enzymatic activity. Because the two alleles result in
AChE activity which is closer to the optimum at different
temperatures, the fitness of the two alleles differs at hot and cold
temperatures (bottom panel)
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demonstration that it is not sufficient to focus on the
molecular mutations, but environmental factors, such as
temperature, need to be included to understand fitness
costs [21, 23-29].

Insecticide resistance as a driver of temperature
adaptation

The pronounced reduction in fitness cost of the three
resistant mutations in the hot relative to the cold en-
vironment (Fig. 2a) is particularly interesting. We rea-
son that this temperature-specific behavior is related
to enzyme activity. A higher activity of AChE in the
hot provides a major challenge for signaling homeo-
stasis. Thus, alleles that reduce the excess activity of
AChE in hot environments may be less deleterious at
this temperature regime. While the I1161V/G265A/
F330Y triple mutant has been reported to have a
similar enzymatic activity to the wild type, the re-
duced protein stability caused by the three resistance
mutations will decrease the amount of functional
AChE in the synaptic cleft [10] and therefore counter
the effects of hot temperature and facilitate signaling
homeostasis. On the other hand, the already lower
enzymatic activity in the cold explains why the resist-
ance mutations which further reduce the efficiency of
AChE are highly deleterious in the cold (Fig. 3).

It is remarkable that a different component of neur-
onal signaling, the dopamine pathway, has been identi-
fied as a major driver of adaptation in an experimental
evolution study using the same temperature regime, but
a different founder population [30]. We propose that
neuronal signaling is a major target of temperature
adaptation, and the evolutionary response depends on
the selection targets which require specific changes to
retain signaling homeostasis [23]. Our hypothesis is fur-
ther supported by clinal variation in natural D. simulans
populations for these three resistance mutations in
Australia, with higher frequencies in hot environments
[8]. In D. melanogaster, Ace shows also clinal variation
[31] and is among the most differentiated genes in nat-
ural populations [32]. Nevertheless, variation in insecti-
cide treatment could also explain this pattern and very
likely operates synergistically with the discovered fitness
advantage in hot environments.

In vitro experiments cannot be generalized to estimate

in vivo fitness costs

In vitro methods suggested that most single mutations
impose a cost of reduced activity and stability, but the
combination of three mutations provides a higher resist-
ance at a minimized fitness costs which suggests that the
triple mutant 1161V/G265A/F330Y may segregate in
natural populations in the absence of insecticides [10].
Contrary to these in vitro predictions, we find that the
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three linked resistance mutations suffer from severe fit-
ness costs in the cold temperature regime, while the sin-
gle mutation G368A did not decrease in frequency
across both temperature regimes. This finding highlights
that in vivo fitness measurements in evolving popula-
tions are crucial to complement and test predictions
based on in vitro experiments, which are often per-
formed at one constant temperature regime [10]. Further
experiments are needed to test if the observed differ-
ences reflect the full organismal complexity or whether
in vitro experiments need to be performed under a
broader range of conditions.

Fitness inference in complex populations is difficult

The combination of a priori known selection targets
with time series data and haplotype information pro-
vides an extremely powerful setting to uncover the
complexities of selection. Independent of the
temperature-specific fitness effects of the three resist-
ance mutations, we find considerable heterogeneity in
fitness among the haplotype classes lacking the three
resistance mutations—haplotype class 1b is outcom-
peted by haplotype class 2 independent of the
temperature regime. Such haplotype-specific fitness is
not unique to our experiment but has been noted be-
fore for susceptible haplotypes [33]. Because the
haplotype classes share segregating variants, their het-
erogeneous fitness complicates the interpretation of
selection signatures, which is nicely illustrated by the

analysis of all SNPs in Ace. Despite the significant
cost imposed by the three resistance mutations, they
are not the top candidate SNPs for the selection tar-
get, even in the cold environment. The reason is that
haplotype class 2 is fitter than both haplotype class
la and class 1b. As a consequence, the analysis of in-
dividual SNPs detects a stronger selection signature
for variants shared between la and 1b than for the
resistance mutations, which are restricted to haplo-
type class la (Fig. 4). Only when the three haplotype
classes are considered separately, the complexity of
the selection history can be detected. Hence, we
propose that selection is more reliably inferred in
complex, polymorphic populations on the haplotype
level than using independent SNPs.

Conclusions

Precise estimates of fitness costs and a profound under-
standing of how these fitness costs are influenced by en-
vironmental factors such as temperature are key to a
successful insecticide management strategy [28]. Our
study confirmed that temperature is a key factor deter-
mining the costs of resistance. The failure to predict the
fitness cost based on in vitro experiments nicely demon-
strates the need to study resistance costs in evolving
populations. More work is needed to determine whether
well-designed experimental evolution experiments can
predict the dynamics of resistance mutations in the wild.
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Methods

Experimental D. simulans populations

A detailed description of the experimental setup can be
found in Mallard et al. [34]. In brief, ten replicated pop-
ulations were created from 250 isofemale lines that origi-
nated from a wild D. simulans population in Portugal
(sampled in 2008). Five replicates each were randomly
assigned to one of two different thermal selection re-
gimes: a hot regime (12-h light and 28 °C; 12-h dark and
18°C) and a cold regime (12-h light and 20 °C; 12-h dark
and 10°C). Apart from different ambient temperatures,
the populations were maintained in the same way with
non-overlapping generations and a census size of 1000
individuals.

Pool-seq analysis

The details of the genomic sequencing can be found in
Mallard et al. [34] and in Otte et al. [35]. Briefly, the
founder population for the Evolve and Resequence ex-
periment was sequenced with the Pool-seq approach
[13], as were generations 15, 37, and 59 for the hot re-
gime and generations 11, 21, 31, 41, and 51 for the cold
regime. Raw paired-end reads were trimmed [36] and
mapped against the D. simulans reference genome [15]
with three different mapping algorithms (novoalign [37],
bwa-mem [38], and bowtie2 [39]) to assure a robust
SNP set [40]. Mapped reads were filtered for a mapping
quality of at least 20 and proper pairs using SAMtools
[41], and duplicates were removed from the data [42].
Filtered bam files were transformed to mpileup [41] and
sync format [43]. The resulting sync files were masked
for indels [43], transposable elements, repeats [44, 45],
and known Y-translocations [46] using Popoolation2
[43]. SNPs were filtered for a minor allele count of at
least 5, a mapping quality of at least 30, and had to have
consistent allele frequency estimates over the three dif-
ferent mapping algorithms. A modified Cochran-
Mantel-Haenszel test (CMH-test) which accounts for
genetic drift and Pool-Seq noise [47] was used to identify
selected SNPs. The CMH-test allows to test for inde-
pendence of matched data—i.e., allele counts for ances-
tral and evolved populations [48]. Effective population
sizes of the experimental populations were calculated
with the R package poolSeq [49]. These effective popula-
tion size estimates were used in the haplotype class ana-
lysis mentioned below.

Experimental haplotype inference

Since Pool-seq provides linkage information only up
to the read length [13], genotyped individuals are ne-
cessary to assess the linkage structure at the Ace
locus. We experimentally derived 32 haplotypes from
the ancestral population as described previously [50]
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by crossing one individual male from an isofemale
line with a virgin female from the inbred reference
strain [15]. For each cross, we used a single female
offspring to extract genomic DNA with a high-salt
protocol [51]. Between 50 and 120 ng genomic DNA
were fragmented with a Covaris S2 Focused-
ultrasonicator (Covaris, Inc. Woburn, MA, USA), and
[llumina sequencing libraries were prepared using ei-
ther the TruSeq v2 DNA Sample Prep Kit (Illumina,
San Diego, CA) or the NEBNext Mastermix Kit
(E6040L) (New England Biolabs, Ipswich, MA) with
single-index adapters. Library fragments with an ap-
proximate insert size of 330 bp were selected using ei-
ther agarose gel or AMPureXP beads (Beckman
Coulter, Carlsbad, CA), and barcoded libraries were
amplified with 10 PCR cycles. After combining them
into pools with 12 samples each, 2 x 100bp paired-
end reads were sequenced on two or three lanes for
each pool on a HiSeq 2000.

Raw paired-end reads were trimmed with a java imple-
mentation of trim-fastq.pl (--quality-threshold 18,
--min-length 50, --no-5p-trim) [52] and mapped to the
D. simulans reference genome [15] with bwa aln [38]
(v.0.7.12-r1039, -0 1 —n 0.01 -1 200 —e 12 —d -1) [52].
Barcoded files were split with an in-house java script
allowing 1 mismatch. Reads that mapped 200 kb up- and
downstream of the Ace locus were extracted (bp 11 771
451 — 12 207 715, samtools (v.1.9)) [41]. Mapped reads
were filtered for duplicates [42], a mapping quality of at
least 20, proper pairs (samtools, v.1.9) [41], and overlap-
ping mates from read pairs were clipped with BamUtil
clipOverlap (v.1.0.13) [53].

Polymorphisms were called with freebayes (--use-best-
n-alleles 4, v. 1.3.1) [54], masked for repeats, known Y
translocations [44, 46], and polymorphisms in 5 bp prox-
imity to indels (bcftools v.1.9) [41], and filtered for SNPs
(vt v0.5772-60f436¢3) [55], a total read depth exceeding
100 over all 36 haplotypes, and a phred scaled quality
score of at least 30. Because freebayes is capable of call-
ing multi-nucleotide polymorphisms [54], we used a cus-
tomized R-script (R v.3.5.3 [56]) to decompose the result
in single-base resolution.

Four out of 36 haplotypes were excluded from the
main analysis: 2 haplotypes displayed only homozygous
genotype calls, suggesting that these two particular
crosses were not successful (e.g., the supposedly virgin
female was already mated); 2 haplotypes, which were
generated by a recombination event between class 1 and
class 2, were excluded from the analysis to obtain
marker SNPs at the Ace locus that allow to unambigu-
ously distinguish haplotype class 1 from haplotype class
2 (Additional file 1: Figure S3). Based on the remaining
32 haplotypes, we detected 166 marker SNPs between
haplotype class 1 and class 2. One hundred twenty-six
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out of 166 marker SNPs were part of the Pool-seq SNP
set of the experimental D. simulans population in the
hot regime and 128 out of 166 marker SNPs in the cold
regime. Forty (hot regime)/38 (cold regime) marker
SNPs were excluded from the analysis, because they had
insufficient coverage in at least one Pool-Seq sample.
We used the median frequency of the remaining 126
(hot regime)/128 (cold regime) marker SNPs to assess
the frequencies of the haplotype classes.

Haplotype class analysis

We found pronounced haplotype structure around the
Ace locus in the founder population and determined
three distinct haplotype classes. Haplotype class 1 con-
sists of two sub-groups (1la and 1b) with few segregating
variants, while haplotype class 2 (n = 5) has normal levels
of variation [14]. Haplotype class 1a (n = 19) differs from
haplotype class 1b (n = 8) by carrying the three resistant
mutations 1161V, G265A, and F330Y. The nucleotide di-

versity 77 = (= 2o 2 j-i4y) X 1 within haplotype

classes was calculated with R. n represents the total
number of DNA sequences, d;; is the number of nucleo-
tides that differ between sequences i and j, and L is the
total number of nucleotides examined (L = 36265, length
of the Ace gene).

We used the median frequency of 126 (hot regime)/128
(cold regime) marker SNPs that distinguish haplotype
classes 1 and 2 in combination with 1161V, G265A, and
F330Y to assess the frequencies of the three haplotype
classes in the experimental D. simulans populations.

Replicate-specific selection coefficients for the haplo-
type classes were calculated with the R-package poolSeq
(v 0.3.2) [49], assuming co-dominance and using the
replicate-specific effective population size estimates (N,
hot regime =252, 229, 268, 209, and 245; N, cold re-
gime =209, 255, 259, 198, and 175) [35]. The measured
selection coefficient of haplotype class la is the com-
bined effect of the three resistance mutations and the se-
lection coefficient of the haplotype class on which they
are located (1b). Thus, we estimated the selection coeffi-
cient of the three resistance mutations by subtracting
the s estimate of 1b from 1la.

Insecticide bioassays

We tested the resistance of reconstituted ancestral [57]
and evolved (generation 132) D. simulans populations to
two different insecticides both targeting AChE: the car-
bamate propoxur (10pg) and the organophosphate
malathion (2 pg) (Pestanal Sigma-Aldrich). The bioassays
were conducted in 30-ml glass vials coated with 250-ul
acetone-insecticide dilution. To assure a uniform distri-
bution of the insecticide, the vials were swirled until
complete evaporation of the acetone-insecticide dilution
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and were left under a fume hood for 1 h before the
assay. For a single measurement, we put 30 3—-5-day-old
females into a vial sealed with a cotton ball that was
moistened with 1.5ml of 5% sucrose solution and re-
corded mortality after 24 h insecticide exposure (23 °C,
70 to 80% relative humidity). We compared four repli-
cates of the reconstituted ancestral population with three
replicates of each evolved replicate. To measure insecti-
cide resistance levels, we first determined the suscepti-
bility for the sensitive Ace alleles from the D. simulans
M252 reference strain [15] and resistant alleles from the
reconstituted ancestral population. We estimated the
dose resulting in 50% mortality after 24h (LDs,) for
M252 and the ancestral population using five different
concentrations and four replicates for each insecticide
and population. The mortality of the reference strain
M252 was assessed for 0.1, 0.3, 0.5, 0.7, and 1 ug propo-
xur and 0.01, 0.05, 0.1, 0.5, and 1 pg malathion. The an-
cestral population was exposed to 1, 2, 10, 20, 60, and
90 pg propoxur and 2, 5, 10, 20, and 30 pg malathion.
Probit analysis implemented in the drc R package (ver-
sion 3.0-1 [58]) were conducted to estimate LDs, in both
populations.

The insecticide doses for the main bioassay (10 pug pro-
poxur, 2 pug malathion) were chosen such that they did
not exceed the LDsq of the ancestral population (LDsg
propoxur = 19.5 ug, LDs, malathion = 3.4 pg).

Phenotypic assays

We measured two fitness proxies for 11 lines being
homozygous at the Ace locus: fecundity and egg-to-adult
viability. Each of the 11 lines was made homozygous for
the Ace locus by using the descendants of a single
brother-sister cross, for which the identity of the haplo-
type class and the homozygosity was confirmed by
Sanger sequencing. All phenotypic assays were con-
ducted in a common garden setting to avoid uncon-
trolled environmental variation confounding the
measurements. Prior to the phenotypic assays, the eleven
assessed lines (six lines of haplotype class la and five
lines of haplotype class 1b) were amplified at 20 °C with
a 12-h dark/light cycle and maintained for one gener-
ation under density-controlled conditions (400 eggs per
bottle) to avoid maternal effects of different densities.
The statistical analysis of the two assessed phenotypes
was conducted in R (version 3.5.3 [56]). To avoid biased
treatment of lines based on the anticipated outcome of
the phenotypic assays, researchers involved in the main-
tenance and the phenotyping of the lines were blinded
for the haplotype class of each line.

We measured fecundity and viability in two different
temperature regimes: a hot regime (12-h light and 28 °C;
12-h dark and 18°C) and a cold regime (12-h light and
20 °C; 12-h dark and 10 °C).
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Fecundity

Fecundity was measured for two replicates per line and
temperature, resulting in 44 samples. After one gener-
ation of density control, 100 3-day-old flies were put
into embryo collection cages (petri dishes with a diam-
eter of 100mm) on high-contrast media [59]. We
assessed the number of laid eggs per embryo collection
cage over the course of 11.5days with an automatized
approach [59]. After the fecundity assay, females were
counted and fecundity was defined as the average num-
ber of eggs per female. One line (belonging to haplotype
class 1a, 4 samples) was excluded from the analysis, be-
cause more than half of the flies were lost in one of the
line-specific replicates during transfers.

To assess the impact of haplotype class and
temperature, we fitted a linear mixed model [60] using
function Imer() in the R package lme4 (version 1.1-21
[60]) with log;o-transformed average number of eggs per
female as a response. Haplotype class, temperature, both
dummy coded, and their interaction were included as
fixed effects into the model. A random intercept was fitted
for each line to model the covariance structure in our
data. The interaction of temperature and haplotype class
is considered the focal term in the model. All assumptions
for linear (mixed) models were met—residuals and ran-
dom intercept effects were normally distributed and resid-
uals displayed variance homogeneity. The absence of
collinearity was confirmed via generalized variance infla-
tion factors [61] calculated using the vif() function in the
R package car (version 3.0-5 [62]).

Model stability was confirmed with a leave-one-out
cross-validation of random effect levels with a custom R
script. Confidence intervals were determined with para-
metric bootstrapping (n = 1000) with a custom R script.
We tested the significance of fixed effects and their
interaction with likelihood ratio tests [63] using the
drop1() function with the parameter test set to “Chisq.”

Egg-to-adult viability

Egg-to-adult viability was measured in 14 replicates per
line and temperature regime (generated in 7 batches
over the course of 11 days), except for one line in haplo-
type class 1b in the hot regime with only 12 replicates,
resulting in 306 samples. After one generation of density
control, 250 2—4-day-old flies were put into small em-
bryo collection cages (petri dishes with a diameter of 60
mm containing egg-laying medium: 4% agar and 4% su-
crose with 1 ml yeast paste) [59] and were maintained at
20°C in a 12-h dark/light cycle. Petri dishes were chan-
ged twice per day. Eggs were collected after 14 h of ovi-
position, and 60 eggs were transferred to vials
containing the same Drosophila medium that was used
in the E&R study. Vials were checked daily for their de-
velopmental state. Once flies started to eclose (day 10
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after setup in the hot regime, day 22 after setup in the
cold regime), freshly eclosed flies were collected for each
replicate twice per day for seven consecutive days in the
hot regime and for eight consecutive days in the cold re-
gime, frozen at - 20 °C, and counted afterwards. Viability
was defined as the total number of eclosed flies per vial
over the whole assaying period.

To assess the influence of temperature, haplotype
class, and their interaction on viability, we fitted a gener-
alized linear mixed model with binomial error structure
and logit link function [64] using the glmer() function in
the R package lme4 (version 1.1-21 [60]). Egg to adult
viability was treated as binomial proportions coded as a
matrix with two columns, containing the number of
eclosed flies (successes) in the first column and the
number of not developed eggs (= 60 — number of eclosed
flies) (failures) in the second column. Haplotype class,
temperature (both dummy coded), and their inter-
action were fitted as fixed effects. A model with a
combined line and batch random intercept effect was
slightly overdispersed (A =1.455). We calculated the
dispersion factor A with a custom R script. To ensure
the absence of overdispersion, we fitted an observa-
tion level random effect (1 =0.301). Given that this
model is under-dispersed, the resulting p values are
conservative. The interaction between haplotype class
and temperature is considered the key component of
the model.

Significance of the interaction between haplotype class
and temperature was assessed via a likelihood ratio test
comparing the full model including the interaction with
a reduced model that contains all components and the
observation level random effects of the full model, ex-
cept the interaction of haplotype class and temperature.
We confirmed model stability, absence of collinearity,
and calculated confidence intervals for the fixed effects
as described for the fecundity phenotype. Best linear un-
biased predictions for random effects were normally dis-
tributed. Linear predictors (LP) were transformed to

probabilities via the inverse logit transformation: p . e

eP

= Ty
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