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Abstract

Background: Viruses are ubiquitous biological entities, estimated to be the largest reservoirs of unexplored genetic
diversity on Earth. Full functional characterization and annotation of newly discovered viruses requires tools to
enable taxonomic assignment, the range of hosts, and biological properties of the virus. Here we focus on
prokaryotic viruses, which include phages and archaeal viruses, and for which identifying the viral host is an
essential step in characterizing the virus, as the virus relies on the host for survival. Currently, the method for
determining the viral host is either to culture the virus, which is low-throughput, time-consuming, and expensive,
or to computationally predict the viral hosts, which needs improvements at both accuracy and usability. Here we
develop a Gaussian model to predict hosts for prokaryotic viruses with better performances than previous
computational methods.

Results: We present here Prokaryotic virus Host Predictor (PHP), a software tool using a Gaussian model, to predict
hosts for prokaryotic viruses using the differences of k-mer frequencies between viral and host genomic sequences
as features. PHP gave a host prediction accuracy of 34% (genus level) on the VirHostMatcher benchmark dataset
and a host prediction accuracy of 35% (genus level) on a new dataset containing 671 viruses and 60,105
prokaryotic genomes. The prediction accuracy exceeded that of two alignment-free methods (VirHostMatcher and
WIsH, 28-34%, genus level). PHP also outperformed these two alignment-free methods much (24-38% vs 18-20%,
genus level) when predicting hosts for prokaryotic viruses which cannot be predicted by the BLAST-based or the
CRISPR-spacer-based methods alone. Requiring a minimal score for making predictions (thresholding) and taking
the consensus of the top 30 predictions further improved the host prediction accuracy of PHP.

Conclusions: The Prokaryotic virus Host Predictor software tool provides an intuitive and user-friendly API for the
Gaussian model described herein. This work will facilitate the rapid identification of hosts for newly identified
prokaryotic viruses in metagenomic studies.
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Author summary

Prokaryotic viruses which include phages and archaeal
viruses play an important role in balancing the global
ecosystem by regulating the composition of bacteria and
archaea in water and soil. Identifying the viral host is es-
sential for characterizing the virus, as the virus relies on
the host for survival. Currently, the method for deter-
mining the viral host is either to culture the virus which
is low-throughput, time-consuming, and expensive, or to
computationally predict the viral hosts which needs im-
provements at both accuracy and usability. This study
developed a Gaussian model to predict hosts for pro-
karyotic viruses with better performances than previous
computational methods. It will contribute to the rapid
identification of hosts for prokaryotic viruses in metage-
nomic studies, and will extend our knowledge of virus-
host interactions.

Background

Viruses are ubiquitous biological entities, with an esti-
mate of 10" viral particles at any given time on earth
[1]. They infect all types of organisms, from animals and
plants to bacteria and archaea. Prokaryotic viruses which
include phages and archaeal viruses play an important
role in balancing the global ecosystem by regulating the
composition of bacteria and archaea in water and soil
[2-5]. For humans, phages directly influence gut health
and are associated with several human diseases, such as
diabetes [6] and Crohn’s disease [7]. Interestingly,
phages can also be applied as therapy for bacterial infec-
tions [8, 9], especially for bacterial strains resistant to
multiple antibiotics.

Viruses are estimated to be the largest reservoirs of
unexplored genetic diversity on earth [5]. Novel viruses
have been discovered at an unprecedented pace with the
rapid expansion of metagenomics [4, 10-12]. For ex-
ample, the recent Tara Oceans Project greatly extended
the global ocean DNA virome by identifying 195,728
viral populations [4]. As our knowledge of the viral gen-
etic diversity expands considerably, it becomes increas-
ingly critical to develop tools to facilitate functional
characterization and annotation of the newly discovered
viruses, such as taxonomic assignment, range of hosts,
biological properties, and so on.

Identifying the viral host is essential for characterizing
the virus, as the virus relies on the host for survival. Cur-
rently, the method for determining the viral host is to
culture the virus, which is low-throughput, time-
consuming, and expensive [13]. Even worse, few viruses
can be cultured since less than 1 % of microbial hosts
have been cultivated successfully in laboratories [14, 15].
Therefore, it is highly desirable to develop quicker
methods for predicting hosts of newly discovered viruses
in metagenomic studies.
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Several computational approaches have been intro-
duced to predict hosts of viruses based on viral genomic
sequences. They can be largely classified into two groups
according to their dependence on alignment: alignment-
based methods and alignment-free methods. The
alignment-based methods rely on sequence similarity
searches between a query virus and candidate host ge-
nomes because viruses and their hosts sometimes share
genes and/or short nucleotide sequences [16, 17]. Such
sequences may come from spacer sequences used in
CRISPR systems, integration sites used by proviruses or
horizontal gene transfer. BLAST is most widely used to
predict viral hosts with relatively high accuracy [16, 17]
based on the similarity between virus and host genomes.
However, for newly identified viruses divergent from the
known ones, the applicability of the BLAST-based
method could be limited. The CRISPR-spacer-based
method has shown a higher accuracy compared to the
BLAST-based method in predicting phage hosts, yet it
can only be used for a small proportion of viruses since
only 40%-70% prokaryotes encode a CRISPR system
[17] and not all of them have spacer sequences from vi-
ruses. Besides, since the spacers are only the infection
history of an individual prokaryotic cell, a precise phage-
bacteria sequence match would require the unlikely
preservation of the CRISPR spacers.

The alignment-free methods predict the host of vi-
ruses based on co-occurring k-mers to other phages with
known hosts [18], or sequence composition similarity
between viruses and their hosts. Among the latter kind
of methods, VirHostMatcher (VHM) [16] and WIsH
[19] have achieved the highest host prediction accuracy.
VHM employs the background-subtracting measure d,’
for measuring the similarity of oligonucleotide frequency
between viruses and hosts, and predicts the one with the
lowest distance to the virus as the viral host. VHM
achieved a host prediction accuracy of 33% at the genus
level. WIsH predicts viral hosts by training a homoge-
neous Markov model for each potential host genome,
then calculating the likelihood of a contig under each of
the trained Markov models, and finally predicting the
host whose model yields the highest likelihood. WIsH
has achieved 63% mean accuracy at the genus level on
their benchmark dataset of 3 kbp phage contigs and is
currently the best tool for predicting phage hosts based
on short phage contigs.

In this study, a Gaussian model (GM) for predicting
hosts of prokaryotic viruses was developed based on the
differences of k-mer frequencies between viral and host
genomic sequences. A standalone tool and a web-based
tool was implemented to run the GM. The GM not only
outperformed previous alignment-free methods, but also
shaped a complement to the alignment-based methods
in predicting hosts for prokaryotic viruses. The GM



Lu et al. BMC Biology (2021) 19:5

should facilitate the prediction of virus host in metage-
nomic studies.

Methods

Datasets of virus-host interactions

The prokaryotic viruses were referred to as viruses here-
inafter unless otherwise specified. Two datasets were
used to build and test computational models for predict-
ing virus hosts. The first was the VirHostMatcher
(VHM) benchmark dataset obtained from Ahlgren’s
study [16]. The taxonomic information of both viral and
prokaryotic genomes in the dataset was updated accord-
ing to the International Committee on Taxonomy of Vi-
ruses (ICTV) [20] and NCBI Taxonomy database [21].
One pair of virus-host interaction (Tetraselmis viridis
virus - Tetraselmis sp.) was removed due to the incor-
rect annotation of the Tetraselmis as bacteria. The up-
dated VHM dataset contains a total of 1426 pairs of
virus-host interactions, 1426 virus genomes, and 31,918
prokaryotic genomes. It was available to the public on
GitHub [22].

The second dataset was the test dataset to assess the
computational models of predicting virus hosts. Con-
trary to the VHM dataset that contains virus-host inter-
actions compiled from the NCBI RefSeq database [23]
before May 5th, 2015, the test dataset contains those
submitted between May 6th, 2015, and February 26th,
2019. The virus-host interactions which have both the
same viral species and the same host genus with those in
the VHM dataset were removed. The test dataset con-
tains a total of 671 pairs of virus-host interactions, 671
virus genomes, and 60,105 prokaryotic genomes ob-
tained from the NCBI genome database [24] on February
21th, 2019. The taxonomy distribution of both the virus
and host in the test dataset and the VHM dataset was
analyzed and shown in Additional file 1: Figure SI.
When compared to the VHM dataset, the test dataset
includes 667, 97, and 2 new viral species, genus, and
families, respectively, and 37, 11, and 8 new host species,
genus, and families, respectively.

The Gaussian model for predicting virus host

The Gaussian mixture model is a probabilistic model
which uses a finite number of Gaussian distributions to
fit data points and get the probability density of them
[25]. Here, the Gaussian mixture model with only one
component was found to perform best in predicting
virus hosts (Additional file 1: Figure S2); therefore, the
Gaussian mixture model was simplified as Gaussian
model (GM). The GM takes the differences of k-mer fre-
quencies between virus and prokaryotic genomic se-
quences as features, and outputs a score (the logarithm
of the probability of being viral host) for the prokaryote.
The k-mers of 4 nucleotides were selected (Additional
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file 1: Figure S2), which resulted in 256 features. The
GM was built using the function of GaussianMixture in
scikit-learn [25, 26].

Definition of accuracy in virus host prediction by
Gaussian models

For each virus, the GM calculated a score (the logarithm
of the probability of being viral host) for all prokaryotic
genomes available in the dataset. For example, in the test
dataset, each of the 60,105 prokaryotic genomes would
be assigned a score (the logarithm of the probability of
being viral host) by the GM. The prokaryotic species
with the highest score was considered as the predicted
host of the virus. The predicted host was compared to
the actual host at different taxonomic levels. If the pre-
dicted host belonged to the same taxonomic unit such
as genus with the actual host, the prediction was consid-
ered as correct at the level. The accuracy of virus host
prediction at a certain taxonomic level was defined as
the ratio of correctly predicted host at this taxonomic
level.

Prediction of virus hosts with VHM and WisH

VHM and WIsH were the best alignment-free methods
for predicting phage hosts according to previous studies
[16, 19]. For comparison, they were tested with default pa-
rameters on the test dataset mentioned above. They were
computed with the codes available at GitHub [27, 28].

Prediction of virus hosts with alignment-based methods
Previous studies by Edwards et al. [17] showed the se-
quence alignment-based methods, such as the BLAST-
based method and CRISPR-spacer-based methods,
achieved excellent performances in predicting virus
hosts. We compared these methods with the GM in pre-
dicting virus hosts on the test dataset.

To predict the virus host based on BLAST, the gen-
ome sequence of each virus was queried against the pro-
karyotic genomes in the test dataset using blastn
(version 2.6.0+) [29]. The prokaryotic species with the
best hit which had E-value smaller than 1E-5 was con-
sidered as the potential host of the virus.

To predict the virus host based on CRISPR spacer se-
quences, firstly, the CRISPR spacer sequences in all
prokaryote genomes of the test dataset were extracted
by the CRISPR Recognition Tool (CRT) [30]. Then, the
genome sequence of each virus was queried against the
prokaryotic CRISPR spacer sequences using blastn (ver-
sion 2.6.0+). The hits, i.e., the CRISPR spacer sequences,
with identity >95% to the query sequence over the
whole spacer length were considered as perfect hits. The
prokaryotic species with perfect hits to the virus genome
was considered as the potential host of the virus.
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Prediction of virus hosts based on simulated viral contigs
Metagenomic assembly often yields partial genomes, so
the prediction of the virus host based on contigs of vary-
ing lengths was important. To test the GM in prediction
of virus hosts in metagenomics, the GMs based on simu-
lated viral contigs of length L bp (L = 1000, 3000, 5000,
and 10,000) randomly subsampled from viral genomes
were built, and the models were evaluated by the ten-
fold cross-validations on the K-means clustering of the
VHM dataset.

Results
Building a Gaussian model for predicting virus hosts
Viruses and their hosts often share similar oligonucleo-
tide frequency patterns in their genomes, yet the predic-
tion of virus-host interactions based on the similarity
pattern remains challenging. A Gaussian model (GM)
was developed in this study to predict the hosts based
on the differences of k-mer frequencies between viral
and host genomic sequences (see “Methods”). To evalu-
ate the ability of the GM in predicting virus hosts, a
strict testing strategy was adapted (Fig. 1). Firstly, a fea-
ture vector characterizing the differences of k-mer fre-
quencies between viral and host genomic sequences was
calculated for each pair of virus-host interaction within
the VHM dataset. The K-means algorithm was then
used to separate the virus-host interactions in the VHM
dataset into ten clusters based on the feature vectors. Fi-
nally, ten-fold cross-validations were conducted as fol-
lows: nine clusters of virus-host interactions were used
to train the GM, while the outcome GM model was then
used to predict the virus-host interactions in the
remaining cluster. For each virus, scores were assigned
to all the prokaryotic host species in the VHM dataset,
and the prokaryotic species with the highest score was
predicted to be the host of the virus. The above process
was repeated for each cluster. The overall prediction ac-
curacy of the GM was calculated as the ratio of the cor-
rectly predicted viruses among all viruses in the dataset.
The testing strategy mentioned above was also used to
determine parameter values for the GM. Two important
parameters for the GM were the length of k-mers and
the number of components (i.e., the number of Gaussian
distribution) used in the model. The virus host predic-
tion accuracy of the GM increased as the length of k-
mers increased from 1 to 5, and then decreased with k-
mers of six nucleotides (Additional file 1: Figure S2A).
The k-mers with four nucleotides which have a total of
256 kinds of k-mers were selected to balance the model
complexity and prediction accuracy since the number of
samples used in training the GM is only 1426. When
selecting the number of components used in the GM,
interestingly, we found the GM with one component
outperformed that with multi-components (Additional
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file 1: Figure S2B). Therefore, the GM with one compo-
nent and with k-mers of four nucleotides was used in
the further analysis. The optimized GM had a virus host
prediction accuracy of 0.34 on the genus level and 0.45
on the family level in the ten-fold cross-validations on
the K-means clustering of the VHM dataset (Fig. 2). For
comparison, the prediction accuracies of VHM and
WIsH on the VHM dataset were also displayed. The
GM slightly outperformed VHM and WIsH on all taxo-
nomic levels (Fig. 2).

The GM was also compared to other common
machine-learning algorithms in predicting virus hosts,
including the random forest, logistic regression, naive
Bayesian, decision tree, k-nearest neighbor, and multi-
layer perceptron algorithms. The GM was found to out-
perform much than these machine-learning algorithms
in the ten-fold cross-validations on K-means clustering
of the VHM dataset (Additional file 1: Figure S3).

Prediction performances of the GM on the test dataset

The GM built on the VHM dataset was further tested
using the test dataset. The predictive accuracy of the
GM increased with the gradual elevation of the taxo-
nomic level from genus to phylum (Fig. 3a). Notably, the
GM achieved accuracies of 0.46 on the level of genus
and 0.63 on the level of family. For comparison, VHM
[16] and WIsH [19] were also used to predict the
prokaryote host on the same test dataset. Our GM
achieved much higher accuracies than these two
methods at all taxonomic levels. For example, the pre-
diction accuracies of GM at the genus level was 0.18 and
0.12 higher than VHM and WIsH, respectively (Fig. 3a).

The shared viruses and hosts in both the test dataset
and the training dataset (VHM dataset) may result in
over-estimate of the performance of the GM in the test
dataset. Therefore, when predicting a target virus-host
interaction in the test dataset, the GM was re-built based
on the training dataset from which the virus-host inter-
actions that shared the same viral and host genus with
the target virus-host interactions were removed. This re-
sulted in a compromised performance of the GM on the
test dataset (see red bars in Fig. 3a). For example, the
predictive accuracies of the GM were 0.35 on the genus
level and 0.48 on the family level. However, most of the
time, the GM still outperformed both VHM and WIsH
(Fig. 3a).

The similarity between the virus and host genomic se-
quences often indicates virus-host relations. Thus the
alignment-based methods, such as the BLAST-based
method and the CRISPR-spacer-based method, are fre-
quently used to predict the virus host. These two
methods were tested on the test dataset and were com-
pared to the GM (Fig. 3). The CRISPR-spacer-based
method predicted virus hosts with the highest accuracies
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at all taxonomic levels, ranging from 0.77 to 1, among
all methods, but it can only predict hosts for less than
one fourth of viruses. The BLAST-based method pre-
dicted hosts for most viruses with accuracies higher (1-
13%) than those of the GM.

We further investigated the performance of the
alignment-free methods in predicting hosts for viruses
which cannot be predicted by the alignment-based
methods on the test dataset. A total of 48 viruses cannot
be predicted by the BLAST-based method. The GM pre-
dicted hosts more accurately than both VHM and WIsH
at all taxonomic levels for these viruses (Fig. 4a). For ex-
ample, the GM had a prediction accuracy of 0.24 at the
genus level, while the VHM and WIsH had accuracies of
0.18 and 0.20, respectively. A total of 430 viruses cannot
be predicted by the CRISPR-spacer-based method. The
GM again had much higher accuracies than both VHM
and WIsH at all taxonomic levels on these viruses. These
results suggest that the GM may be a better complement
to the alignment-based methods than the VHM and
WIsH.

Approaches for further improvements of the GM

To further improve the performance of GM in host pre-
diction, the maximum consensus method was applied as
in Ahlgren’s work [16]. The predicted host taxon was se-
lected as the most frequent taxon among the N (N =1
to 30) hosts with the highest score. When 30 predicted
hosts were considered, the prediction accuracy at the
genus level improved significantly using this consensus
approach for GM and VHM, achieving an accuracy of

0.45 and 0.39, respectively (Fig. 5a and Additional file 1:
Table S1), while the prediction accuracy of WIsH at the
genus level increased as N increased from 1 to 10, then
it began to decrease. Similar variation patterns were ob-
served at other taxonomic levels for all three alignment-
free methods (Additional file 1: Table S1).

We also tested applying a score threshold requirement
to making host predictions as Ahlgren et al. did in their
study [16]. Predictions were only made when the score
was larger than a given threshold. The host prediction
accuracies and the recall rate of the GM, VHM, and
WIsH were calculated (Fig. 5b and Additional file 1:
Table S2). As is shown in Fig. 5b, the prediction accur-
acy of the GM, VHM, and WIsH at the genus level in-
creased significantly as the recall rate decreased. Both
GM and WIsH outperformed VHM much as the recall
rate ranging from 1 to 0.2. Interestingly, VHM outper-
formed much than GM and WIsH at the recall rate of
0.1. The GM slightly outperformed WIsH when the re-
call rate ranged from 1 to 0.5. Further analysis of the
prediction accuracies at higher taxonomic levels versus
the recall rate found that the GM outperformed VHM
and WIsH much at both the family and order level when
the recall rate ranged from 1 to 0.1, while at other taxo-
nomic levels, these methods performed comparably
(Additional file 1: Table S2).

Host prediction based on viral contigs

Metagenomic assembly often yields partial genomes. By
far, WIsH was reported as the most accurate method for
predicting phage hosts based on short contigs [19]. We
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further tested the ability of the GM in predicting hosts
based on viral contigs of varying length ranging from 1
to 10kb (Fig. 6). When testing the GM and WIsH on
the VHM dataset, we found that the GMs achieved
lower accuracies than WIsH at all taxonomic levels
when viral contigs were smaller than 10 kb; when viral
contigs were equal to or larger than 10 kb, the GMs had
higher accuracies than WIsH at order or higher taxo-
nomic levels.

Development and application of a software tool for
predicting host of prokaryotic viruses based on the GM
We developed a software tool named Prokaryotic virus
Host Predictor (PHP) to provide a user-friendly interface
for the GM algorithm. PHP is freely available either as a
standalone version [22] or in the form of a web server
[31]. We included both the VHM and the test dataset
for GM model training in PHP to maximize the usability
based on all currently available data. While the

standalone version of PHP is suitable for host prediction
of a large number of viruses, the PHP web server is suit-
able for host prediction of fewer than 100 viruses. The
web server of PHP is intuitive and user-friendly. It takes
one or multiple virus genomic sequences as input. After
submission, a waiting page appears and would last from
several minutes to several hours depending on the num-
ber and size of viral genomic sequences. The user can
bookmark the page and check the status of the job in
the “Job status” page or provide the email address (op-
tional) and check the results upon email notification.
The output would show the name, the score, and the
taxa (from species to phylum) of the predicted host for
the given viruses. Both the top 1 and the consensus of
top 5 predicted hosts were shown since considering the
consensus of the top 5 predictions would improve the
performances of the GM.

The time consumed by the PHP was measured on the
VHM dataset and was compared to the time consumed

o o
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o
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Fig. 6 Host prediction accuracy of GM (solid line) and WIsH (dashed line) at all taxonomic levels based on viral contigs of varying lengths. The
host prediction accuracies of the GM were obtained in the ten-fold cross-validations on the K-means clustering of the VHM dataset
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by WIsH which was reported to predict phage host rap-
idly. When tested on a laptop with 8 threads (see Add-
itional file 1: Table S3 for details), the process of model
building of PHP took 3 h 30 min, which included the cal-
culation of k-mer frequencies in viral and prokaryotic
genomes, and model training, while the process of model
building of WIsH took 27 min (Additional file 1: Table
S3); However, the PHP only used half of the time (57
min) in host prediction for 1426 viruses when compared
to WIsH (1 h and 51 min). Overall, the total time con-
sumption of PHP was double to that of WIsH (Add-
itional file 1: Table S3). When tested on a server with 40
threads (see Additional file 1: Table S3 for details), the
time consumption of both PHP and WIsH was reduced
much compared to that of the tests on the laptop. For
example, the time consumption of PHP was reduced
from 3h 30 min to 48 min during the process of model
building, while that of WIsH was reduced from 27 to 12
min (Additional file 1: Table S3). However, the reduction
of time consumption of PHP was larger than that of
WIsH, and the total time consumption of PHP was less
than that of WIsH (1 h 1 min vs 1 h 14 min).

Finally, we tested the ability of the PHP in predicting
virus hosts using 139 pairs of known phage-host interac-
tions which were determined by the single-cell viral tag-
ging method [32]. These pairs of phage-host interactions
were available at GitHub [22]. The online version of the
PHP predicted hosts for these phages with an accuracy
of 0.29 on the genus level and 0.64 on the family level
(Table 1). When considering the top 5 predictions, the
prediction accuracy increased to 0.33 on the genus level
and 0.75 on the family level (Table 1). Considering that
the bacterial contigs identified in the same project with
the viral contigs are more likely to be the host of these
viruses, the local version of the PHP was used to predict
hosts for these phages among the 289 bacterial contigs
used in the same study. The prediction accuracies were
further improved to 0.67 on the genus level and 0.80 on
the family level (Table 1).

Discussion

In this study, we developed the GM to predict the viral
hosts based on the difference of k-mer frequencies be-
tween virus and host genomes. On the genome scale, the
GM performed better than VHM and WIsH on both the
VHM benchmark dataset and the test dataset. Although
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the GM had lower host prediction accuracies than the
alignment-based methods, it can predict hosts for all
prokaryotic viruses. Besides, for those viruses which can-
not be predicted by the alignment-based methods, the
GM outperformed VHM and WIsH much, suggesting
that the GM can be a more suitable complement to the
alignment-based methods than VHM and WIsH. The
GM can be further improved by the consensus and
threshold methods. These results suggest that the GM is
useful for host prediction of viruses in metagenomic
studies.

Viruses and their host genomes often share similar
oligonucleotide frequency patterns, but it is challenging
to select the best metric for measuring the similarity.
Several common metrics have been used for measuring
the similarity of oligonucleotide frequencies between
viral and host genomes, such as the Euclidean distance
and Manhattan distance [16]. Previous studies by Ahlg-
ren et al. [16] comprehensively compared 11 common
oligonucleotide frequency metrics for predicting viral
hosts, and found the background-subtracting measure
d,* performed best among these metrics. Compared to
previous studies, this study is unique in that the GM de-
veloped herein learned best “metrics” to measure the
similarity between viral and host genomes. The GM took
the differences of k-mer frequencies between viral and
host genomic sequences as features in viral host predic-
tion. The GM does not detect patterns specific to a gen-
ome or a pair of genomes, but rather detect patterns in
the difference of the k-mer frequencies between a virus
and a host genome. The GM with only one Gaussian
distribution has the highest performance, suggesting that
the patterns in the difference of the k-mer frequencies
between virus and host genomes exhibit similar features.
GM outperformed both VHM and WIsH in viral host
prediction, indicating that it can learn more suitable
“metrics” for measuring the similarity between k-mer
frequencies of viral and host genomes than the existing
metrics.

Multiple common machine-learning algorithms were
used to predict virus hosts based on the differences of k-
mer frequencies between virus and host genomic se-
quences. However, the GM outperformed much than
other algorithms (Additional file 1: Figure S3). The pos-
sible reason is that the differences between the k-mer
frequencies of virus and host genomes are supposed to

Table 1 The prediction accuracies of the PHP in predicting phage hosts for 139 pairs of known phage-host interactions obtained by

the single-cell viral tagging method

PHP with different usage mode Genus Family Order Class Phylum
Online version (top 1) 0.29 0.64 0.85 0.85 0.94
Online version (top 5) 033 0.75 083 0.83 093
Local version, with 289 bacterial contigs 0.67 0.80 0.84 0.85 0.86
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be close to zero since viruses and their hosts often share
similar oligonucleotide frequency patterns in their ge-
nomes. The k-mer frequency differences between virus
and host genomes approximately followed a normal dis-
tribution with a mean of zero and were different from
those between virus and non-host prokaryotic genomes
(Additional file 1: Figure S4). Therefore, the GM is more
suitable for capturing the k-mer frequency differences
between virus and host genomes than other machine-
learning algorithms.

Accurate prediction of virus hosts is challenging. Lots of
computational methods have been developed for predic-
tion of virus hosts in previous studies. Among the
methods tested in this study, the CRISPR-spacer-based
method is the most accurate one, but it only predicted
host for less than one fourth of viruses. The BLAST-based
method can predict host for most viruses and outper-
formed the alignment-free methods including GM, VHM,
and WIsH. It should be a promising tool for predicting
virus hosts considering the easy use of BLAST. The
alignment-free methods have the advantage of a high re-
call rate. Both VHM [16] and WIsH [19] are independent
of training and are supposed to be more robust in applica-
tions, while the GM needs training and may have the risk
of over-fitting. To reduce over-fitting of the GM, a strict
testing strategy of ten-fold cross-validations on the K-
means clustering was used to evaluate the performance of
GM on the VHM benchmark dataset (Fig. 1). The GM
outperformed existing alignment-free methods (VHM and
WIsH) on both the benchmark dataset and the test dataset
(Figs. 2 and 3), especially for those viruses which cannot
be predicted by the alignment-based methods (Fig. 4).
Taken together, a combination of multiple methods, in-
cluding the alignment-free methods and the alignment-
based methods, would help further improve the prediction
of virus hosts.

A major bottleneck of this study is the limitation and
bias of the dataset of virus-host interactions, considering
the huge diversity of prokaryotic viruses on the earth [4,
10]. The virus-host interactions in our datasets are
biased towards some common viruses and host taxa,
which reflects the taxonomic distribution of viruses and
prokaryote in nature. For example, the three most com-
monly observed families (Siphoviridae, Myoviridae, and
Podoviridae) account for 77% of all viruses in the VHM
dataset (Additional file 1: Figure S5) and are indeed the
most commonly observed phage taxa in nature [4, 33].
Another limitation of the study is that the GM was in-
ferior to WIsH in predicting virus hosts on the viral con-
tigs less than 10kb. Importantly, the GM has a great
potential of improvements when given a more diverse
and high-quality training dataset which would be en-
abled by more effective and high-throughput methods
for the screen of virus-host interactions.
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Conclusions

This study has developed a Gaussian model for predict-
ing prokaryotic virus hosts with better performances
than those of VHM and WIsH based on virus genomes.
A software tool named Prokaryotic virus Host Predictor
was further developed to provide a user-friendly inter-
face for the Gaussian model. The work will contribute to
the rapid identification of virus hosts in metagenomic
studies and will extend our knowledge of virus-host
interactions.
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Additional file 1: Table S1. The host prediction accuracies of GM, VHM
and WIsH at taxonomic levels from genus to domain versus the number
of top N predictions used when using the consensus method. The
highest accuracies among three methods were highlighted in bold.
Table S2. The host prediction accuracies of GM, VHM and WIsH at
taxonomic levels from genus to domain versus the recall rate when
using the threshold method. The highest accuracies among three
methods were highlighted in bold. Table $3. Comparison of the time
consumed in building models and prediction of virus hosts of PHP and
WIsH on the VHM dataset. Figure S1. The comparisons of the taxonomic
distribution of both viruses and hosts in the VHM and test datasets used
in the manuscript. Figure S2. The host prediction accuracy of the
Gaussian mixture model in the ten-fold cross-validations on the K-means
clustering of the VHM dataset versus the length of k-mer (A) and the
number of components in the Gaussian mixture model(B). Figure S3.
The comparison between GM and other common machine learning algo-
rithms on host prediction accuracy. All models took the k-mer frequency
(k=4) as features, and were trained with the default parameters. Negative
samples are needed for building computational models with these
machine-learning algorithms, and were obtained as follows: for each
virus, a non-host prokaryote was randomly selected, which resulted in
the same number of negative samples as the positive samples, i.e.,, virus-
host interactions. The testing strategy mentioned in Fig. 1 was used to
evaluate the prediction ability of these machine-learning algorithms. Dur-
ing the testing process, only the positive samples, i.e., virus-host interac-
tions, were clustered since we aimed to predict viral hosts. The random
forest (RF) algorithm was selected for further optimization since it was
observed to perform best among these machine-learning algorithms.
Two parameters, i.e, the number of decision trees (n_estimators) and the
number of features to consider when looking for the best split (max_fea-
tures), have a key impact on the performance of the RF algorithm. Be-
sides, the length of k-mers used in the modeling may also have an
influence on the performance of the RF algorithm. Therefore, the n_esti-
mators, max_features, and the length of k-mers were further tuned to im-
prove the RF algorithm. The RF algorithm with the “n_estimators” set to
be 2000, “max_features” set to be "auto”, and k-mer length set to be 6
was found to perform best (see “Random forest with best parameters” in
the figure). The modeling with these machine-learning algorithms was
computed with the “scikit-learn” package in python. Figure S4. The dis-
tribution of k-mer frequency differences between virus and hosts ge-
nomes (blue), and those between virus and non-host prokaryotic
genomes (orange). (A-H) represents the randomly selected k-mers of
AGTT, AAAATTGC, CACG, AATT, TAGA, CGGG, TTCT, respectively. Figure
S5. The taxonomic distribution of viruses in the VHM dataset.
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