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Abstract

Background: The gene content of a species largely governs its ecological interactions and adaptive potential. A
species is therefore defined by both core genes shared between all individuals and accessory genes segregating
presence-absence variation. There is growing evidence that eukaryotes, similar to bacteria, show intra-specific
variability in gene content. However, it remains largely unknown how functionally relevant such a pangenome
structure is for eukaryotes and what mechanisms underlie the emergence of highly polymorphic genome structures.

Results: Here, we establish a reference-quality pangenome of a fungal pathogen of wheat based on 19 complete
genomes from isolates sampled across six continents. Zymoseptoria tritici causes substantial worldwide losses to wheat
production due to rapidly evolved tolerance to fungicides and evasion of host resistance. We performed transcriptome-
assisted annotations of each genome to construct a global pangenome. Major chromosomal rearrangements are
segregating within the species and underlie extensive gene presence-absence variation. Conserved orthogroups account
for only ~ 60% of the species pangenome. Investigating gene functions, we find that the accessory genome is enriched
for pathogenesis-related functions and encodes genes involved in metabolite production, host tissue degradation and
manipulation of the immune system. De novo transposon annotation of the 19 complete genomes shows that the
highly diverse chromosomal structure is tightly associated with transposable element content. Furthermore, transposable
element expansions likely underlie recent genome expansions within the species.

Conclusions: Taken together, our work establishes a highly complex eukaryotic pangenome providing an unprecedented
toolbox to study how pangenome structure impacts crop-pathogen interactions.

Background
Microbial species harbour substantial functional diver-
sity at the level of gene presence-absence variation [1].
Genes not fixed within a species (i.e. accessory genes)
can account for a large fraction of the full gene reper-
toire (i.e. the pangenome). In bacteria, the proportion of
core genes in the pangenome can range from 5 to 98%
and challenge taxonomic classifications [2, 3]. The wide
spectrum of pangenome sizes across species can be asso-
ciated with the species distribution and lifestyle [4].
Species showing a wide geographical distribution and
large population sizes characterized by frequent genetic
exchange tend to have expansive, open pangenomes [5].

In microbial pathogens, accessory genes play a major
role in virulence and environmental adaptation [6–8].
The notion of a pangenome led to the discovery that
major elements of intra-specific variation are often ig-
nored in studies relying on a single reference genome.
Large pangenomes also can challenge association studies
aiming to identify the genetic basis of phenotypic traits
because mapping is often performed against a single
reference genome, making potentially relevant genetic
variation inaccessible [9, 10]. Despite their importance
for unraveling the genetic basis of adaptive evolution,
only a very limited number of eukaryotic species have
well established pangenomes.
Copy number variation including gene deletion gener-

ates intraspecific gene content variation in nearly all
species [11]. This variation can create extreme variance
in fitness and promote adaptive evolution [12–15]. In
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plant pathogens, the ability to infect a host often relies
on the secretion of effector proteins that interfere with
the host cell machinery [16–18]. Host plants evolved
cognate resistance proteins that are able to recognize
effector proteins and trigger immunity [19]. Gains and
losses of effector genes can therefore have a major impact
on the outcome of host-pathogen interactions and chal-
lenge food security. Recent studies on fungal pathogens
highlighted that genes showing presence-absence variation
are enriched for predicted effectors [14, 20, 21]. Effectors
and transposable elements (TEs) are often tightly as-
sociated with fast-evolving compartments of the gen-
ome [22, 23], also known as the “two-speed” genome
architecture [24]. However, how TEs impact the birth
and death of effectors in fast-evolving compartments
remains largely unclear [6, 25]. The construction of
pathogen pangenomes enabled crucial insights into
functional diversity and the evolutionary trajectories
of host adaptation. Recent pangenome analyses of
four fungal species including opportunistic pathogens
revealed that between ~ 9 and 19% of the pangenome
is accessory. Accessory gene localization was preferentially
in subtelomeric regions, suggesting both a mechanistic
link to repeat-rich regions and relaxation of selective con-
straints [26]. The wheat pathogen Zymoseptoria tritici was
found to have one of the largest eukaryotic pangenomes
with an estimate of at least 42% of all genes being
accessory [27]. However, eukaryotic pangenomes remain
shallow and are often based on not fully resolved chromo-
somal sequences.
Fungal plant pathogens such as Z. tritici show extreme

cases of genome plasticity. The reference genome of Z.
tritici has 21 chromosomes, of which eight are accessory
and segregate presence-absence variation in populations
[28]. The pathogen rapidly evolved virulence on resistant
wheat cultivars and has overcome all current fungicides
[29–31]. Host adaptation was driven among other fac-
tors by the rapid deletion of an effector gene and struc-
tural rearrangements [32–34]. Pathogen populations are
highly diverse with high rates of recombination [35–37].
Meiosis can trigger large chromosomal rearrangements
and lead to aneuploid chromosomes in the species
[38, 39]. A pangenome constructed for five Z. tritici
isolates revealed that chromosome length variation
segregating within populations was mainly due to the
presence-absence variation of large TE clusters [27, 40].
Furthermore, accessory genes tended to form clusters dis-
persed along chromosomes. Accessory genes also tended
to be in closer proximity to TEs than core genes and were
therefore more likely to be affected by epigenetic silencing
[27]. However, the constructed pangenome was very likely
incomplete given the fact that four of the genomes origi-
nated from isolates collected in the same year from two
nearby fields. Furthermore, accessory genes were enriched

for pathogenesis-related functions but the pangenome size
did not reach saturation. Given the global impact of the
pathogen and the importance of accessory genes for adap-
tive evolution, a comprehensive pangenome capturing
worldwide genetic diversity is essential.
In this study, we construct the pangenome of Z. tritici by

including 19 isolates sampled from six different continents
and covering the global distribution of the pathogen. We
test to what extent the species segregates chromosomal re-
arrangements and how this impacts gene presence-absence
variation at loci relevant for pathogenicity. We also analyse
whether TE content is polymorphic within the species and
may contribute to genome size evolution.

Results
Major chromosomal rearrangements segregating within
the species
We constructed a global pangenome of Z. tritici based
on 19 isolates sampled from six continents and 13 differ-
ent countries (Fig. 1a, b). The isolates included the pre-
viously described reference isolate IPO323 sampled in
the Netherlands and four isolates that were isolated from
two nearby fields in Switzerland [27, 28, 40]. The geo-
graphic regions of origin of the 19 isolates recapitulate a
significant environmental gradient in mean annual
temperature and humidity and span the distribution
range of the species. The sampling period ranges from
1984 (IPO323) to 2010 (CRI10). Fungicide applications
against Z. tritici became widespread in the 1990s and
early 2000s; hence, the sampling covers both pre- and
post-fungicide treatment regimes. We sequenced long-
read PacBio SMRTbell libraries to a depth of 40-110X and
~ 20 kb read coverage in order to generate chromosome-
level assemblies. Assembly sizes ranged from 37.13Mb
(IR01_48b) to 41.76Mb (Aus01) (Fig. 1c).
We recovered all eight known accessory chromosomes

of the species but no additional chromosome. The
accessory chromosome 18 is most often missing. Together,
the 8 accessory chromosomes display an average size vari-
ation of ~ 37% across all isolates and a maximum of 60%
for chromosome 14 (Fig. 2a). For core chromosomes, the
average size variation accounts for 16% of chromosome
length going up to 23% for chromosome 7. We identified a
major deletion spanning 406 kb and encompassing 107
genes on the right arm of core chromosome 7 of the
Yemeni isolate (YEQ92; Fig. 2b lower panel). The same iso-
late had chromosome 15 fused to the right arm of chromo-
some 16. The fusion event is supported by aligned PacBio
reads spanning the region between the two chromosomal
segments (Additional file 1: Figure S1). The resulting
chromosome is 1.20Mb long and 49.5 kb shorter than the
sum of the homologous chromosomes 15 and 16 of the
IPO323 reference genome. Approximately 90% of the genes
on the IPO323 chromosome 15 and 16 belong to accessory

Badet et al. BMC Biology           (2020) 18:12 Page 2 of 18



orthogroups, as they lack an ortholog in at least one of the
other isolates. We find that the chromosomal fusion deleted
about 150 kb affecting 1 and 12 genes on chromosomes 15
and 16, respectively (Fig. 2b upper panel). We further

assessed genome completeness using BUSCO analyses. All
genomes exceed the completeness of the fully finished
IPO323 reference genome (97.9%) with the exception of
isolate 3D7 (96.8%; Fig. 1c).

Fig. 1 Assembly of 19 complete genomes from a worldwide collection. a World map indicating the isolate names and country of origin. b
Phylogenomic tree based on 50 single-copy orthologs showing reticulation using SplitsTree. c Summary of genome assembly characteristics for
all isolates. The bars represent the range of minimum (shortest bar) to maximum values (longest bar) for each reported statistic. Chromosome
14–21 are accessory chromosomes. The presence or absence of accessory chromosomes in each genome is shown by green dots and empty circles
for present and missing chromosomes, respectively. The linked dots for isolate YEQ92 indicate the chromosomal fusion event (see also Fig. 2)
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Fig. 2 Large segregating chromosomal rearrangements within the species. a Chromosome length variation expressed as the percentage of the
maximum observed length for each chromosome. b Two large chromosomal rearrangements identified in the isolate YEQ92 isolated from
Yemen. The upper part shows the local chromosomal synteny at the fusion locus between accessory chromosomes 15 and 16 identified in
YEQ92 compared to the reference genome IPO323. Transposons are shown in red, genes from chromosome 15 in purple, genes from
chromosome 16 in green and genes specific to the fusion in grey boxes, respectively. Synteny shared between chromosomes is shown in red for
colinear blocks or blue for inversions. The lower part shows the whole chromosome synteny of chromosome 7 contrasting YEQ92 to the
reference genome IPO323. YEQ92 misses a subtelomeric region. Transposons are shown in red and genes in grey
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Substantial gene content variation across the pangenome
We generated RNAseq data to identify high-confidence
gene models in all 14 newly assembled genomes based
on a splice-site informed gene prediction pipeline. The
total gene count varied between 11,657 and 12,787 gene
models (Fig. 1c). We assigned all genes to orthogroups
using protein homology and constructed a pangenome
of all 19 complete genomes. The pangenome consists of
a total of 229,699 genes assigned to 15,474 orthogroups.
The number of genes assigned per orthogroup varies
among isolates (Fig. 2b). Approximately 99.8% of all
orthogroups (15,451) are single-gene orthogroups and ~
60% of all orthogroups are shared among all 19 isolates
(9193 core orthogroups). Around 96% of the core
orthogroups (8829 out of 9193) have conserved gene
copy numbers among isolates. Furthermore, we find that
30% of all orthogroups are shared between some but not
all genomes (4690 accessory orthogroups) and 10% of
the orthogroups are composed of genes found in a single
genome only (1592 singletons; Fig. 3a, b; Additional file 2:
Table S1).
To infect wheat, Z. tritici relies on specific gene functions

[41, 42]. Effectors play a major role in establishing infection
and exploiting host resources. Hence, we analysed how
gene functions were structured across the pangenome com-
ponents. Core orthogroups showing variation in gene-copy
number among isolates include five encoding predicted
effectors. Both accessory proteins and overall effector pro-
teins are less conserved than core proteins at the amino
acid level (Additional file 1: Figure S2). A total of 3.5%
(691) of all orthogroups encode at least one predicted ef-
fector. Among orthogroups encoding at least one predicted
effector, 31% were conserved among all isolates (219), 63%
were accessory (436), and 5% were found in only one isolate
(36 singletons). Notably, 99% of the predicted effector genes
are located on core chromosomes. In addition to effectors,
enzymes enabling access to nutrients are important
pathogenicity components. We identified a total of
4742 annotated carbohydrate-degrading enzymes
(CAZymes) clustered into 263 orthogroups. Notably,
92% of the orthogroups encoding CAZymes were con-
served among all isolates (Fig. 3a). CAZymes grouped
into 123 subfamilies. Glycoside hydrolases (GH) are the
largest family and account for 57% of all annotated
CAZymes (151 orthogroups for 2717 genes). Glycosyl
transferases (GT) are the second most abundant family
with 1188 genes and 66 orthogroups (25% of all
CAZymes) (Fig. 3c). We also identified 33 orthogroups
encoding for auxiliary activities (AA), 9 for carbohy-
drate esterase activity (CE), 6 for carbohydrate-binding
modules (CBM) and 3 for polysaccharide lyase activity
(PL). The PL family includes 29% accessory genes.
Across CAZyme families, 0–10% of the genes are
accessory (Fig. 3c). We found a singleton GH43

subfamily gene in the genome of the Australian isolate
(Aus01).
The production of secondary metabolites contributes

significantly to virulence and competitive abilities of
fungal pathogens. We identified between 29 and 33 sec-
ondary metabolite gene clusters per genome depending
on the isolate. A total of 70% of all genes predicted as
components of a biosynthetic gene cluster are conserved
between all isolates and 30% are accessory (Fig. 3d,
Additional file 1: Figure S3). Of the 147 orthogroups an-
notated as encoding biosynthetic or biosynthetic-
additional proteins in the pangenome, 87, 92, 111 and
112 have a homologue with > 50% identity in the four
closely related sister species Z. passerinii, Z. ardabiliae, Z.
pseudotritici and Z. brevis, respectively (Additional file 1:
Figure S4). We identified 39 syntenic gene clusters in the
pangenome classified into 12 type 1-polyketide synthase
(PKS), 11 non-ribosomal peptide synthetase (NRPS), four
terpene, one type 3-PKS, one siderophore, one indole and
eight unclassified clusters. Sixteen (40%) of the identified
syntenic clusters show presence-absence variation. In the
CH95 isolate, a gene cluster on chromosome 7 was anno-
tated as unclassified but annotated as a NRPS in 17 other
isolates and absent from the IPO323 reference genome.
The sole indole and type 1-PKS clusters located on chro-
mosomes 5 and 10, respectively, were only found in isolate
TN09. Two type 1-PKS and one NRPS cluster were miss-
ing in the isolates YEQ95, Aus01 and IPO323, respect-
ively. Among the 39 identified syntenic gene clusters, 23
included a predicted effector and nine included a gene
annotated as a cell-wall degrading enzyme.
The emergence of fungicide tolerance in Z. tritici is

a major threat to wheat production. Succinate de-
hydrogenase (SDH) inhibitors are commonly used as
control agents [31, 43]. We identified five SDH ortho-
logs, of which three were conserved among all ge-
nomes (SDHB, SDHC and SDHD subunits). We find
two distinct SDHC paralogs SDHC2 and SDHC3 in
11 and two isolates, respectively. The SDHC3 paralog
conferring standing resistance to SDH inhibitors is
located adjacent to a large cluster of TEs, suggesting
that chromosomal rearrangements were underlying
the paralog emergence (Fig. 3e). Genes encoding
major facilitator superfamily (MFS) transporters,
which can confer multidrug resistance in Z. tritici
[44], grouped into 336 orthogroups for a total of
5787 genes (Additional file 2: Table S2). We find that
39 (11%) of these orthogroups are part of a predicted
secondary metabolite gene cluster and one is an an-
notated CAZyme from the GH78 family. Overall, the
results reveal that gene families essential for patho-
genicity and fungicide resistance show unexpectedly
high levels of presence-absence variation in the Z. tri-
tici pangenome.
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Fig. 3 Construction and analysis of the Zymoseptoria tritici pangenome. a Proportions of core orthogroups (present in all isolates), accessory
orthogroups (present ≥ 2 isolates but not all) and singletons (present in one isolate only) across the pangenome (upper-left). The proportions of
core, accessory and singleton categories are shown for orthogroups coding for secreted proteins (upper-right), carbohydrate-active enzymes
(CAZymes; lower-left) and effectors (lower-right). b Gene copy number variation in core orthogroups across the 19 genomes. c Pangenome gene
count across six CAZyme families. Families are divided into glycoside hydrolase (GH), glycosyl transferase (GT), auxiliary activity (AA), carbohydrate
esterase (CE), carbohydrate-binding modules (CBM) and polysaccharide lyase activity (PL) categories. d Pangenome categories of secondary
metabolite gene clusters. e Synteny plot of succinate dehydrogenase (SDH) paralogs mediating fungicide resistance. The SDHC3 locus on
chromosome 3 is shown for isolates 3D7 and Aus01 both carrying the paralog. IPO323 and 1A5 lack SDHC3. The position of the SDHC3 paralog is
shown using dark arrows. Genes are coloured in grey and transposable elements in red
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Strong expression variation across major gene functions
Differential gene expression is a major driver of intraspe-
cific phenotypic differences. We performed mRNA-
sequencing of all 19 isolates grown on minimal media.
Minimal media induces filamentous growth of Z. tritici,
mimicking the morphology and nutrient starvation that
occurs early during plant infection. We investigated
isolate-specific gene expression by self-mapping RNAseq
reads to each isolate’s genome assembly. Overall, 91.3%
of the genes show expression on minimal media and
68% have expression of more than 10 counts per million
(CPM) (Fig. 4a). Core genes have higher expression than
accessory genes (Additional file 1: Figure S5). Among
the genes showing no expression on minimal media, 501
are predicted effector genes (8% of predicted effectors),
93 are predicted CAZymes (2% of CAZymes) and 838
are members of a predicted gene cluster (10% of all gene
cluster genes). CAZymes are overall highly expressed on
minimal media (~ 77% with CPM > 10) when compared
to effectors (~ 45% with CPM > 10) and gene cluster
genes (~ 60% with CPM > 10) (Fig. 4a). About 53% of
core single-copy orthogroups with non-zero expression
have a coefficient of variation > 50% (Fig. 4b). Similarly,
~ 68% of CAZymes and ~ 60% of genes that are part of a
secondary metabolite cluster have expression coefficient
of variation > 50%. In contrast, about 90% of orthogroups
encoding predicted effectors have a coefficient of variation
> 50%, together with ~ 81% of accessory orthogroups.
To identify broad patterns in the pangenome expres-

sion landscape, we performed a clustering analysis of all
core single-gene orthogroups. We find that expression
clustering does not reflect the geographical origin or
genetic distance with the exception of the four Swiss
isolates (1A5, 1E4, 3D1 and 3D7; Additional file 1:
Figure S6). We also analysed the impact of copy-number
variation on average expression and find that single-copy
orthologs are on average more highly expressed. In
addition, we show that gene expression rapidly decreases
if an orthogroup includes 2–8 paralogs (Fig. 4c).

A highly variable transposable element content within
the species
TEs are drivers of pathogen evolution by generating
adaptive genetic variation. To identify genes with a po-
tential role in the mobilization of TEs, we analysed large
homology groups. Among the orthogroups with 10 or
more paralogs, ~ 88% of the genes encode proteins with-
out homology in databases, ~ 7% of the genes encode
nucleic acid binding functions (GO:0003676), ~ 2% of
the genes encode a retrotransposon nucleocapsid (GO:
0000943) and ~ 1.5% of the genes encode a DNA inte-
gration domain (GO:0015074). Orthogroups with 10 or
more paralogs are all accessory. For isolates sharing the
same large orthogroups, we identified variability in the

gene copy number within those orthogroups. Indeed, the
isolates Aus01 and OregS90 have 26 and 16
orthogroups, respectively, with more than 10 assigned
genes. The isolates I93 and Arg00 count between one
and six orthogroups and nine other isolates have no
orthogroups larger than ten genes (Fig. 4d). Altogether,
these results suggest that large orthogroups (> 10 genes)
essentially regroup genes that are encoded by TEs. Our
data also indicates regional TE-driven genome expan-
sions given the enlarged genome sizes in Australian and
North American isolates.
To elucidate the role of transposition on generating

genomic variation, we screened the 19 genomes for TE
content. For this, we jointly analysed all complete ge-
nomes to exhaustively identify repetitive DNA sequences.
We identified a total of 304 high-quality TE family con-
sensus sequences grouped into 22 TE superfamilies. The
GC content of the consensus sequences is highly variable,
ranging from 23 to 77% (Additional file 1: Figure S7). On
average, TE superfamilies have a GC content lower than
50%, except for unclassified SINE families (RSX; GC% ~
50.6). The genomic TE content ranges from 16.48%
(IR01_26b) to 23.96% (Aus01) and is positively correlated
with genome size (cor = 0.78, p < 0.001; Fig. 5a). Genome
size correlates with genome-wide TE proportions on both
core and accessory chromosomes but is negatively
correlated with the proportion of coding sequences
(Additional file 1: Figure S8 and Figure S9). The aver-
age length of individual TEs ranges from 102 to 51,
298 bp with the Helitron superfamily having the
higher average length (Additional file 1: Figure S10-
S11). The largest element is an unclassified LTR
(RLX_LARD_Thrym) on chromosome 7, the size of
which ranges from 6282 bp in CNR93 to 59,390 bp in
ISY92. This particular LTR is present at the locus
only in 18 isolates including ISY92, which has a frag-
mented secondary copy on chromosome 3. The RLX_
LARD_Thrym insertion on chromosome 7 overlaps
with the ribosomal DNA locus and showed far above
average mapped PacBio read coverage (~ 250×).
The genome-wide content of TEs shows substantial

variation among the 19 isolates; however, the relative
abundance of different TE superfamilies is relatively con-
served with LTR Gypsy, unclassified TIR and LTR Copia
elements being the most frequent (Fig. 5b). Accessory
chromosomes contain consistently higher proportions of
TEs compared to core chromosomes (26–41% versus
17–24%; Fig. 5c). Aus01 and OregS90 isolates showed
the highest TE content. Interestingly, the Aus01 genome
shows LINE I, LTR Gypsy and LTR Copia family-
specific expansion compared to other genomes. In
contrast, the genome of OregS90 shows evidence for
expansions of Helitron, LTR Gypsy and LTR Copia
families. On average, 10% of all TEs overlap with genes.
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Overall, singleton and accessory genes tend to be closer
to TEs and contain more often TE insertions than core
genes (Additional file 1: Figure S12-S13). The isolates
Aus01 and OregS90 have 12.8% and 12.4% of all TEs
overlapping with genes, respectively. In addition, Aus01

and OregS90 isolates have 7.4% and 5.4% of all genes
that overlap with TEs, respectively (Additional file 1:
Figure S14). The composition of TEs inserted into genes
reflects the overall TE composition in the genome, with
more abundant TEs being more often inserted into

Fig. 4 Expression polymorphism across the pangenome. a Proportion of genes showing expression > 10 counts per million (CPM) across genes
categories. The frequencies are shown for orthogroups encoding putative effectors, secondary metabolite cluster genes (gene cluster),
carbohydrate-active enzymes (CAZymes), secreted proteins. The frequencies are also shown for singleton, accessory and core orthogroup
categories in the pangenome. b Proportion of orthogroups for which the expression coefficient of variation is > 50% [cov = sd (CPM)/mean (CPM)]
among different gene and pangenome categories as in a. c Correlation of gene expression and the number of paralogs detected for the same
gene per genome. The grey line shows the logarithmic regression based on the linear model log10 (CPM + 1) ~ log10 (number of paralogs). d
Number of orthogroups with ≥ 10 paralogs per genome. Isolates are coloured by continent of origin
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genes (Additional file 1: Figure S15). TEs can carry their
own regulatory sequences and are often epigenetically si-
lenced by the host. We found that orthogroups compris-
ing a gene within 100 bp distance of a TE show stronger
expression variation (~ 62% of orthogroups with a coeffi-
cient of variation > 50%) compared to other orthogroups
(~ 54% of orthogroups with a coefficient of variation >
50%) (Additional file 1: Figure S16-S17). We also found
that different TE superfamilies have contrasting effects
on gene expression, with longer TEs having more drastic

effects (Fig. 5d). On average, genes with an inserted TE
have lower expression levels (log10 CPM ~ 1.7-fold) and
a higher coefficient of variation (log10 CPM ~ 2-fold)
compared to genes without an inserted TE (Add-
itional file 1: Figure S18).

TE transcription correlates with relative frequency across
isolates
Class I TEs replicate through an RNA intermediate and
class II through a DNA intermediate. Nevertheless, class

Fig. 5 Transposable elements (TEs) and genome size variation. a Contribution of TEs (%) to total genome size across the 19 isolates. b Relative
frequency of the 23 TE superfamilies across all genomes with 100% referring to the total TE content of the respective genome. c Contribution of
TE superfamilies to core and accessory genome size across the 19 isolates. d Expression of genes affected by TE insertions (grouped by TE
superfamilies; left panel) and the mean TE length in the genome (grouped by TE superfamilies; right panel)
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II TEs can also transcribe into RNA. To gain insights
into the mechanisms of proliferation, we analysed the
relative abundance of TE-derived transcripts across all
genomes. The highly repetitive nature of TEs typically
prevents expression quantification at the individual copy
level. Hence, we focused on normalized TE expression
across all copies. Overall, more than 70% of the TE fam-
ilies have non-zero transcription levels. This is consist-
ent with recent findings of pervasive transcription of
TEs in the Z. tritici genome under nutrient stress and
during infection [45]. We find that the largest TE family,
an unclassified LTR identified as RLX_LARD_Thrym,
was the most transcribed with an average log10 CPM ~
4.2 (Fig. 6a). An unclassified DTX-MITE is the second
most transcribed TE with an average log10 CPM ~ 3.6
followed by an unclassified TE (XXX_Hermione with an
average log10 CPM ~ 3.4). At the superfamily level,
LINEs have the highest expression overall followed by
the aggregation of unclassified TEs (Fig. 6b). Retroele-
ments are more transcribed than DNA transposons
(average log10 CPM ~ 2 and 1.2, respectively).
To understand TE expression dynamics across the

pangenome, we investigated associations between TE
transcription, length and relative frequency (Fig. 6c). We
found TE transcription to be correlated with TE fre-
quency in the genomes (Spearman’s r = 0.49, p < 5e−307;
Fig. 6c) and we found an even stronger correlation at
the TE superfamily level (Spearman’s r = 0.59, p < 5e
−40). However, TE transcription is not correlated with
TE length at the superfamily level (Spearman’s r = 0.06,
p > 2e−1; Fig. 6c). Interestingly, the average TE tran-
scription levels are positively correlated with TE count
in the genome (Fig. 6d). A notable exception is unclassi-
fied SINE retroelements. The correlation of TE tran-
scription levels and TE frequency in the genome
strongly suggests that transcriptional activity contributed
to recent TE expansions in the genome.

Discussion
We established a global pangenome of a major fungal
wheat pathogen based on the assembly and analysis of
19 high-quality genomes. Z. tritici segregates major
chromosomal rearrangements affecting both the more
conserved core chromosomes as well as the highly poly-
morphic accessory chromosomes. The gene content is
highly variable among genomes with only 60% of all genes
being conserved in the species. Accessory genes encode
functions for a wide variety of interactions with both bi-
otic and abiotic environments. An exhaustive map of TEs
across all genomes pinpoints transposon-associated gen-
ome expansions across geographic regions.
We showed that the Z. tritici pangenome is expansive

with ~ 40% accessory orthogroups. Compared to a previ-
ous construction of the Z. tritici pangenome based on

genomes from a much narrower geographic breadth
[27], we used more relaxed criteria to assign genes into
orthogroups. Based on the tendency to assign more
divergent gene variants into the same orthogroup, we
recovered a total of 911 orthogroups with at least one
paralog compared to only 76 identified previously. The
number of paralogs remains low compared to species
with larger genomes that retained more paralogs of gene
duplication events [28]. A likely constraint on gene
duplication is the genomic defence mechanism that
introduces repeat-induced point (RIP) mutations [46].
Although these defences evolved to suppress transpos-
itional activity of TEs, they can also affect genome evolu-
tion by targeting gene duplicates [46, 47]. Recent
sequencing efforts oriented around important crop
species reported impressively large accessory genome
proportions [48–50]. However, nearly all eukaryotic pan-
genomes are partially based on short-read assemblies
that challenge the resolution of segregating gene variants
within a species. With the conservative estimate of ~
24% non-reference orthogroups, the Z. tritici accessory
genome is the largest reported for a fungal species to
date (~ 40% of the pangenome). This falls outside the
upper range of comparative analyses of human fungal
pathogens and S. cerevisiae, where estimates of the
accessory genome ranged from 10 to 20% [26]. However,
bacterial accessory genomes can range from 0 to 95% of
the total pangenome [3]. The effective population size of
a species, its lifestyle, and niche heterogeneity are main
factors influencing bacterial pangenome sizes [4]. Similar
to bacteria, the effective population size is likely to be
the major factor maintaining a large accessory genome
in Z. tritici. Previous studies identified Z. tritici as a
highly polymorphic species with a rapid decay in linkage
disequilibrium, high SNP densities and high recombin-
ation rates [32, 35]. As a consequence, the pathogen
likely retains significant functional variation within pop-
ulations as long as the variation is nearly neutral.
Bacterial and fungal genomes show clear functional

compartmentalization between core and accessory genes
[4, 26]. In fungi, core orthogroups are enriched for
housekeeping functions in contrast to an enrichment for
antimicrobial resistance and pathogenicity factors among
accessory genes [27]. Here we show that genes encoding
carbohydrate-active enzymes (CAZymes) are highly con-
served within the species. CAZymes are involved in the
degradation of the host cell wall and other storage com-
pounds [51, 52]. Strong conservation of the content in
CAZymes may reflect a fundamental adaptation to
wheat as a host plant. This contrasts with generalist
pathogens, which often evolved larger CAZyme reper-
toires [53]. In contrast to CAZymes, secondary metabol-
ite gene clusters show substantial presence-absence
variation within the species. Fungi produce highly
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diverse secondary metabolites that play a role during
various life cycle stages, but often have poorly under-
stood functions [54]. Plant pathogens were also shown
to depend on secondary metabolite production for full
virulence [55]. Hence, variation in secondary metabolite
production may underlie variation in virulence. Species
from the genus Aspergillus produce a large diversity of
secondary metabolites for which the gene clusters often
segregate presence-absence [56, 57]. The Z. tritici
pangenome was constructed from isolates coming from
six different continents and a wide array of agricultural
environments. Hence, differences in secondary metabol-
ite production capacity may reflect local adaptation and
trade-offs that balance the cost of metabolite production.
Virulence of Z. tritici is thought to be largely governed
by gene-for-gene interactions [58]. In such interactions
effector proteins either promote disease or are recog-
nized by the host and trigger resistance [19]. A gene
encoding a recognized effector should therefore be
rapidly eliminated from the species gene pool. Z. tritici
populations responded rapidly to selection on effector
gene loci by either mutating, deleting or silencing genes
[21, 33, 34]. Our global pangenome analysis significantly
expands our understanding of effector gene diversification.
We identified 652 orthogroups encoding predicted ef-
fector functions of which 63% are accessory orthogroups.
Accessory effector genes may be involved in arms races
with strong selection driving the gain or loss of individual
effector genes in populations. As a contrast, we identified
45 conserved and highly expressed effectors genes poten-
tially encoding indispensable pathogenicity functions.
Ultimate mechanisms promoting intra-specific diver-

sity in genome structure may include large population
sizes and niche complexity, however the proximate
mechanisms generating such diversification are poorly
understood. TEs can be key drivers generating structural
variation [59, 60] and Z. tritici readily undergoes TE-
mediated chromosomal rearrangements during meiosis
[38, 39]. Here we show that Z. tritici genomes contain
16–24% TEs, with the overall proportion of TEs accounting
for ~ 70% of the intraspecific genome size variation. Hence,
TEs are key drivers of genome evolution in this species.
Among the most drastic chromosomal rearrangements, we
detected a significantly shorter chromosome 7 homologue.
The longer homologue was hypothesized to have originated
from a fusion with an accessory chromosome based on

evidence from large-scale epigenetic remodeling [61]. Our
analysis likely identified the ancestral variant prior to the
suspected chromosomal fusion event. Hence, the species
retained two major chromosomal variants of a core
chromosome.
TEs are often implicated in gene copy number variation

through duplication or pseudogenisation events suggest-
ing that TEs directly contribute to pangenome diversifica-
tion. We show that specific Gypsy and Helitron elements
were integrated into genes generating highly paralogous
orthogroups. These orthogroups may underlie recent ex-
pansions of specific TEs in the genomes of Australian and
Oregon isolates. The Helitron element is among the most
transcribed TEs in the Oregon isolate, suggesting a high
potential for new transpositions. In contrast, the Gypsy
element is only weakly transcribed in the Australian iso-
late, suggesting that this TE has become deactivated by
genomic defences. In addition to transpositional activity
causing loss-of-function mutations in genes, TEs can also
contribute to genome expansions [62]. We found a strong
correlation of TE content and genome size across the pan-
genome suggesting that TEs are the primary drivers of
genome expansions. Because the pathogen was only re-
cently introduced to regions outside of Europe and Asia,
genome size variation among geographic regions may
have originated from population bottlenecks such as
founder events. As an example, populations in Australia
underwent a significant founder event during the recent
colonization of the continent from Europe [63]. Hence,
our observation of an expanded Australian genome may
be causally linked to this bottleneck. Genome expansions
may also be triggered by TE mobilization. Stressors such
as host defences during infection cause substantial TE de-
repression across the Z. tritici genome [45]. Taken
together, TE dynamics and large effective population sizes
likely constitute the proximate and ultimate drivers of
pangenome size evolution. Understanding the birth and
death cycles of gene functions in such evolving pangen-
omes will help address major questions related to crop-
pathogen co-evolution.

Methods
High molecular-weight DNA extraction and single
molecule real-time (SMRT) sequencing
Origin and year of sampling of all the isolates are
described in Additional file 2: Table S3. High-molecular-

(See figure on previous page.)
Fig. 6 Transcriptional activity of transposable elements (TEs). a TE family transcription levels across all 19 genomes expressed as log10 (CPM + 1). b
Average transcription levels of TE superfamilies across all genomes expressed as average log10 (CPM + 1). c Spearman correlation matrix of four TE
metrics including counts, relative frequencies, average length and transcription both at the level of TE families and superfamilies. d Variation of TE
transcription (average log10 (CPM + 1)) as a function of TE counts (left panel) or average TE length (right panel). Curves in the left panel show the
logarithmic linear regression given by the linear model log10 (CPM + 1) ~ log10 (TE count). The highly expressed LARD_Thrym family (RLX) is
highlighted using arrows (panels a, b and d)
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weight DNA was extracted from lyophilized spores fol-
lowing a modified version of a cetyltrimethylammonium
bromide (CTAB) protocol developed for plant tissue
described in [40]. Briefly, ~ 100mg of lyophilized spores
were crushed with a mortar and transferred to a phenol-
chloroform-isoamyl alcohol solution. The supernatant
was centrifuged and the pellet resuspended twice in
fresh phenol-chloroform-isoamyl alcohol. The resulting
pellet was then washed three times and resuspended in
100 μl of sterile water. For each isolate, PacBio
SMRTbell libraries were prepared using between 15 μg
and 30 μg of high molecular-weight DNA. Sequencing
was performed on a PacBio Sequel instrument at the
Functional Genomics Center, Zürich, Switzerland.

Complete genome assemblies
We largely followed the pipeline described in [64]. In
summary, raw PacBio sequencing reads were assembled
using Canu v1.7.1 [65]. All assemblies were performed
with an estimated genome size of 39.678Mb (--genome-
Size). Two corrected error rates (--correctedErrorRate
0.045 and 0.039) and minimal read length (--minRea-
dLength 500 and 5000) parameters were tested, and the
most contiguous chromosome-level assemblies were
retained for further analysis based on reference align-
ment. The scaffolding was quality-controlled by inspect-
ing genome-wide dot plots against previously assembled
and validated genomes for reference. For each isolate,
raw reads were aligned to the newly assembled genome
using pbalign v0.3.1 from Pacific Biosciences suite
(https://github.com/PacificBiosciences/pbalign) to in-
spect potential mis-assemblies. The assemblies were
polished twice using PacBio reads mapped back to the
new assembly using the software Arrow v2.2.2 from the
Pacific Biosciences suite with default settings (https://
github.com/PacificBiosciences/GenomicConsensus) and
chromosome-level assemblies were performed using Ra-
gout v2.1.1 and the IPO323 isolate as a reference [66].

RNA extraction, library preparation, sequencing and
quantification
For isolates 1A5, 1E4, 3D1 and 3D7, RNA sequencing
experiments on minimal media were performed by [45,
67]. Raw reads were retrieved from the NCBI Short Read
Archive accession number SRP077418. Similarly, the 15
additional fungal isolates (Additional file 2: Table S3)
were grown in YSB media (10 g sucrose + 10 g yeast
extract per litre) and then 10e5 cells were inoculated on
liquid minimal media without a carbon source [68] for
7–10 days prior to extraction to reach identical growth
stages as for the previous RNA sequencing experiments.
RNA was extracted using a NucleoSpin® RNA Plant kit
following the manufacturer’s instructions. Library prep-
aration was carried out according to the Illumina

TruSeq Stranded mRNA Library Prep protocol with
unique indexes for each sample. Single-end 100-bp se-
quencing was performed on a HiSeq 4000 at the iGE3
platform in Geneva, Switzerland. RNA-seq reads were
first filtered using Trimmomatic v0.38 [69] using the fol-
lowing parameters: ILLUMINACLIP:TruSeq3-SE.fa: 2:
30:10 LEADING:10 TRAILING:10 SLIDINGWINDOW:
5:10 MINLEN: 50, and then aligned to the correspond-
ing genome assembly using STAR v2.6.0a [70] allowing
for multiple read mapping (parameters set as --outFilter-
MultimapNmax 100 --winAnchorMultimapNmax 200
--outFilterMismatchNmax 3). We used HTSeq-count
v0.11.2 [71] with -s reverse and -m union parameters to
recover counts per feature (joint counting of reads in
genes and TEs). We calculated normalized feature
counts expressed as counts per million, which accounts
for library size, using the EdgeR package v3.24.3 [72].
We restricted our analyses to features with a count per
million > 1.

Gene prediction and genome annotation
We used the gene prediction pipeline BRAKER v2.1 to pre-
dict genes in the 14 newly assembled genomes [73–80].
BRAKER combines coding sequence and intron hints based
on the mapping of conserved protein sequences and in-
trons identified in RNA-seq data, respectively. The above
described RNA-seq datasets were joined with predicted
protein sequences from the reference isolate IPO323 [28]
and used to predict gene features and guide splice site
mapping. RNA alignment files were generated with
HISAT2 v2.1.0 using the --rna-strandness R option
[81]. The resulting bam files were provided to BRAKER
(--bam option) together with mapped IPO323 reference
proteins (--prot_seq option) to generate gene predic-
tions for each assembled genome using the --alterna-
tives-from-evidence = false --prg = gth --etpmode
--fungus parameters. Orthologous genes were identified
using protein sequences from all 19 isolates and Ortho-
finder v2.1.2 with default parameters [82, 83].

TE consensus identification, classification and annotation
To obtain consensus sequences for TE families, individ-
ual runs of RepeatModeler were performed on the 19
complete genomes in addition to the genome of Z. pseu-
dotritici [84]. The classification was based on the GIRI
Repbase using RepeatMasker [85, 86]. In order to
finalize the classification of TE consensus sequences, we
used WICKERsoft [87]. The 19 complete genomes were
screened for copies of consensus sequences with blastn
filtering for sequence identity of > 80% on > 80% of the
length of the sequence [88]. Flanks of 300 bp were added
and new multiple sequence alignments were performed
using ClustalW [89]. Boundaries were visually inspected
and trimmed if necessary. Consensus sequences were
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classified according to the presence and type of terminal
repeats and homology of encoded proteins using hints
from blastx on NCBI. Consensus sequences were renamed
according to a three-letter classification system [90].
A second round of annotation was performed based

on predicted protein sequences of TE superfamilies from
other fungal species. Here again, the 19 complete ge-
nomes were screened for a protein sequence of each
superfamily using tblastn. Blast hits were filtered for a
minimal alignment size of 80 bp and sequence similarity
> 35%. Flanks of 3000 bp or more both up- and down-
stream of the sequence were then added. Hits were pair-
wise compared with dotplots using dotter and grouped
into families based on visual inspection [91]. Finally,
multiple sequence alignments were performed with
ClustalW to construct consensus sequences and the
consensus sequences were renamed according to the
three-letter system [90]. TE consensus sequences are
available from https://github.com/crolllab/datasets.
A third round of annotation of the 19 complete ge-

nomes was done to identify four groups of short non-
autonomous TEs. LTR-Finder was used to screen for
LARDs (LArge Retrotransposon Derivates) and TRIMs
(Terminal Repeat retrotransposons In Miniature) with
the filters -d 2001 -D 6000 -l 30 -L 5000 and -d 30 -D
2000 -l 30 -L 500 respectively. MITE-Tracker was used
to screen for MITEs (Miniature Inverted-repeat Trans-
posable Elements) and SINE-Finder in Sine-Scan to
screen for SINEs (Short Interspersed Nuclear Elements)
[92–97]. For each detected LARD, TRIM and SINE, con-
sensus sequences were created as described above and
duplicates excluded. All genome assemblies were then
annotated with the curated consensus sequences using
RepeatMasker with a cut-off value of 250 and ignored
simple repeats as well as low complexity regions. Anno-
tated elements shorter than 100 bp were filtered out, and
adjacent identical TEs overlapping by more than 100 bp
were merged. Different TE families overlapping by more
than 100 bp were considered as nested insertions and
were renamed accordingly. Identical elements separated
by less than 200 bp indicative of putative interrupted ele-
ments were grouped into a single element using minimal
start and maximal stop positions. TEs overlapping ≥ 1 bp
with genes were recovered using the bedtools v2.27.1
suite and the overlap function [98]. Correlations were
calculated in RStudio version 1.1.453 using Spearman’s
coefficient for pairwise complete observations and statis-
tics were inferred with the psych package using the
Holm correction method [99].

Functional annotation of predicted genes
Protein functions were predicted for all gene models
using InterProScan v 5.31-70.0 [100] adding -goterms
-iprlookup and -pathway information. Secretion peptides

and transmembrane domains (TM) were identified using
SignalP v 4.1 and Phobius [101, 102]. The secretome was
defined as the set of proteins with a signal peptide but
no TM as predicted by either SignalP and Phobius. Puta-
tive effectors were identified among the set of secreted
proteins using EffectorP v 2.0 [103]. Carbohydrate-active
enzymes (CAZymes) were identified using dbCAN2 re-
lease 7.0 server [104, 105] with the three tools HMMER,
DIAMOND and Hotpep [106–108]. Proteins were classi-
fied as a CAZyme if predicted by each of the three tools.
We searched for secondary metabolite gene clusters
using the online version 4 of antiSMASH [109]. Genes
belonging to an identified cluster were annotated as
“biosynthetic”, “biosynthetic-additional”, “transport”,
“regulatory” or “other”. Gene clusters mapping at a con-
served, orthologous locus shared by two or more isolate
were considered as syntenic.

Supplementary information
The online version of this article (https://doi.org/10.1186/s12915-020-0744-3)
contains supplementary material, which is available to authorized users.

Additional file 1: Figure S1. Integrative Genomics Viewer screenshot of
PacBio reads aligned back to the YEQ92 genome assembly at the fusion
locus between chromosomes 15 and 16. Figure S2. Percent identity
given by the multiple protein sequence alignment for each orthogroup.
Protein sequences were aligned using mafft and alignment identity was
extracted with the easel alistat tool from Eddy Rivas (https://github.com/
EddyRivasLab/easel). Figure S3. Presence-absence heatmap of the
orthogroups assigned to secondary metabolite gene clusters. Each line
stands for an orthogroup. Syntenic gene clusters are numbered from 1 to
39. Orthogroups including more than one gene per cluster are shown in
darker blue (0–3 genes were found assigned to an orthogroup in this
analysis). Figure S4. Evolutionary origins of the secondary metabolite
genes clusters. We performed blast searches using all annotated
biosynthetic and biosynthetic-additional proteins as query against four
closely related sister species of Zymoseptoria tritici. The heatmap shows
the percent identity of the top hit found in the four sister species for
each of the 147 genes encoding biosynthetic functions in putative gene
clusters. The isolates Zpa63, Zp13, Zb87 and Za17 correspond to the
species Z. passerinii, Z. pseudotritici, Z. brevis and Z. ardabiliae respectively.
Figure S5. Gene expression across pangenome categories. Gene expression
is shown as log10 values of counts per million reads + 1 because non-
expressed genes are also shown. Figure S6. Single-gene core orthogroups
heatmap following hierarchical clustering based on Euclidian distances. Gene
expression is shown as the log10 values of counts per million reads + 1 as
non-expressed genes are also shown. Figure S7. GC-content across transpos-
able element family consensus sequences. Figure S8. Transposable element
(TE) content correlated with genome length for both core and accessory chro-
mosomes. The proportion of TEs was calculated as the percentage of chromo-
some length in bp. Figure S9. The proportion of the genome
covered by genes correlated with total genome size. Figure S10.
Heatmap of average transposable element size (log10 of the average
length in bp). Figure S11. Heatmap of average transposable element size
summarized by superfamily (log10 of the average TE superfamily length in
bp). Figure S12. Distance to closest transposable element across pangen-
ome categories given as log10 values of the distance in base pairs. Figure
S13. Proportion of pangenome categories overlapping with transposable el-
ements (TE). All features with at least 1 bp overlap with a TE sequence were
considered. Figure S14. Proportion of overlapping genes in blue and trans-
posable elements (TE) in grey. All features with at least 1 bp overlap with a
TE sequence were considered. Figure S15. Genome-wide transposable
element (TE) superfamily frequencies correlated with the proportion of TEs
overlapping genes. Proportions are given for each TE superfamily (colour
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code) and each of the 19 isolates. Figure S16. Frequency of orthogroups
showing high (> 50%) and low (< 50%) expression coefficient of variation.
Only orthogroups were distinguished whether at least one gene of the
orthogroup was located within 100 bp of a transposable element or not.
Figure S17. Gene expression as a function of its distance to the closest
transposable element (TE). The relationship is shown for each of the TE
superfamilies across the 19 isolates. Gene expression is given by the log10
values of normalized counts per millions reads + 1 as genes showing zero
expression are also included. Figure S18. Gene expression of genes
overlapping at least one base pair with a transposable element (“yes”)
compared to genes not overlapping (“no”). Gene expression is given by
log10 values of counts per million reads.

Additional file 2: Table S1. List of all identified orthogroups and
pangenome categorization. Table S2. List of the genes encoding Major
Facilitator Superfamily domains (IPR036259). Table S3. Summary table of
the analyzed isolates.
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