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Abstract

Background: Inflammation affecting whole organism vascular networks plays a central role in the progression and
establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that
control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these
on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by
coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds
inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome
molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells
(SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems
biology proteomics.

Results: Our data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first
time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical
vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that
involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative
stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous
molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins
were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular
beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser
extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific
phosphorylation sites in the EC proteomes.

Conclusions: Together, the novel findings reported here provide a broader picture of the molecular dynamics that
take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can
pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the
vascular unit during acute inflammatory processes.
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Background
Homeostasis in all systems of the human body depends,
to a large extent, on the molecular and structural integ-
rity of the cardiovascular system (CVS). This intricate
and supportive system provides adaptive metabolic sup-
plementation of nutrients, molecular messengers, and
oxygen to cells, while it eliminates unwanted residues
and sustains immunity [1, 2]. The CVS is formed by a
vast network of vessels that vary in length, diameter, and
function, with endothelial cell (EC) and glycocalyx (GC)
layers at the inner areas of vasculature beds [2]. Add-
itionally, arteries and veins are formed by vascular
smooth muscle cells (SMC), a population of innervated
cells with the ability to regulate vascular tone in con-
junction with EC [3, 4].
Dysfunction of the endothelium is associated with the

appearance and progression of the most severe human
diseases, including sepsis, diabetes, stroke, dementia, and
cancer [5–10]. Although these diseases are characterized
by specific alterations of the endothelium, some of which
have yet to be fully elucidated, inflammation has been
defined as a core pathological mechanism affecting vas-
cular beds in all these pathologies [11, 12]. Similarly, in-
flammation has been found to be a core mechanism of
microvasculature disruption preceding organ dysfunc-
tion in sepsis [13]. Of note, recent epidemiological
compilations indicate that the burden of sepsis ex-
ceeds that of cancer globally, and it has become the
second-ranked global cause of death behind only car-
diovascular diseases [14, 15].
Lipopolysaccharide (LPS), also known as endotoxin, is

a bacterial molecule centrally implicated in the patho-
genesis of severe sepsis and septic shock [16]. This circu-
lating toxin has the ability to indicate the occurrence of
sepsis in blood while activating the systemic release of a
myriad of pro-inflammatory molecules [17]. These pro-
inflammatory factors are known to disrupt vascular beds
by promoting the apoptosis of EC, which in turn leads
to edema formation and organ failure [18, 19]. Although
LPS-induced disruption of the endothelial barrier has
been thoroughly described in specific vascular beds, such
as the lungs and liver, the comprehension of the molecu-
lar events that precede vascular bed disruption in severe
sepsis remains poor. Similarly, further light needs to be
shed on the effects of LPS throughout the whole organ-
ismal network of capillary beds. According to the recent
literature review performed by Libert et al. [20], LPS has
been used in one third of the most relevant studies that
involve the use of animal models in sepsis. However, it
has been admitted that sepsis is caused by a highly com-
plex pathophysiology that cannot be fully mimicked
using LPS in rodents [20]. The use of LPS, thus, should
be limited to mimicking specific relevant clinical features
of sepsis in a robust, quick, precise, and highly replicable

manner, especially the severe inflammatory response
that affects the endothelium in this disease and causes
the appearance of fever, leukocytosis, and cytokine re-
lease, among other features [20].
Alterations in protein synthesis can be considered

among the earliest molecular events of disease progres-
sion [21, 22]. Bacterial pathogenesis has recently been
associated with alterations in protein synthesis in plate-
lets and gut epithelial cells [23, 24], although little is still
known about how the cell renewal mechanism becomes
impaired in the whole organism vascular bed layers.
Novel systems biology methods coupled to the study of
whole organism vascular beds hold promise for advan-
cing the understanding of the effects of sepsis on protein
synthesis in vascular and capillary beds. Thus, in this
study, we combined for the first time stable isotope la-
beling of mammals (SILAM) [25, 26] with differential
systemic decellularization in vivo (DISDIVO) [27] to
characterize the molecular dynamics of whole organism
vascular beds in Gram-negative sepsis. SILAM, as ini-
tially reported by Yates, J.R. III, and colleagues [28] is
based on the depletion of light proteins (proteins with-
out isotope-labeled Lys) in the dietary protein source of
the animal by substitution of these with heavy proteins
(proteins with isotope-labeled Lys). Thus, all newly syn-
thesized proteomes in the animal incorporate isotope-
labeled Lys, which can in turn be easily identified/quan-
tified by mass spectrometry [28]. Similarly, DISDIVO al-
lows systemic decellularization of independent vascular
layers and analysis of the vascular layers proteomes by
systems biology [27]. Although optimization of the DISD
IVO method demonstrated that the conditions used for
the obtention of each independent vascular layer are the
most experimentally appropriate, the possibility that
cross-contamination between vascular mantles occurs in
DISDIVO cannot be discarded. However, based on the
extensive imaging and bioinformatics analysis performed
on data generated by this method, the systematic ap-
proach of DISDIVO involving the entire vascular system
seems able to compensate for these potential peculiar-
ities. Our novel findings indicate that dramatic inhibition
of protein synthesis and partial protein synthesis shift
occur in whole organism vascular bed layers together
with abnormal protein turnover in EC. Thus, the find-
ings uncovered here highlight specific interference by
endotoxemia in the regular molecular dynamics of the
whole organism endothelium during acute inflammatory
processes.

Results
Use of SILAM-DISDIVO for the study of whole organism
vascular beds in Gram-negative sepsis
To study the effect(s) of the endotoxin LPS on the prote-
ome dynamics of whole organism vascular beds during
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sepsis, we made use of a SILAM model generated by re-
placing dietary Lys with the stable isotope Lys(6). Valid-
ation of DISDIVO fractions in whole SILAM mouse
vascular beds (GC, EC, and SMC) revealed the proper
incorporation of Lys(6) into newly synthesized proteins,
as shown in Fig. 1. Lys(6) was incorporated on average
in a total of 350 ± 112 newly synthesized proteins in

vascular bed proteomes, which represented 31% of the
total proteome in the GC in control mice, 29% of the
total proteome in EC, and 34% of the total proteome in
SMC in control mice. In addition, in Gram-negative sep-
sis, newly synthesized proteins represented only 16% of
the total proteome in the GC, 18% of the total proteome
in EC, and 16% of the total proteome in SMC (Fig. 1a,

Fig. 1 Validation of the SILAM model for the study of protein dynamics in severe inflammatory response. a Comparison of the number of SILAM-
labeled proteins detected in glycocalyx (GC), endothelial cells (EC) and smooth muscle cells (SMC) proteomes after endotoxemia (LPS) versus
Control. b Number of tryptic digested SILAM-labeled peptides detected in the three analyzed vascular beds (GC, EC, and SMC). c–h Frequency
distribution curves for the incorporation of Lys(6) in individual proteins calculated for every vascular bed (GC, EC, and SMC) after LPS versus
Control. i Adjusted curve comparison for the SILAM-labeled proteins in different vascular beds from Control and LPS-treated mice
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Additional File 1: Dataset 1 and Additional File 2: Data-
set 2). Finally, the validated SILAM model also revealed
the efficient averaged labeling of Lys(6) in a total of
5.1 ± 2.3% of all analyzed peptidomes (Fig. 1b).

Molecular dynamics of whole organism vascular beds
during Gram-negative sepsis
Detailed analysis of the molecular dynamics occurring in
whole organism vascular beds during Gram-negative
sepsis indicated that LPS challenge triggers a significant,
rapid, and severe reduction in the molecular mainten-
ance of the GC. Thus, a significant decrease in the total
number of Lys(6)-labeled proteins detected in this vascu-
lar coating layer was observed, as shown in Fig. 1a. Simi-
larly, a slight reduction in the total number of newly
synthesized proteins was observed in the EC and SMC
vascular layers in Gram-negative sepsis, although these
differences did not reach statistical significance (Fig. 1a).
The frequency of Lys(6) incorporation in newly syn-

thesized proteins in Gram-negative sepsis was also inves-
tigated. The obtained data showed narrowing of the
cumulative frequency curves of the proteomes in LPS-
treated vascular beds (Fig. 1c–i). This result clearly indi-
cates the reduced incorporation of Lys(6) into individual
proteins in all of the analyzed vascular beds during
Gram-negative sepsis (Fig. 1c–i). To further scrutinize
this finding, the LPS/Control ratios for newly synthe-
sized proteins (NSPLPS/Control) and non-newly synthe-
sized proteins (N-NSPLPS/Control) were calculated for all
EC and SMC proteomes. In EC, all endotoxin-
modulated proteins (p ≤ 0.05) showed a dramatically
downregulated NSPLPS/Control ratio (Fig. 2a, b), except
for hemopexin precursor protein (Hpx), which was
highly upregulated in LPS-treated EC (Fig. 2a, b). Our
data also demonstrated that SMC proteomes were less
affected by the effects of endotoxin-induced sepsis on
protein synthesis compared to EC proteomes, as can be
observed through the reduced clustering of modulated
proteins in these specific vascular beds (Fig. 2c, d). The
NSPLPS/Control ratio was similarly downregulated in SMC
for all endotoxin-modulated proteins, as shown in Fig. 2c,
except for the protein serine protease inhibitor
(Serpina3n).
In a related vein, we found that endotoxemia triggered

new synthesis of a specific subset of proteins in EC and
SMC during Gram-negative sepsis, as shown in Fig. 2b,
d. Proteins exclusively synthesized in LPS-challenged EC
vascular beds included haptoglobin (Hp) and serum
amyloid A1 (Saa1) (Fig. 2b), whereas S100 calcium-
binding protein A9 (S100a9), galectin-1 (Lgals1), and a
small cluster of histones were exclusively synthesized in
challenged SMC, as shown in Fig. 2d.
The N-NSPLPS/Control ratio was initially expected to be

close to 1; however, we found that this ratio was

strikingly modulated in a wide range of proteins in EC
during Gram-negative sepsis, as shown in Fig. 2a. Fur-
ther investigation of this subset of EC-specific modu-
lated proteins indicated the increased abundance (or
exclusive presence) of nontryptic peptides derived from
these proteins in LPS-challenged animals, which, based
on previous findings [29], clearly indicated the occur-
rence of active protein turnover in EC during Gram-
negative sepsis (Fig. 2e).
Proteins with high turnover rates included vascular

cell adhesion molecule 1 (VCAM1), the inflammation-
related protein serum amyloid A (Saa2), and cytochrome
c oxidase subunit 5B (Cox5b). On the other hand, the
protein turnover rates of alpha-2-macroglobulin (α2M),
β2 microglobulin (β2M), and orosomucoid 2 (Orm2)
were found to be significantly downregulated in LPS-
challenged EC vascular beds (Fig. 2e).

Functional characterization of GC molecular dynamics
Although the GC in whole body vascular beds functions
as a vasculature mantle that lacks protein synthesis ability,
the GC is predictably one of the most variably affected
vascular layers during Gram-negative sepsis. Thus, to fur-
ther characterize any potential abnormal incorporation of
newly synthesized proteins into the GC, we performed an
in-depth characterization of GC Lys(6)-labeled proteomes.
These analyses, as expected, revealed a reduction in
proper GC molecular maintenance, which was linked to a
significantly decreased abundance of important cellular
mechanism-related proteins (Fig. 3a, b). These included
lipid transport apolipoproteins (Fig. 3b-I), immune-related
proteins (Fig. 3b-II), including fetuin-B (fetub) and integ-
rin alpha-IIb (Itga2b), and several component proteins.
Other affected GC cellular mechanism-related proteins in-
cluded pro-atherosclerotic proteins, oxidative stress-
related proteins, coagulation cascade proteins, and, of
note, abnormally incorporated, newly synthesized struc-
tural/cell signal transduction proteins, among others
(Fig. 3a, b-III to VII).

Functional characterization of EC and SMC molecular
dynamics
To investigate the most dramatically affected cellular
mechanisms in EC and SMC in endotoxin-induced sep-
sis, we analyzed the Lys(6)-labeled EC and SMC pro-
teomes from LPS-challenged and control mice by
systems biology, as shown in Fig. 4a, b-I to VIII. The ini-
tiation of EC dysfunction was clearly induced by the
downregulation of the synthesis of multiple key proteins,
including clusterin (Clu), glutathione S-transferase Mu 1
(Gstm1), and selenoprotein P (Sepp1), among others
(Fig. 4b-VI). Similarly, the synthesis of endothelial oxida-
tion- and endothelial structure-related proteins was also
negatively modulated (Fig. 4b-III and VII). Other cellular

Gallart-Palau et al. BMC Biology          (2020) 18:175 Page 4 of 14



mechanisms significantly affected by the endotoxemic
challenge included coagulation, which experienced the
significant downregulation of the synthesis of

coagulation factor X (F10) and heparin cofactor 2 pro-
tein (Serpind1) (Fig. 4b-V), and metabolism-related pro-
teins through the downregulation of carboxylesterase 1C

Fig. 2 Proteome-wide modulation analysis in severe inflammatory response. a Representation of the LPS/Control ratio for newly synthesized
peptides (red columns) and non-newly synthesized peptides (black columns) in the endothelial cells (EC). b Proteins with newly synthesized
peptides only detected after LPS challenge in EC. c Representation of the LPS/Control ratio for newly synthesized peptides (red columns) and
non-newly synthesized peptides (black columns) in the smooth muscle cells (SMC). d Proteins with newly synthesized peptides only detected
after LPS challenge in SMC. Ratios were calculated based on the sum of spectral counts of all SILAM-labeled peptides for newly synthesized
proteins and the sum of spectral counts of all non-SILAM-labeled peptides for non-newly synthesized proteins for every protein detected. N.D.
refers to not detected. Only proteins with statistical significance assessed by Student’s t test are represented (p < 0.05). Regulation threshold has
been set at 1.5 and it is represented with horizontal green dashed lines in every condition. Y-axis for black columns with positive values has been
drawn pointing down for visual purposes. e Heatmap of protein turnover detected in EC. Turnover of proteins is expressed as the number of
non-tryptic peptides detected in individual proteins expressed in spectral counts. Darker colors refer to lower turnover levels
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Fig. 3 (See legend on next page.)
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(Ces1c) and transaldose (Taldo1) synthesis (Fig. 4b-II). It
is also worth mentioning the downregulation of novel
protein synthesis specifically affecting the kidney-related
protein cystatin-C (Cst3) in LPS-challenged EC (Fig. 4b-
VIII).
To a lesser extent, multiple molecular mechanisms al-

tered in EC during Gram-negative sepsis were also simi-
larly affected in SMC, as shown in Fig. 4a. The cellular
proteins affected by the impairment of novel protein
synthesis include lipid transport-related proteins and
proteins implicated in inflammatory processes (Fig. 4a).
Signs of specific SMC dysfunction were also evident dur-
ing Gram-negative sepsis via the downregulation of the
synthesis of the proteins vitamin D-binding protein (Gc)
and coagulation factor XII (F12) (Fig. 4c-I to IV).
Moreover, we observed the upregulated synthesis of

hemopexin, haptoglobin, and serum amyloid proteins in
the proteomes of EC in whole organism vascular beds
(Fig. 4a, b-I) and of the pro-inflammatory proteins
galectin-1 and S100-S9 in SMC together with several
histones and serine peptidase inhibitors (Fig. 4a, c-I).

Molecular dynamics of EC phosphoproteomes during
Gram-negative sepsis
The modulation of newly synthesized proteins specific-
ally affected by protein posttranslational modifications
(PTMs) during Gram-negative sepsis was also investi-
gated in EC and SMC in whole organism vascular beds.
This part of the study revealed that significant modula-
tion of PTMs in newly synthesized proteins was only
identified in EC and in proteomes affected by PTM
phosphorylation (Fig. 5). Thus, the significant upregula-
tion of the phosphorylation of protein sites was observed
in LPS-challenged animals compared to that in sham
controls, as shown in Fig. 5. Furthermore, our data indi-
cated that essential EC proteins such as VCAM1 and
creatine kinase M-type contain disease-specific phos-
phorylation sites in Gram-negative sepsis, as detailed in
Table 1.

Discussion
In this work, the combination of SILAM mice [25] with
DISDIVO [27] allowed us for the first time to evaluate
changes in the molecular dynamics of whole organism
vascular beds during severe inflammation linked to
Gram-negative sepsis. Our data initially showed the
rapid and characteristic disruption and shedding of the
pericellular apical coating of the vasculature, known as

the GC. This expected finding was in line with that of
previous reports [30–33]; however, in this particular
case, we additionally found a global decrease in the in-
corporation of newly synthesized proteins into the GC,
which indicates the inhibition of molecular maintenance
affecting this vascular coating. Furthermore, negative
modulation of phospholipid transfer protein (Pltp)
coupled with downregulation of a subset of lipoproteins
uncovered specific target molecules contributing to the
imbalance in the transfer of essential lipid molecules to
this apical vascular layer. Negative regulation of multiple
pro-atherosclerotic proteins, complement factors, and
plasmatic enzymes was also identified as affecting the
GC in our study, which is consistent with previous re-
ports aimed at identifying the molecular basis of GC dis-
ruption [34]. The novel data obtained here regarding the
molecular dynamics and composition of the GC in
Gram-negative sepsis directly advances our knowledge
of the role(s) of specific proteins in vascular permeability
[35]. The clinical significance of conducting further re-
search aimed at finding novel biological markers that
could detect the shedding of the GC was recently
pointed out [34]. The GC has the capacity to act as a
molecular target for leukocytes and inflammatory media-
tors, and due to its systemic nature, this mantle is one of
the most fragile vascular settings that is highly targeted
by endotoxemia, as observed here and in previous re-
ports [27, 31, 36]. The novel-specific proteins linked to
shedding and impaired molecular maintenance of the
GC, as identified here, require further research to be
established as diagnostic/prognostic markers of vascular
permeability and endothelial dysfunction in Gram-
negative sepsis and in other diseases that involve severe
inflammation of the vasculature.
Significant impairment of protein synthesis in the EC

and SMC proteomes was also found in this study. Im-
pairment of the molecular dynamics of hindlimb muscle
cells was previously reported due to Gram-negative sep-
sis [37] and has been very recently identified in platelet
cells [23]. However, to the best of our knowledge, this
has not been previously investigated in whole organism
EC and SMC proteomes. Of note, Middleton et al. found
highly similar sepsis-induced impairment of protein syn-
thesis in platelet cells between murine and human sam-
ples [23]. Similarly, Vary et al. found that sepsis-induced
impairment of protein synthesis in platelet cells was as-
sociated with the effect of peptide chain initiation and
an increased number of free ribosomal subunits in

(See figure on previous page.)
Fig. 3 Functional analysis of molecular dynamics in severe inflammatory response for proteins identified from glycocalyx (GC). a Functional
categorization of newly synthesized proteins from GC after a severe inflammatory response. b Relative quantitation of proteins included in the
functional categorization. Quantitation of proteins is expressed as spectral counts considering all identified newly synthesized peptides (SILAM-
labeled peptides) for every protein. Only proteins with statistical significance assessed by Student’s t test are represented (p < 0.05)
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Fig. 4 (See legend on next page.)
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muscle tissue [37]. Our systems biology approach, as ex-
pected, revealed the different mechanisms affecting the
molecular dynamics in EC in Gram-negative sepsis. We
observed that global protein turnover was significantly
upregulated together with the drastic downregulation of
protein synthesis affecting EC. These findings in whole
organism vascular beds were in line with the catabolic
phenotype observed in skeletal muscles from sepsis pa-
tients and other critically ill subjects [38]. It has been re-
ported that muscle cells activate the inhibition of
protein synthesis together with an increase in protein
turnover, which encompasses a progressive and rapid
decrease in muscle mass resulting in severe weakness
[39]. Nonetheless, although that muscle catabolic pheno-
type has been described as a consequence of abnormal
insulin metabolism and cytokine mediation [40], none of
these metabolic processes were yet defined as modulated
in the vascular beds of Gram-negative sepsis; with the
exception of selenoprotein P, a protein closely related to
insulin metabolism [41], which was significantly down-
regulated in EC, a fact that has been previously associ-
ated with the severity of sepsis and other critical
illnesses [42, 43].
Careful dissection of the identified catabolic phenotype

affecting EC uncovered the involvement of key
endothelial-specific proteins such as VCAM1. Activated
VCAM1 is directly involved in the transendothelial

migration of leukocytes [44], and it has been shown that
its ubiquitination alters this pro-inflammatory mechan-
ism. Here, we found ongoing direct degradation of
VCAM1 at the same time that the protein is potentially
activated via disease-specific phosphorylation of the
Tyr113 and Ser114 residues, which are located in the re-
gion contiguous to the I-7 domain, as shown in Fig. 6. Li
et al. [45] recently demonstrated that the degradation of
VCAM1 in the pulmonary endothelium is directly linked
to improved survival in Gram-negative sepsis. Here, we
demonstrate for the first time that this is a systemic
process that takes place in whole organism capillary beds
in Gram-negative sepsis. This molecular mechanism, as
shown in Fig. 6, serves as one of the key pathological
mechanisms that sustain/cause severe inflammation in
sepsis and potentially in other pathological inflammatory
processes affecting the vasculature, a fact that requires
follow-up research with potential highly significant clin-
ical implications. In addition to VCAM1, other proteins
containing disease-specific phosphorylated sites were
also identified in this study. These proteins included
spectrin beta chain erythrocytic protein (Sptb) and creat-
ine kinase M-type, among others. Phosphorylation af-
fecting the latter protein, creatine kinase M-type, has
been linked to dynamic activation of the protein in the
endothelium [46].
Detailed analysis of the molecular dynamics that take

place during Gram-negative sepsis also confirmed the
upregulation of the synthesis of serum amyloid A pro-
tein (Saa1) as one of the main inflammatory proteins ac-
tivated in EC. This severe phase protein is generally
elevated in blood during inflammation [47]. Multiple
prothrombotic proteins were also upregulated in vascu-
lar beds together with the downregulation of various co-
agulation cascade-related proteins, including the
coagulation factors F10 and F12. Activation of inflamma-
tory and microthrombotic mediators, as encountered in
EC in this study, is closely linked to sepsis endotheliopa-
thy and seems to lead to the development of a series of
fatal conditions, including thrombocytopenia, microan-
giopathic hemolytic anemia, and multiorgan dysfunction
syndrome [39]. In addition, our protein dynamics inves-
tigation also indicated the activation of multiple protect-
ive innate mechanisms, particularly in EC. These innate
protective mechanisms included the upregulation of the
antithrombotic heme-binding plasma glycoprotein
hemopexin (Hpx) [48] and the upregulation of the anti-

(See figure on previous page.)
Fig. 4 Functional analysis of molecular dynamics in severe inflammatory response for proteins identified from endothelial cells (EC) and smooth
muscle cells (SMC). a Functional categorization of newly synthesized proteins identified by DISDIVO after a severe inflammatory response. The
relative quantitation of proteins included in the functional categorization for EC and SMC are displayed in sections b and c, respectively.
Quantitation of proteins is expressed as spectral counts considering all identified newly synthesized peptides (SILAM-labeled peptides) for every
protein. Only proteins with statistical significance assessed by Student’s t test are represented (p < 0.05)

Fig. 5 Number of total phosphorylation sites detected in Gram-
negative induced sepsis in EC. The asterisk refers to significant
differences observed between groups, assessed by Student’s t
test (p < 0.05)
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inflammatory acute phase protein haptoglobin (Hp) [49]
coupled to the downregulation of the anti-thrombotic
and immune-related protein heparin cofactor 2 (Ser-
pind1). The protective capacity of Serpind1 was associ-
ated with the presence of proteolytic fragments of the
protein with antimicrobial and anti-coagulant capacities
[50]; such fragments were also encountered in this study
and linked to the downregulation of the protein, a fact
that further confirms the protective and compensatory
nature of the finding in whole organism capillary beds
during Gram-negative sepsis. Furthermore, we consider
that confirmation of the protective nature of the pro-
teolytic Serpind1 fragments identified here paves the
way for future systemic therapeutic interventions for

sepsis using specific Serpind1 fragments, which re-
quires specific investigation based on the findings re-
ported here.
Impairment in the molecular dynamics of whole or-

ganism vascular beds also affected SMC, which is in line
with the described effects on EC, although the effect on
SMC was observed to a lesser extent. Downregulation of
the synthesis of key proteins, such as vitamin D binding
protein and coagulation factor XII, was encountered in
SMC proteomes. This fact, however, further confirms
that Gram-negative sepsis has major effects on whole or-
ganism capillary beds, which explains the exacerbated ef-
fect on the molecular dynamics of EC compared with
that of SMC.

Table 1 Phosphorylated proteins identified exclusively in Gram-negative sepsis in EC proteome. *Information about domains and
structure for every protein was obtained from Uniprot. Numbers in brackets indicate the localization of the protein regions referred
based on the amino acids’ position in the protein sequence

Gene symbol Protein name Modified residue Post-translationally modified region*

Sptb Spectrin beta chain erythrocytic S1061, S1078, S2323 –

Cp Ceruloplasmin T83 Chain (20–1061), F5/8 type A 1 Domain (20–356), Plastocyanin-like 1 (20–199)

Hp Haptoglobin S210, S239 Polypeptide chain (19–347), Peptidase S1 domain (103–345)

Ckm Creatine kinase M-type T208, S224 Phosphagen kinase C-terminal domain (125–367)

Nsfl1c Isoform 3 of NSFL1 cofactor p47 T108, S116 Before and after the nuclear localization signal motif (109–115)

Serpina1d Alpha-1-antitrypsin 1–4 S300 Alpha-1-antitrypsin 1–4 Chain (25–413)

Vcam1 Vascular cell adhesion protein 1 Y113, S114 Extracellular domain (25–698)—next to I-set domain (C-terminal)

Fig. 6 Illustrative diagram showing the identified inflammatory molecular mechanisms of VCAM1 in EC during Gram-negative induced sepsis.
VCAM1 in EC contains disease-specific phosphorylations at Tyr113 and Ser114 in pro-inflammatory processes of Gram-negative-induced sepsis.
Additionally, the protein is actively degraded at Phe25, which might indicate resilience of EC during systemic pro-inflammatory processes
affecting the vasculature

Gallart-Palau et al. BMC Biology          (2020) 18:175 Page 10 of 14



Conclusions
Gram-negative sepsis has been widely used to model
sepsis, and it is accepted that LPS exposure is an import-
ant part of this complex illness. Thus, our generated
data expand on the previously limited knowledge about
how protein synthesis and degradation become altered
in the vasculature due to a systemic inflammatory re-
sponse in sepsis. Globally, our novel generated data indi-
cate that proteome molecular dynamics become altered
in EC with a major impact on whole organism capillary
beds. Similarly, EC fail to maintain the proper molecular
integrity of the GC by not providing that apical layer
with the required newly synthesized structural proteins.
Furthermore, abnormal protein turnover during Gram-
negative sepsis affects essential EC proteins, such as
VCAM1, and is coupled to the global downregulation of
protein synthesis and the generation of disease-specific
phosphorylation sites. Finally, SMC alter their molecular
dynamics in line with EC, although to a lesser extent.
The findings reported here, thus, uncover for the first

time specific molecules that become altered in the pro-
tein synthesis machinery of the GC and EC, which indi-
cates that the increase in VCAM1 that is typically
associated with endothelial dysfunction in several dis-
eases, including sepsis, may be due to altered degrad-
ation of the protein and the accumulation in the
endothelium of dysfunctional VCAM1. Similarly, novel
Gram-negative sepsis-specific phosphorylation sites have
been uncovered for the first time. These findings can
serve as a foundation for future therapeutic strategies
aimed at maintaining the structural and functional integ-
rity of the vasculature in sepsis, as they can provide
novel insights into the previously unknown molecular
mechanisms that become altered in the vasculature due
to the systemic inflammatory response, which is a patho-
logical mechanism common to several human diseases.

Methods
Reagents
All reagents were purchased from Sigma-Aldrich (St.
Louis, MO) unless otherwise specified. Sequencing-
grade modified trypsin was purchased from Promega
(Madison, WI).

Animals
Ten-week-old male C57BL/6NT mice were housed in
cages on a 12-h dark/light cycle at stable temperature
(21 °C) with water provided ad libitum and fed with
standard commercial chow for a minimum of 2 weeks
(adaptation period) before starting the experimental part.
All experimental procedures were approved by the
Nanyang Technological University Institutional Animal
Care and Use Committee (IACUC) and were performed
humanely and in strict accordance with the International

Guiding Principles for Animal Research. The 3Rs
principle in animal experimentation [51] was in all cases
observed.

Sepsis-induced inflammation model under stable isotope-
labeled diet
Mice were maintained in fasting conditions for 16 h be-
fore being exposed to a stable isotope-labeled diet
(Lys(6)-SILAM-Mouse diet, pellet ø 10 mm, Silantes
GmbH, München, Germany; n = 6). As the effect poten-
tially caused by an acute treatment with LPS on the pro-
tein dynamics of the endothelium was expected to be
strong, as it was later identified, we kept the number of
animals used in the experiments to the minimum that
allowed to identify outliers and to obtain statistical sig-
nificance, as previously recommended [52]. Mice were
kept in SILAM diet for 24 h before treatment and were
then divided into 2 groups (control and LPS treated).
LPS treated mice were injected with a total of 20 mg/kg
of lipopolysaccharide [27, 53] derived from Escherichia
coli O55:B5 freshly prepared in sterile PBS (vehicle solu-
tion). LPS was administered in two equal doses of 10
mg/kg in a 24 h interval to ensure proper intake of SILA
M stable isotope-labeled chow. LPS mice were main-
tained in SILAM diet during all experimental proce-
dures. Similarly, control mice were injected with vehicle
solution in a 24-h interval and maintained in SILAM
diet during the whole experimental procedures.

DISDIVO obtention of whole organism vascular beds
Systemic isolation of vascular beds was carried out by
differential systemic decellularization in vivo (DISDIVO)
as previously described [27]. Briefly, mice were anesthe-
tized by intraperitoneal injection with ketamine-xylazine
(90:10 mg/kg) and deep anesthesia was maintained over
the whole experimental procedure by inhalation of iso-
flurane (IsoFlo; Veterinaria Esteve, Bologna, Italy). For
the DISDIVO procedure, an exsanguination by transcar-
dial whole-body perfusion with open right auricle was
performed while 1× PBS was simultaneously introduced
at a flow rate of 1.5 mL/min through the left ventricle.
PBS perfusion was maintained for 1.5 min after complete
removal of blood when the collection of PBS fraction
from the open right auricle was initiated and maintained
over 3 to 4 min to collect the GC-containing outflow.
EC decellularization was subsequently performed perfus-
ing with 0.5% sodium deoxycholate (SDC) prepared in
100 mmol/L ammonium acetate buffer through the en-
tire circulatory system. EC decellularization was main-
tained over 3–4 min collecting the EC lysed tissue-
containing outflow from the open right auricle, and sub-
sequently, concentration of SDC was increased to 10%
to decellularize SMC vascular beds. Perfusion with 10%
SDC prepared in 100 mM ammonium acetate buffer was
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maintained over 3–4 min. All collected outflows were
stored at − 80 °C until analysis.

In-solution tryptic digestion of vascular beds proteomes
Vascular beds proteomes were digested by in-solution
digestion as previously described [27, 54]. Briefly,
DISDIVO outflows were adjusted to 1% SDC using a
10% SDC stock solution prepared in 100 mM ammo-
nium acetate for GC and EC fractions or by dilution
with 100 mM ammonium acetate for SMC fractions.
Vascular beds proteins were subsequently reduced
using 10 mmol/L dithiothreitol (DTT) for 30 min at
60 °C and alkylated using 20 mmol/L iodoacetamide
for 45 min at room temperature protected from the
light. Samples were then 2-fold diluted with 10 mmol/
L DTT prepared in 100 mmol/L ammonium acetate
and incubated for 30 min at 37 °C. Tryptic digestion
was performed at 30 °C overnight using sequencing-
grade-modified trypsin at 1:50 (w/w) enzyme-to-
protein ratio. Enzymatic digestion was quenched by
addition of a final concentration of 0.5% formic acid
(FA) and SDC salts were precipitated by acidification.
Peptide recovery from precipitated SDC was per-
formed as follows: SDC was pelleted by centrifugation
at 12,000g for 10 min at 4 °C. The supernatant con-
taining peptides was then separated and pelleted SDC
was redissolved in 0.5% ammonium hydroxide before
reprecipitation with 0.5% FA. Peptide recovery was
performed per duplicate and supernatant combined.
Peptides were desalted using a C18 Sep-pack cartridge
(Waters, Milford, MA). Eluates were finally dried
in a vacuum concentrator (Eppendorf, Hamburg,
Germany).

High-pressure liquid chromatography fractionation of
vascular beds proteomes
Vascular beds desalted peptides were fractionated by
high-pressure liquid chromatography as previously de-
scribed [55]. Briefly, dried samples were reconstituted in
200 μL of 10 mmol/L ammonium hydroxide in water
(mobile phase A) and separated using a XBridge
BEH130 C18, 3.5 μm, 4.6 × 250 mm column (Waters,
Elstree, UK) on a Shimadzu Prominence UFLC system
(Dionex, Sunnyvale, CA) monitoring UV of peptide in-
tensities at 280 nm. Peptide separation was performed
over a 72-min gradient at 1 mL/min as follows: 0% mo-
bile phase B (10 mmol/L ammonium hydroxide in aceto-
nitrile) for 5 min, 0% to 20% for 30 min, 20% to 33% for
15 min, 33% to 60% for 10 min, and 60% to 100% for 5
min, followed by 7min at 0% mobile phase B. Fractions
were collected every minute and combined by concaten-
ation. Combined fractions were completely dried in the
vacuum concentrator.

Liquid chromatography tandem-mass spectrometry
analysis of vascular beds proteomes
Dried fractionated peptides were reconstituted in 3%
acetonitrile (ACN), 0.1% FA (mobile phase A), and
analyzed by liquid chromatography tandem-mass
spectrometry (LC-MS/MS) using a Dionex UltiMate
3000 UHPLC system coupled with an Orbitrap Elite
mass spectrometer (Thermo Fisher, Inc., Bremen,
Germany) [56, 57]. The sample was sprayed using a
Thermo Fisher Easy-Spray source working at 1.5 kV
and separated using a reverse-phase Acclaim PepMap
RSL column (75 μm ID × 15 cm, 2-μm particle size;
Thermo Scientific, Inc.) maintained at 35 °C and
working at 300 nL/min. Peptides were separated over
a 60-min gradient as follows: 3% mobile phase B
(90% acetonitrile, 0.1% FA) for 1 min, 3% to 35% for
47 min, 35% to 50% for 4 min, 80% for 6 s, 80% (iso-
cratic) for 78 s, 80% to 3% for 6 s, and then main-
tained at 3% (isocratic) for 6.5 min. Data adquisition
using Xcalibur 2.2 SP1.48 software (Thermo Fisher
Inc., Bremen, Germany) was performed in positive
mode alternating between full Fourier transform mass
spectrometry (FT-MS; 350–2000 m/z, resolution 60,
000, 1μscan per spectrum) and FT-MS/MS (150–
2000 m/z, resolution 30,000, 1μscan per spectrum).
The 10-most intense ions with charge > + 2 were iso-
lated within a 2-Da window and fragmented by high-
energy collisional dissociation mode using 32% nor-
malized collision energy with a threshold of 500
counts. Automatic gain control was set to 1 × 106 for
FT-MS and FT-MS/MS.

Bioinformatics and data analysis
Database search of raw proteomics data obtained
from the LC-MS/MS analysis was analyzed using
PEAKS Studio version 7.526 (Bioinformatics Solutions,
Waterloo, Canada) as previously described [58, 59]
with minor modifications. The database search was
performed using an ion tolerance of 10 ppm and a
fragment ion tolerance of 0.05 Da. The false-discovery
rate used was 1% [60]. Carbamidomethylation at Cys
was set as fixed modification and SILAC K6
(+ 6.0201 Da) at Lys was set as variable modification.
The UniProt mouse database (58,761 entries; down-
loaded on February 18, 2016) was used for searching.
Only proteins consistently identified in at least 2 ani-
mals were considered. Identification of protein post-
translational modifications (PTMs) was carried out
using PEAKS PTM algorithm and only PTM manually
validated and with an Ascore of 1000 were considered
in this study. Obtained raw data were analyzed in
Microsoft Excel with the help of in-house created
macros. GraphPad Prism 8 (GraphPad Software, Palo
Alto, CA) was used for statistical analyses of results
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and creation of data plots. Statistical significance was
established by ANOVA followed by Bonferroni post
hoc multiple comparisons at P < 0.05, unless otherwise
specified. Data are reported as mean ± SD, unless
stated otherwise. Illustrations were created using the
open-source software Blender version 2.8 [61] and
Adobe Illustrator CS5.
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