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Abstract

Background: A crucial factor in mitigating respiratory viral outbreaks is early determination of the duration of the
incubation period and, accordingly, the required quarantine time for potentially exposed individuals. At the time of
the COVID-19 pandemic, optimization of quarantine regimes becomes paramount for public health, societal well-
being, and global economy. However, biological factors that determine the duration of the virus incubation period

remain poorly understood.

Results: We demonstrate a strong positive correlation between the length of the incubation period and disease
severity for a wide range of human pathogenic viruses. Using a machine learning approach, we develop a
predictive model that accurately estimates, solely from several virus genome features, in particular, the number of
protein-coding genes and the GC content, the incubation time ranges for diverse human pathogenic RNA viruses
including SARS-CoV-2. The predictive approach described here can directly help in establishing the appropriate
quarantine durations and thus facilitate controlling future outbreaks.

Conclusions: The length of the incubation period in viral diseases strongly correlates with disease severity, emphasizing
the biological and epidemiological importance of the incubation period. Perhaps, surprisingly, incubation times of
pathogenic RNA viruses can be accurately predicted solely from generic features of virus genomes. Elucidation of the
biological underpinnings of the connections between these features and disease progression can be expected to reveal

key aspects of virus pathogenesis.
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Background

The recent outbreak of the novel SARS-CoV-2 corona-
virus and the resulting COVID-19 disease has led to an
unprecedented worldwide emergency [1]. Per the World
Health Organization (WHO) recommendations, numer-
ous countries have taken severe preventive measures to
combat and stem the spread of the virus. A key effective
measure recommended by the WHO in viral outbreaks
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is enforcing a period of quarantine on individuals that
are suspected to have come in contact with the causative
agent until they are proven clean of infection [2, 3]. The
length of the quarantine depends on the time from virus
exposure to the emergence of symptoms, i.e., the incuba-
tion period. The duration of the incubation period is
specific to the causative virus [4]. Underestimation of
the incubation time could lead to infected individuals
being prematurely released from quarantine and spread-
ing the disease, whereas overestimation can have a de-
bilitating economic impact and cause detrimental
psychological effects [5]. Therefore, knowledge of the
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range and upper limit of a virus incubation period is
crucial to effectively combat and prevent outbreaks while
minimizing the negative consequences of the quarantine.

The length of the incubation period varies both across
and within virus families [4]. Investigation of different
incubation periods within a single virus species has
shown that in some cases, a longer incubation period
corresponds to less severe symptoms [6, 7] whereas
others demonstrate the opposite trend [8]. However, to
our knowledge, the association between the incubation
period and severity across different human viral diseases
has not been studied systematically. Further, genomic
features (if any) that correlate with the incubation time
are currently unknown. There is therefore a vital need
for a comprehensive investigation of viral incubation
periods and for methods that predict the incubation pe-
riods of emerging viruses. If such methods are devel-
oped, they can be deployed in future virus outbreaks for
early, accurate inference of the incubation period and
immediate implementation of optimized quarantining
interventions that will mitigate the spread of the virus
while minimizing the negative societal impact [9].

Here, we comprehensively assess the incubation pe-
riods of different viruses that cause human diseases. We
find that, when comparing across different virus species,
a longer virus incubation period is significantly associ-
ated with a more severe disease presentation. This trend
is maintained within and across virus families, regardless
of the affected tissue, and is especially strong among cor-
onaviruses, and overall, for human respiratory diseases.
For an in-depth examination and construction of a pre-
dictive model, we narrowed our focus to respiratory,
non-segmented, single-strand RNA (ssRNA) viruses and
analyzed different genomic characteristics of these vi-
ruses. We identified features that are predictive of the
incubation time and are generalizable across virus fam-
ilies. Based on these features, we developed an elastic
net regression model that predicts virus incubation pe-
riods. We extensively validated the robustness of this
model and the selected features for the prediction of the
incubation time across diverse viruses and virus families,
to enable accurate early estimation of the incubation
period for future outbreaks.

Results

Association between incubation period and disease
severity

We first curated the information on incubation periods
for viral human diseases, where such data were available
(41 viruses, Additional file 1: Table 1). To gain further
insight into the relevance of the viral incubation periods
to human disease, we investigated the relationship be-
tween viral incubation periods and disease severity. We
classified diseases as severe or mild, based on the
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severity of the symptoms and associated death rate, fol-
lowing the descriptions of health organizations where
applicable (see the “Methods” section for details). We
found that, although the incubation periods vary sub-
stantially for the set of viruses collected, both within and
across families, the viruses that cause severe disease pre-
sentations tend to have significantly longer incubation
periods (Fig. 1a, p value 1.1e-5). This trend is strongest
when considering all 41 viruses and diseases (Fig. 1b),
but holds for both ssRNA and double-strand DNA
(dsDNA) viruses separately (Fig. 2c). Furthermore, this
trend is significant when considering the two largest
viral families in this set, Coronaviridae and Herpesviri-
dae (Fig. 1d), and among diseases associated with a par-
ticular tissue type (Fig. le). The biology behind the
relationship between incubation period duration and dis-
ease severity warrants further exploration, but the sig-
nificant association identified here between these two
disease-related variables stresses the importance of the
incubation period duration for both fundamental under-
standing of the diseases and practical health care issues.

Prediction of incubation time from genomic features
We next sought to develop a model that would facilitate
prediction of incubation periods solely from genomic
features. To our knowledge, this is the first attempt to
predict incubation periods from virus genomes. Given
the considerable variability observed in the incubation
periods among viruses that infect different tissues and
those with different genome types (Fig. 1c, e), we sought
to focus on a relatively homogenous subset of virus fam-
ilies, to minimize the risk of confounding the prediction
with features of no direct relevance. To this end, we fo-
cused on non-segmented ssRNA viruses that cause re-
spiratory infections, which is the largest group of human
viruses that are relatively homogenous biologically but
show considerable variation in their incubation periods
(Additional file 1: Table 1). Although the predictor is
built on a limited set of 14 viruses, there is a sufficient
number of genomes to train the model (n =3604
strains). Given that the quarantine time is defined as the
upper limit of the virus incubation time, we extracted
the upper estimates of the incubation periods for all vi-
ruses in the analyzed set (Additional file 1: Table S2, see
the “Methods” section for details).

To train a model with the dataset in hand, we required
a set of features that potentially could be predictive of
the incubation times. Given that this is the first attempt,
to the best of our knowledge, to identify such features,
we were not aware of any established mechanistic rela-
tionships between characteristics of virus genomes and
incubation periods. Thus, we selected features that are
easily derived from the viral genomes and could be rele-
vant for the incubation period (see the “Methods”
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section for details). We constructed 8 such features
(Fig. 2a), based on the complete genome nucleotide se-
quences and within-population genome alignments of all
sequenced strains of each virus (Additional files 1 and 2,
see the “Methods” section for details). In addition to
these 8 features, we also assessed CpG islands as a po-
tential feature, because some viruses, such as hepatitis B
virus (HBV), have been shown to contain varied distri-
butions of CpG islands across different strains [10]. Fur-
thermore, CpG avoidance has been reported for diverse
RNA viruses including coronaviruses [11, 12], possibly
as a result of selection against recognition by the Zinc-
finger Antiviral Protein (ZAP) which binds to CpG mo-
tifs [13]. However, the extent of CpG suppression ap-
pears to be largely uniform among RNA viruses [11].

Moreover, using standard criteria [14], we did not find
any CpG islands in our virus set, making it unlikely that
derivations of this feature would help incubation period
prediction beyond the impact of the GC content. Ana-
lysis of the pairwise associations between the 8 features
(Fig. 2a) confirmed some previously reported connec-
tions, such as the negative correlation between genome
length and mutation rate [15] and the positive correl-
ation between GC content and codon adaptation index
[16] (CAI) (Fig. 2 a,b). Strikingly, our findings indicate
that the mutation rate of SARS-CoV-2 is substantially
lower than those of other human coronaviruses (CoV),
including its closest human-infecting relative, SARS-
CoV (with an average of 1.4e-3 and 7.8e-5 transitions
per branch point per nucleotide for SARS-CoV and
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SARS-CoV-2, respectively; Fig. 2b, see the “Methods”
section for details). Preliminary reports on SARS-CoV-2
genome evolution indicate a similar trend [17].

We then sought to select features to be used for a pre-
dictive model of the incubation time. To avoid con-
founding the model with features that are primarily
driven by virus family, we formally quantified whether a
given feature is significantly associated with the family
identity. To this end, we applied two complementary ap-
proaches, namely, analysis of variance (ANOVA) and an
empirical, non-parametric test, to estimate, for each

feature, whether it varies more across virus families than
within each family (see the “Methods” section for de-
tails). The results obtained with the two approaches
were equivalent, demonstrating that half of the consid-
ered features varied more between families than within
families, and therefore might confound the model
(Fig. 2c). We denote such features family-specific. By
contrast, the incubation time was not significantly asso-
ciated with virus family (Fig. 2d), supporting selection of
features that are not family-specific to train a model; we
denote such features family-generic. Four other features
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were found to be family-generic: GC content of the virus
genome, variance of the number of different nucleotides
observed per position in the alignment of the virus
strains, number of protein-coding genes in the virus gen-
ome, and CAI of the virus coding sequence (Fig. 2e).
Thus, these four features were included in the model.
Next, we divided the analyzed dataset into training
and test sets. To maintain a large, diverse, and independ-
ent test set that spans multiple virus families, we se-
lected the 7 human-infecting viruses of the family
Coronaviridae as the training set. By training on a single
viral family, we allow for a test set with the largest pos-
sible number of families, encompassing high genomic di-
versity and allowing for a comprehensive evaluation of
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the model. Moreover, coronaviruses include viruses with
both high and low incubation periods, providing a good
representation of the range of incubation period values.
Thus, we trained an elastic net model on the 7 human-
infecting viruses of the family Coronaviridae (Fig. 3a),
using the four family-generic features. We found that
this model, which was trained on a single viral family,
generalized well to viruses from the three other families
(Fig. 3b). The test mean absolute error was 1.63 days
(Fig. 3b), attesting to a close estimation of the upper
limit of the incubation time in an independent data set.
Moreover, the model predictions strongly correlated
with the ranks of the assigned incubation periods in the
test set (Spearman’s p =091, p value=0.005).
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Specifically, for the virus with the longest known incuba-
tion period, measles, the longest incubation time, 9.7
days, was predicted. Although measles was assigned an
upper limit incubation period of 14 days in our data, the
majority of the available reports are indeed in the range
of 9-12days [18]. The second longest incubation
period was also correctly assigned to respiratory syn-
cytial virus (RSV), with a prediction of 9.1 days,
closely approximating an assigned period of 8 days in
our data. For parainfluenza viruses 1-3, the model
predicted 7.3, 4.9, and 6.2 days, respectively, closely
approximating the assigned 6 days. Metapneumovirus
was similarly accurately predicted to have a 6.5-day
incubation period, within half a day of its assigned 6
days. Finally, the shortest incubation time predicted
was correctly assigned to rhinovirus, with a prediction
of a 1.2-day incubation period. Although rhinovirus
was assigned a 4-day incubation period in our data,
most of the cases show symptoms within 1 day [19].

Exploration of the model indicated that the stron-
gest predictive features were the number of protein-
coding genes and GC content, with higher values in
either feature corresponding to a longer incubation
time (Fig. 3c). Elucidation of the mechanisms behind
these associations will require extensive experimental
work. A straightforward, even if, likely, over-simplified
explanation could be that the larger number of genes
to be translated by the virus lengthens its replication
cycle, under the assumption that the number of trans-
lation initiation events and/or subgenomic RNAs that
need to be transcribed are rate-limiting factors in
virus reproduction. Similarly, a higher GC content
leads to the formation of stable secondary structures
in the virus RNA, with higher kinetic barriers that
the ribosome then needs to disrupt during translation,
resulting in longer translation times [20]. Thus, one
possible explanation for the association between the
number of protein-coding genes and the GC content
and longer incubation periods is that the longer cu-
mulative translation time extends the replication cycle
and, consequently, the incubation period. Alternatively
or additionally, extra genes could contribute to more
complex interactions of the virus with the host organ-
ism, resulting in longer incubation times. In particu-
lar, the highly virulent coronaviruses with long
characteristic incubation periods encode additional,
accessory proteins compared to low virulence viruses
that have shorter incubation times [21, 22]. The
accessory genes are dispensable for virus reproduction
in cell culture and have been implicated in virus-host
interactions [23]. Some of these additional genes en-
code proteins containing distinct immunoglobulin-like
domains, which is compatible with roles in interac-
tions with the immune system of the host [24].
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To assess the robustness of the selected features, we
tested models trained with different partitioning of the
data into train and test sets. We found that these
changes did not significantly change the performance of
the models, further attesting to the robustness of the sig-
nal obtained using the four family-generic features
(Fig. 3d). By contrast, a model trained with family-
specific features does not generalize to the test set, and
one trained using a mixture of family-generic and
family-specific features disregards the latter by nullifying
their coefficients (Additional file 1: Figure S1), further
demonstrating the efficacy of relying on family-generic
features only. The coefficients assigned to the family-
generic features did not vary substantially across differ-
ent training sets, confirming that the method is not par-
ticularly sensitive to the data used for training (Fig. 3c).
Nevertheless, the high performance of the model that is
trained exclusively on CoV seems to suggest that this
virus family provides a good representation of the de-
pendencies of the incubation period on genomic fea-
tures, and/or that training on a single family is
preferable given the small dataset and the possibility of
confounding effects.

To evaluate the utility of our model, we examined how
this method would have performed during the early
stages of the current COVID-19 pandemic. To this end,
we removed SARS-CoV-2 from the training data and
trained the model on the remaining 6 CoV only, with
the caveat that this training set is poorly balanced as it
contains only 2 viruses with incubation times longer
than 3 days and, therefore, might underestimate when
predicting viruses with long incubation times. The incu-
bation period of SARS-CoV-2 is still being determined,
with the recommended quarantine time conservatively
set at 14 days. Recent reports indicate that the vast ma-
jority of symptomatic patients develop symptoms within
10.5 days, generally, within 5 days [25, 26]. Despite hav-
ing trained the model on an imbalanced training set
biased towards shorter incubation periods, the model
predicts an incubation period of 8.8 days for SARS-CoV-
2, correctly placing SARS-CoV-2 in the upper range of
incubation periods and predicting an incubation period
duration during which current research indicates the
majority of symptomatic patients will have shown symp-
toms. Moreover, a recent meta-analysis that examined
reported SARS-CoV-2 incubation periods across 18
studies concluded that the quarantine time should be
shortened to 7 days [27]. Clearly, the estimate provided
by the model could have been useful in mitigating the
COVID-19 pandemic (Fig. 3e; similar analysis for the
other CoV is provided in Additional file 1: Figure S2).

We further expanded the approach to facilitate an
interval prediction, to provide for the prediction of the
full range of incubation periods for a novel virus. Given
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that there is no consensus as to how to define standard
errors or confidence intervals for elastic net regression
models [28-30], we introduce an empirical evaluation of
lower and upper ranges of the interval of the incubation
period (see the “Methods” section for details). We find
that the model is predictive of these intervals, in both
the training set (Fig. 4a) and the test set (Fig. 4b, permu-
tation test p value <1le-3). On average, the predicted
range captures 54% of the true range for viruses in the

test set; at least, 30% of the true range is covered for all
viruses in the test set, and at least 50% is covered in five
of the seven viruses. The average absolute deviation is
1.6 days from the lower incubation range and 1.8 days
from the upper incubation range.

Given the success of the model when applied to re-
spiratory viruses, we sought to examine whether the
genomic characteristics and model that was effective for
respiratory diseases would be generalizable to non-
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respiratory viruses. Given that the model construction
and evaluation was limited to respiratory viruses, an
evaluation on other diseases or types of viruses may be
confounded by the different tissue types. To mitigate
possible confounders resulting from genome structure
and affected tissue types, we focused on non-segmented
ssRNA viruses of the families Filoviridae (negative-sense
RNA viruses) and Flaviviridae (positive-sense RNA vi-
ruses) that cause hemorrhagic fevers. The hemorrhagic
fever viruses were selected because they consist of a
large enough set of viruses that are not associated with a
specific tissue, and thus appear to be less likely to intro-
duce bias in evaluation. Indeed, the model accurately
predicted the incubation period of these viruses, includ-
ing 3 types of Ebola viruses, Marburg virus, dengue
virus, yellow fever virus, and tick-borne encephalitis
virus (Fig. 4c, Spearman rho = 0.76, p value = 0.05).

Discussion

The emergence of novel viruses that can cause pandemics
remains a major threat to human health as compellingly
demonstrated by the COVID-19 pandemic. A major chal-
lenge in dealing with such outbreaks is the initial lack of
biological and clinical knowledge of the infectious agent,
which can lead to potentially avoidable fatalities until the
causative agent is thoroughly characterized. Therefore, to
mitigate emerging outbreaks, rapid estimation of the incu-
bation period of novel viruses is vital, in order to define
the appropriate quarantine period and to estimate the rate
of virus spread. Furthermore, we show here that the
length of the incubation period in human viral diseases
significantly correlates with the disease severity which fur-
ther underlines the importance of the accurate prediction
of the incubation time.

With recent advances in sequencing technology, gen-
omic sequences of multiple isolates of novel viruses be-
come available shortly after the virus emerges. Here, we
comprehensively examined genomic features that could
be predictive of the virus incubation times of human
pathogenic ssRNA viruses and identified four family-
generic features that consistently predict the incubation
periods with high accuracy. Using these features, we de-
veloped a robust model that is predictive of incubation
times for respiratory ssSRNA viruses, the most common
cause of viral pandemics [31]. Despite having been
trained and evaluated on respiratory ssSRNA viruses only,
our model was found to be predictive also of the incuba-
tion periods of viruses that cause hemorrhagic fevers.
Thus, the four genomic features that we identified as be-
ing family-generic allow for robust prediction of incuba-
tion periods for vastly different diseases caused by
viruses that belong to different phyla [32]. Future ad-
vances based on this work can be expected to expand
the model and feature search to additional sets of viruses
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and should comprehensively evaluate the effects of dif-
ferent confounders on the prediction, such as segmented
genomes (for example, the influenza genome) and differ-
ences in the tissue tropism.

We also investigated the links between incubation pe-
riods of different disease-causing viruses and the disease
severity and found that viruses with long incubation pe-
riods tend to cause severe disease. Although the rela-
tionship between incubation periods and disease severity
has been assessed previously for specific viral diseases
[6-8], to our knowledge, this connection has not been
studied systematically across a large collection of human
pathogenic viruses. This signal is robust across different
viral families and disease types, including coronaviruses.
To date, the study of virus incubation periods has been
largely limited to human viruses. It remains to be ex-
plored whether the incubation periods of animal viruses
correlate with those of human viruses. If there are robust
correlations, these could provide additional avenues to
investigate the effect of the incubation period on viral
pathogenicity and infectivity in an evolutionary context,
and perhaps, contribute to the development of early in-
terventions for potential zoonotic viruses. Furthermore,
such investigation could help with uncovering new coro-
naviruses with high pathogenic and zoonotic potential.

The underlying molecular and biological mechanisms
of the dependencies between the family-generic genomic
features, the incubation times, and disease severity re-
main to be directly and functionally investigated. One
contributing factor could be a direct mechanistic con-
nection between increased translation times in viruses
with many genes and high GC content and longer incu-
bation periods. Additionally, longer incubation periods
are indicative of complex virus-host interactions that
consequently present with more severe disease symp-
toms. This explanation is compatible with the observa-
tions in coronaviruses, whereby the highly virulent
strains with long characteristic incubation periods en-
code several accessory proteins [21, 22] that are missing
in viruses causing milder disease and have been impli-
cated in virus-host interactions [23]. The domain con-
tent of some of these accessory proteins, indeed, seems
to implicate them in interactions with the host immune
system [24]. Another possible explanation is, simply, that
a longer incubation period can lead to delayed medical
intervention, so that by the time clinical symptoms ap-
pear, the medical intervention is less effective, and the
disease presents as more severe. However, confirming or
dispelling any of these hypotheses requires extensive
virological experimentation.

Conclusions
We demonstrated a robust association between virus in-
cubation times and the severity of disease presentation
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and identified a set of viral genomic features that is
highly predictive of incubation times. To our knowledge,
this work is the first to demonstrate that incubation pe-
riods of respiratory ssRNA viruses can be accurately pre-
dicted by genome analysis alone. The model established
through this work and the genomic features that were
used for training can directly facilitate early and accurate
estimation of the required quarantine time for future
pandemics and help the responsible agencies set initial
guidelines accordingly. Furthermore, these results have
clear applications for controlling the spread of emergent
ssRNA respiratory viruses, the most common cause of
pandemics. Future work can expand this method to en-
compass additional virus families of interest and aid in
mitigating the effect of potentially deadly zoonotic
outbreaks.

Methods
Incubation period and severity assignment
The incubation time for each of the strains of each of
the 41 viruses was collected from the literature (Add-
itional file 1: Table S2). As incubation periods vary,
where possible, the upper limit was used, and a consen-
sus of reports was followed. The only exception to this is
SARS-CoV-2. Although more data is needed to assess
the incubation period of SARS-CoV-2, we set the dur-
ation to 14 days given the recommended quarantine
times [2]. We note that there are small variations in re-
ports of the incubation times, and the assigned values
represent the best approximation. Changing the assigned
incubation times within the range of reports maintains a
similarly high performance of the trained model (Add-
itional file 1: Figure S2).

The rationale for the selected incubation times for the
14 ssRNA respiratory viruses used in model construction
and assessment was as follows:

a  229E-CoV (n=25), HKUI-CoV (n = 39), NL63-CoV
(n = 60), and OC43-CoV (n = 161). For these
coronaviruses, which are causative agents of
common colds, a 3-day incubation period was
assigned, following the majority of reports [33, 34].

b MERS-CoV (n=284). A 14-day incubation period
was assigned to MERS-CoV, per previous reports
[35].

¢ SARS-CoV (n=273). The estimates show 13 days
as an upper limit in the majority of reports [4, 36].

d SARS-CoV-2 (n=92). Although more data is
needed to assess the incubation period of SARS-
CoV-2, we set the duration to 14 days given the
recommended quarantine times [2].

e  Measles virus (n = 213). There is a considerable
range of reported incubation periods, with the
majority of reports indicating 9-12 days and some
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reports going several days beyond that. Thus, we
set the incubation period to 14 days [18].

f  Respiratory syncytial virus (RSV, n = 1595). For
RSV, the incubation period was set to 8 days, in
accordance with the higher range of the majority
of reports [37].

g Parainfluenza (n =43, 58, and 345 for
parainfluenza 1, 2, and 3, respectively). The
parainfluenza incubation period was consistently
reported to be between 2 and 6 days and therefore
was assigned the upper limit of 6 days [4].

h  Rhinovirus (n = 244). Per previous reports, a 4-day
incubation period was assigned to rhinovirus [4].

i Metapneumovirus (n = 162). Six days was assigned
to human metapneumovirus, given the commonly
reported range of 4—6 days [38].

We also assigned each of the 41 viruses with a binary
severity annotation, of either severe or mild. Diseases
with extreme immune responses, fevers, or other ex-
treme symptoms were considered severe, along with dis-
eases with high death rates. Diseases that cause mild
respiratory symptoms or diseases that are otherwise be-
nign were considered mild. In cases where either the
Centers for Disease Control and Prevention (CDC) or
the WHO explicitly described a disease as either severe
or mild, that description was applied as the severity an-
notation. The disease presentations and severity deter-
mined, along with the rationale for the determined
severity, are detailed in Additional file 1: Table S2.

Each of the 41 viruses was also classified by its symp-
toms and affected tissues, based on CDC and WHO de-
scriptions, falling into one of these categories: central
nervous system (CNS), fever, gastro, gastro/CNS,
hemorrhagic fever, immune system, liver, skin, and swol-
len glands.

Sequence datasets

Reference genome sequences and GenBank files were
downloaded from the NCBI [39] for each virus (Add-
itional file 1: Table S1, Additional file 2). For each virus,
additional strains were downloaded from the NCBI and
aligned using Mafft [40] v7.407 with default parameters,
resulting in an alignment file for all strains belonging to
each of the 14 viruses (Additional file 3). For each virus,
all available strains were downloaded. Phylogenetic trees
were generated for each virus based on the alignment
using FastTree [41, 42] with the “-nt” parameter.

Genomic features
The following genomic features with potential links to
viral replication time and efficiency were evaluated:
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a  Genome length. The number of nucleotides in the
reference genome sequence. Rationale: The length
of the genome might correlate with virus
reproduction time.

b Number of genes. The number of genes in the
reference genome’s associated GenBank file. We
verified for each virus that there were no
undetected genes within its genome using
MetaGeneMark [43] gene prediction software.
Rationale: The number of genes might correlate
with the total time spent on translation in the viral
lifecycle and, thus, with the reproduction time.

¢ Positive or negative strand RNA. Whether the RNA
virus is positive strand or negative strand. This
was set to 1 if the virus has a positive strand
genome and to O if it has a negative strand
genome. Rationale: The positive- or negative-sense
RNA might correlate with the time required to
begin translation; negative ssRNA viruses require
an additional stage to synthesize the positive-sense
antigenome before translation, and accordingly,
could correlate with the reproduction time.

d  Codon adaptation index (CAI). The CAI was used
to analyze the codon usage bias of each virus in
comparison to human. The CAI was calculated by
concatenating all the coding sequences (CDS) in each
virus reference genome GenBank file and using the
Biopython [44, 45] software package (version 1.74)
implementation, with the CodonAdaptationlndex class
set to a reference human codon usage table [46].
Rationale: The codon adaptation index could correlate
with translation efficiency and thus with the viral
reproduction time.

e  GC content. This was calculated for each reference
genome using Biopython [44]. Rationale: GC
content could correlate with translation times [20]
and thus with the reproduction time.

f  Mutation rate. Raw mutation rates were
estimated per each virus genome alignment,
without accounting for selection bias, by
detecting the ancestral base for every base in
the genome for every non-leaf node in the tree
using maximum parsimony. Then, at each
branch point, the transitions between both sides
of the branch were counted, and the average
count was then divided by the length of the
genome for the final estimate. Rationale: The
mutation rates could correlate with the
reproduction time [47].

g  Average and variance of the changes in each
position of the alignment. The change in alignment
position is defined as the number of different values
observed in each position of the virus alignment,
divided by the number of strains in the alignment. The
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average and variance of these values are used as
features. Rationale: The position change mean and
variance might correlate with the translation efficiency
and regulation among different genomic regions and,
thus, with the viral incubation period.

Features that rely on the multiple sequence alignment
of different strains of the same virus were always nor-
malized by the number of strains available, in order to
avoid biases that could result from different strain
counts per virus.

CpG islands were searched for in each reference gen-
ome using a Python implementation (https://github.
com/lucasnell/TaJoCGI) with standard criteria [14].
However, none was found in any of the analyzed virus
genomes.

Evaluation of the specificity of the features for virus
families

We sought to evaluate, for each feature, whether it is asso-
ciated with the identity of the virus family which would be
a potential confounder to the model. We hence searched
for features whose variance within each virus family was
not significantly smaller than its overall variance. To this
end, each feature was evaluated using two methods.

The first method is a one-way analysis of variance
(ANOVA). One-way ANOVA tests the null hypothesis
that the means of the measurement variable are the
same for the different categories of data, against the al-
ternative hypothesis that they are not all the same.
Hence, lower assigned p values signify that the null hy-
pothesis is rejected and that different viral families have
different population means with respect to each feature.
We therefore consider features assigned with a p value
greater than 0.05, for which we could accept the null hy-
pothesis, and could not conclude that the feature mean
was associated with the viral family. The ANOVA test
was implemented in Python using the f oneway function
in the SciPy [48] package.

The ANOVA test assumes that the samples are inde-
pendent, taken from normally distributed populations
with equal standard deviations between the groups.
These assumptions, which must be satisfied for the asso-
ciated p value to be valid, are not guaranteed and are dif-
ficult to evaluate. We hence implemented a second,
empirical test, which is not parametric and does not rely
on any assumptions. This empirical test evaluates, for a
given feature, if its variance within virus families is
smaller than would be observed by random assignment
of families to viruses. We reason that a feature which is
associated with the virus family would have significantly
smaller variance within the true family assignment than
within a random family assignment. The null hypothesis
is that the variance of the features within each family is
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similar to the variance across families, and the alterna-
tive hypothesis is that the variance of the features within
each family is smaller than the variance across families.
To perform the empirical test, the feature variance
within each virus family is calculated and averaged.
Next, the feature values are randomly permuted 1000
times and the same calculation is performed, to generate
a null distribution. Let the number of times the variance
of the permuted values is less than the variance of the
real values be X. The p value is calculated as (X + 1)/
(1000 + 1). Thus, a lower p value indicates that the fea-
ture’s within-family variance is smaller than our null ex-
pectation. We search for features with a p value greater
than 0.05, for which we conclude that the variance
within the actual families is not smaller than that within
randomly assigned families. This evaluation does not ne-
cessarily indicate that the family-specific features are
poor predictors, rather, that, with the data available, it
would not be possible to discern whether the signal from
these features is primarily driven by the variation be-
tween virus families.

Elastic net model
The elastic net method [49] is a generalization of LASSO
using Ridge regression shrinkage, where the naive esti-

mator 5§ is a minimizer of the criterion L(\y, A5, B) by:

/;’: argminﬁ(L(/ll,Az,ﬁ))
= argming(||y - X + ||l + A211BI[°)

for any fixed, non-negative 1;, A,. Elastic net was
chosen because it has characteristics of both LASSO and
Ridge regression, which are controlled by the penalties
coefficients, thus outperforming other regularization and
variable selection approaches [49].

The elastic net model was constructed in Python using
the scikit-learn [50] ElasticNet function with default pa-
rameters. The features were standardized before training,
with the same standardization parameters used in train-
ing applied to test data before prediction.

Evaluating intervals for the predicted incubation periods
Given that there is no consensus as to how to define
standard errors or confidence intervals for LASSO,
Ridge, and elastic net estimates [28—30], we develop an
empirical estimation of the lower and upper range of the
incubation period using the elastic net model. To this
end, we trained two models on the training data (viruses
in the Coronaviridae family), with the first model trained
on the lower estimates of the incubation period of coro-
naviruses and the second model trained on the highest
reported estimate of the incubation periods.
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Evaluating the significance of assigned interval using
permutation test

To evaluate the significance of the correlation between
the predicted incubation intervals and the true intervals,
we applied a permutation test. We calculated the average
deviation of the predicted ranges from the true incuba-
tion ranges across all viruses in the test set, which is 1.7
days. We then shuffle the true intervals 1000 times, to
generate a null distribution. Let the number of times the
average deviation of the predicted range from the per-
muted range is less than or equal to the average devi-
ation of the predicted range from the true range be X.
The p value is calculated as (X + 1)/(1000 + 1).
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