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Abstract

Background: Annotation of cell identity is an essential process in neuroscience that allows comparison of cells,
including that of neural activities across different animals. In Caenorhabditis elegans, although unique identities have
been assigned to all neurons, the number of annotatable neurons in an intact animal has been limited due to the
lack of quantitative information on the location and identity of neurons.

Results: Here, we present a dataset that facilitates the annotation of neuronal identities, and demonstrate its
application in a comprehensive analysis of whole-brain imaging. We systematically identified neurons in the head
region of 311 adult worms using 35 cell-specific promoters and created a dataset of the expression patterns and
the positions of the neurons. We found large positional variations that illustrated the difficulty of the annotation
task. We investigated multiple combinations of cell-specific promoters driving distinct fluorescence and generated
optimal strains for the annotation of most head neurons in an animal. We also developed an automatic annotation
method with human interaction functionality that facilitates annotations needed for whole-brain imaging.

Conclusion: Our neuron ID dataset and optimal fluorescent strains enable the annotation of most neurons in the
head region of adult C. elegans, both in full-automated fashion and a semi-automated version that includes human
interaction functionalities. Our method can potentially be applied to model species used in research other than C. elegans,
where the number of available cell-type-specific promoters and their variety will be an important consideration.

Keywords: Neuron identification, Caenorhabditis elegans, Cell-specific promoters, Volumetric images, Large dataset for cell
positions, Biological resources, Computational method, Whole-brain activity imaging

Introduction
Identification of the cell is an essential process in the broad
fields of biology including neuroscience and developmental
biology. For example, identification of cells where a gene is
expressed can often be the first step in analyzing functions

and interactions of the gene. Also, the identity information
is required for comparing cellular activities across different
animals. In order to annotate cell identities in microscopic
images, features of the cells such as positions and mor-
phologies are often compared between the samples and a
reference atlas.
The nematode Caenorhabditis elegans has a unique

property that all cells and their lineages have been iden-
tified in this animal [1, 2]. Additionally, the morphology
and the connections between all 302 neurons in adult
hermaphrodites were also identified by electron
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microscopy reconstruction [3]. Such detailed knowledge
opens up unique opportunities in neuroscience at both
single-cell and network levels. Recent advances in micros-
copy techniques also enable whole-brain activity imaging of
the worm [4–11], even for the free-moving worms [12–14].
The neural activities were obtained at single-cell resolution,
and the identities of limited numbers of neurons were an-
notated manually in some of the studies [4–8, 10, 14]. How-
ever, there is no systematic and comprehensive approach to
annotate the neurons in whole-brain activity data [12].
Annotation of neuronal identities in C. elegans is often

performed based on positions of the neurons, especially for
larval animals in which the neurons are located at stereo-
typed positions [15, 16]. However, for adult animals, the
positions of the neuronal cell bodies are highly variable be-
tween animals [12]. Several additional pieces of information
can be used such as superimposed cell identity markers and
morphological information of the neurons. Currently,
superimposing cell identity markers, such as fluorescent
proteins expressed by well-characterized cell-specific pro-
moters, is the most popular and reliable method for neural
identification. For example, Serrano-Saiz et al. showed that
such methods are effective when the number of the target
neurons is limited [17]. However, integrating this approach
with the whole-brain activity imaging seems difficult be-
cause it requires different markers and different fluorescent
channels for every neuron in principle. Morphological in-
formation is also useful when the number of target neurons
is very limited, but it is not readily utilized for whole-brain
imaging because the neurons are distributed densely in the
head region of the worms and the morphological informa-
tion cannot be obtained accurately.
Several efforts for developing automatic annotation

methods were reported. In order to annotate the neurons
based on their positions, the information of the positions
and their variations will be required. Long et al. [18, 19]
produced 3D digital atlas for 357 out of 558 cells from
several tens of L1 animals, and related works also used the
atlas [20, 21]. The atlas consists of positions and their de-
viations of the cell nuclei of body wall muscles, intestine,
pharyngeal neurons, and neurons posterior to the retrove-
sicular ganglion, as well as some other cell types. However,
the neurons anterior to the retrovesicular ganglion are
omitted because of their dense distribution [19], and the
atlas is not applicable to the neurons in the head region
important for neural information processing. Aerni et al.
[22] reported positions of 154 out of 959 cells from 25
adult hermaphrodites, including intestinal, muscle, and
hypodermal cells, and introduced a method that integrates
useful features including fluorescent landmarks and mor-
phological information with the cell positions. Neverthe-
less, the positions of neurons were not reported. As far as
we know, the information of the positions of the neurons
in adult worms can be obtained only from the atlas

produced by the EM reconstruction work [3]. Unfortu-
nately, the White atlas does not have the information
about the variety of the positions between individual ani-
mals. Additionally, the atlas may be deformed because of
inherent characteristics of the sample preparation
methods for electron microscopy. Thus, experimental data
of positions of neurons in adult animals were very limited.
Here, we measure the positions of the neurons in adult

animals by using cell-specific promoters and create a data-
set. We evaluate the variations of the positions and obtain
an optimal combination of the cell-specific promoters for
annotation tasks based on accumulated information of cell
positions. Our optimal strains enable rational manual an-
notation of most neurons in the head region of an animal.
We also develop and validate an efficient annotation tool
that includes both automated annotation and human
interaction functionalities.

Results
A neuron ID dataset of head neurons
In this study, we focused on the head neurons of an adult
animal of the soil nematode C. elegans, which constitute
the major neuronal ensemble of this animal [3]. The ex-
pression patterns of cell-specific promoters were used as
landmarks for cell identification (Fig. 1a). The fluorescent
calcium indicator Yellow-Cameleon 2.60 was expressed in
a cell-specific manner by using one of the cell-specific
promoters and used as a fluorescent landmark. All the
neuronal nuclei in these strains were visualized by the red
fluorescent protein mCherry. Additionally, the animals
were stained by a fluorescent dye, DiR, to label specified
12 sensory neurons following a standard method [24]. The
worms were anesthetized by sodium azide and mounted
on the agar pad. The volumetric images of the head region
of the worm were obtained with a laser scanning confocal
microscope. All the nuclei in the images were detected by
our image analysis pipeline roiedit3D [10] and corrected
manually. The nuclei were annotated based on the expres-
sion patterns of fluorescent landmarks.
Finally, we obtained volumetric images of 311 animals

with 35 cell-specific promoters in total (Fig. 1b). On
average, 203.7 ± 0.52 (mean ± standard error) nuclei were
found and 44.2 ± 0.86 (mean ± standard error) nuclei
were identified (Fig. 1c). The names and the positions of
all identified cells in each animal were summarized in
Figshare Dataset S1 [23]. The names of identified cells in
each strain are also summarized in Additional file 1:
Table S1. These positions and promoter expression in-
formation are hereafter called the neuron ID dataset.
Figure 1d shows the names of identified cells and the

number of animals (“counts”) in which the cells were
identified. In most animals, 12 dye-stained cells and 25
pharyngeal cells were identified, in addition to cells iden-
tified by using cell-specific promoters. Finally, we
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Fig. 1 Outline of the neuron ID dataset. a The expression pattern of cell-specific promoter tax-4p (modified from WormAtlas) and an example
image of the strain JN3006 in which the landmark fluorescent protein was expressed by tax-4p. The maximum intensity projection of the right
side of a representative animal is shown. b The list of the cell-specific promoters and the number of animals used in the neuron ID dataset. c The
number of the detected and the identified nuclei in each animal. d The names of identified cells and the number of animals (“counts”) in which
the cells were identified. The names and the positions of all identified cells in each animal were summarized in Figshare Dataset S1 [23] and
Additional file 1: Table S1
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identified a total of 175 out of 196 cells ranging from I1
class neurons (anterior) to AVG neuron (posterior). Out
of 182 cells anterior to the retrovesicular ganglion, 171
cells were identified. We did not identify 11 cells includ-
ing URA class (4 cells), RIS cell, SIA class (2 of 4 cells),
AVK class (2 cells), and RMG class (2 cells) because of
the lack of suitable cell-specific promoters. We also
identified 4 cells in the retrovesicular ganglion including
AVG cell, RIF class (1 of 2 cells), and RIG class (2 cells).
This result indicates the neuron ID dataset covers a
majority of neurons in the head region.
Note that we used H20 promoter as a pan-neuronal

promoter [25]. We confirmed H20 promoter was
expressed in the GLR glial cells and XXX atypical hypo-
dermal cells by co-expressing the cell-specific promoters
nep-2sp and sdf-9p, respectively. We estimated that H20
promoter was also expressed in pharyngeal gland cells and
HMC cell, based on their positions. Also, we estimated
that H20 promoter was expressed weakly in the hypoder-
mal cells, based on their positions and shape of the nuclei,
but we removed HMC and hypodermal cells from our
neuron ID dataset. We confirmed H20 promoter was not
expressed in the socket cells nor the sheath cells by co-
expressing the cell-specific promoter ptr-10p.

Large variation disrupts position-based cell annotation
How large is the variation of the relative positions of the
cells between individual animals? To answer this question,
we need to first assess the potential sources of the vari-
ation. Intuitively, there are several possibilities: (1) place-
ment (translational and rotational) of the worms in the
obtained images, (2) curved posture of the worms (body
bending), and (3) inherent variation of the cell position. In
order to focus on the inherent variation that we are inter-
ested in, we considered a few ways to remove the contri-
bution of (1) and (2). Principal component analysis (PCA)
and subsequent alignment processes corrected the transla-
tion and rotation (see the “Methods” section). The quad-
ratic curve fitting was employed to correct curved posture
(Additional file 2: Figure S1). These methods significantly
reduced the variation of cell positions (Additional file 3:
Figure S2, Additional file 4: Table S2). Note that, after
posture correction, the cell distribution is not deformed in
the DV-LR plane (Additional file 2: Figure S1C, right
panel), indicating that the distortion of worms is negligibly
small under our experimental setups. To assess the contri-
bution of temporal variation of cell positions in each ani-
mal, we utilized the time-lapse images obtained for whole-
brain imaging. A large part of the movement of cells
during time-lapse imaging can be removed by translation
correction, and the remaining movements are too small to
explain the observed variation of cell positions in the
neuron ID dataset (Additional file 5: Figure S3,
Additional file 6: Table S3).

After removing the contribution of (1) and (2), we
compiled the positions of the named cells in the neuron
ID dataset. The positions of the nuclei identified as the
same cell were collected from the neuron ID dataset
(Additional file 7: Figure S4). The mean and the covari-
ance of the positions specify a tri-variate Gaussian distri-
bution, which can be considered as the maximum
likelihood estimate of cell position distribution. The
three-dimensional ellipsoidal region of 2 standard devi-
ation of the tri-variate Gaussian distribution is shown for
each cell, in which about 70% of data points are expected
to be included (Fig. 2a). The ellipsoids largely overlap with
each other, especially in the lateral ganglia (mid region of
the head), because of high variation and high density of the
cells. The median distance between distribution centers of
neighboring cells was 3.19 ± 0.15 μm (median ± standard
error) (Fig. 2b). The median length of the shortest axis of
the ellipsoids, equivalent to the twice of the smallest stand-
ard deviation, was about 2.69 ± 0.09 μm (median ± standard
error). The values of the minimum distance and the short-
est axis length were almost the same, indicating that the
variation of the position of a cell reaches the mean position
of the neighboring cells. Thus, the variations of the cell po-
sitions between individual animals are large.
The variations of the cell positions were explored fur-

ther in a different way. We focused on the variations of
the relative positions of neuron pairs. If we fix the position
of a cell and align all other cells, the specific-cell-centered
landscape can be drawn (Additional file 8: Figure S5).
When ASKR cell was centered, the variations of positions
of adjacent cells including SMDVR and ADLR were
decreased, but that of other cells did not change or rather
increased. When MI cell, an anterior pharyngeal neuron,
was centered, the variations of positions of pharyngeal
cells decreased, but those of other cells generally in-
creased. These results suggest that the variations of rela-
tive positions are different depending on neuron pairs. We
further obtained the variations of relative positions of all
available cell pairs (Fig. 2c). The volume of the ellipsoid of
relative positions is regarded as the variation of relative
positions. We found clusters of less varying cell pairs
(Fig. 2c, red boxes). The clusters include lateral ganglion
cell pairs and pharyngeal cell pairs (Additional file 9:
Figure S6). On the other hand, there are highly varying
cells including RIC, AIZ, and FLP classes.
Where do these variations of cell positions come from?

In order to tackle this problem, we performed an
additional analysis. The pharynx of worms moves during
development, and the position of the pharynx in the
anterior-posterior axis differs between individual
animals. We found that the positions of dye-positive
cells were affected by the positions of the pharynx
(Additional file 10: Figure S7, Additional file 11: Table
S4); when the pharynx moved anteriorly, all the dye-
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Fig. 2 (See legend on next page.)
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positive cells (ASK, ADL, ASI, AWB, ASH, and ASJ clas-
ses) moved outside in lateral positions. In addition, an-
terior cells (ASK, ADL, and AWB classes) moved
anteriorly, and posterior cells (ASJ class) moved poster-
iorly. In other words, the pharynx of worms pushed
these neurons aside. This result indicates that some part
of the inherent variations of cell positions come from
the variations in organ placement.
How does the variations of cell positions disrupt the

position-based cell annotation? Based on the mixture of
the Gaussian distributions (Fig. 2a), the posterior prob-
ability of assignments was calculated for the respective
cells in the respective animals. The name of the cell was
estimated as the name of the Gaussian distribution
which has the largest probability at the position of the
cell in the target animal. In other words, the cell has the
probabilities in which the cell belongs to the Gaussian
distributions, and the most likely distribution was
assigned for the cell. The error rates of this estimation
method were visualized with cell positions (Fig. 2d). The
error rates for the cells anterior to the nerve ring were
relatively low (44.5% ± 24.0%, mean ± standard devi-
ation), and those for the cells in the ventral ganglion
were relatively high (64.8% ± 25.6%, mean ± standard de-
viation). Mean error rate was 49.7% ± 24.3% (mean ±
standard deviation) (see Fig. 4c, described below), indi-
cating that the variations of the cell positions actually
disrupt the position-based cell annotation severely.

Optimal combination of the cell-specific promoters
increases the number of identified cells in an animal
In order to reduce the error rate of the annotation
method, one may want to use the information of fluores-
cent landmarks [8, 12]. Using multiple landmarks will
reduce the error rate. One or two fluorescent channels
are often available for the landmarks in addition to the
channels required for the whole-brain activity imaging.
We therefore sought for the optimal combination of
cell-specific promoters for two-channel landmark obser-
vation using the neuron ID dataset.

Several properties of the promoters were evaluated in
order to choose the optimal combination: the number of
cells that are labelled (Fig. 3a, b, Additional file 12: Fig-
ure S8), stability of expression (Fig. 3a), sparseness of the
expression pattern (Fig. 3b, see the “Methods” section
for definition), and overlap of expression patterns in the
case of combinations (see Figshare Dataset S1 [23]).
Among the 35 tested promoters, eat-4p was selected be-
cause it was expressed in the most numerous cells in the
head region (Fig. 3a). The promoters dyf-11p and glr-1p
were also expressed in numerous cells, and glr-1p was
selected as the second promoter because the sparseness
of the expression patterns of glr-1p was higher than that
of dyf-11p (Fig. 3b) and because the expression patterns
of dyf-11p highly overlapped with that of eat-4p. Add-
itionally, ser-2p2 was selected based on the stability of
the expression and low overlaps with eat-4p and glr-1p.
Thus, the combination of eat-4p, glr-1p, and ser-2p2 was
selected (Fig. 3c). The latter two promoters were used
with the same fluorescent protein assuming only two
fluorescent channels can be used for the landmarks as is
the case for our experimental setup for whole-brain im-
aging. In the neuron ID dataset, eat-4p was expressed in
69 cells and glr-1p + ser-2p2 were expressed in 50 cells
out of 196 cells in the head region of adult worms.
All combinations of the promoters could be evaluated

by an algorithm that considers the number of expres-
sion, sparseness, and overlap of expression patterns (see
the “Methods” section and Additional file 13: Table S5).
In brief, the algorithm highly evaluated a combination
when two neighboring cells were in different colors. In
the case of three promoters and two fluorescent
channels, the combination consisting of eat-4p, glr-1p,
and ser-2p2 was placed in the 18th rank out of the
possible 20,825 combinations.
Here, we produced a strain JN3039 as follows. The

far-red fluorescent protein tagRFP675 was expressed
using eat-4p, and the blue fluorescent protein tagBFP
was expressed using glr-1p and ser-2p2. The red fluores-
cent protein mCherry was expressed using the pan-
neuronal promoter H20p. This strain does not use

(See figure on previous page.)
Fig. 2 Variations of cell positions. a Visualization of the variation of cell positions. The ellipsoid indicates the mean and the covariance of the
positions of the cells. Cells in the right half of the body are shown. The colors are assigned randomly for visualization. In the case of the cells
whose covariance cannot be calculated, the median of other covariance was used for visualization and shown in gray color. A/P means anterior-
posterior, D/V means dorsal-ventral, and L/R means left-right directions. b Minimum distance (Euclid distance of centers of nearest ellipsoids) and
the shortest axis length of the ellipsoids (equal to the twice of the smallest standard deviation) for each cell. The line shows where the minimum
distance equals the shortest axis length. c Variation of the relative position of cell pairs is shown as a heat map. The red box and red dotted box
indicate clusters of less varying cell pairs in the lateral ganglion and pharynx, respectively. For visualization, the variations were divided by their
median value, and the color axis was truncated at 5 (the colors for cell pairs whose variation is larger than 5 are the same as the color for cell
pairs whose variation is 5). d The error rate of the naive estimation method is visualized with cell positions in 3D. In the naive estimation method,
the posterior probability of assignments was calculated for the respective cells in the respective animals based on the mixture of the Gaussian
distributions. The name of the cell was estimated as the name of the Gaussian which had the largest probability for the cell. The error rates were
calculated for each ground-truth cell. The hot color indicates that the error rate is high
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Fig. 3 (See legend on next page.)
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fluorescent channels of CFP, GFP, and YFP and is useful
for the cell identification tasks. For example, if there is a
strain that expresses one of these fluorescent proteins
with a promoter whose expression patterns need to be
identified, one can do it by just crossing the strain with
our standard strain JN3039.
With the help of the optimized expression of landmark

fluorescent proteins in JN3039, the number of identified
cells in an animal is expected to increase compared to the
strains used to make the neuron ID dataset. Actually, by
using the JN3039 strain, we could manually identify
162.5 ± 4.23 (mean ± standard error) nuclei out of 202 ±
1.46 (mean ± standard error) detected nuclei from 15 adult
animals (Fig. 3e–g, Additional file 14: Figure S9, Add-
itional file 15: Dataset S2). Ignoring hypodermal cells re-
duced the number of the identified nuclei to 156.3 ± 3.46
(mean ± standard error). The number of identified cells in
the latter case is 3.6 times higher than the average of the
neuron ID dataset. We identified a total of 186 out of 196
cells that covers most neurons in the head region (Fig. 3g).
These results indicate that our optimized strain is a
powerful tool for neuronal annotation, for example for
identifying expression patterns of genes of interest.
Additionally, a strain JN3038 was made from the strain

JN3039 by expressing fluorescent calcium indicator
Yellow-Cameleon 2.60 with the pan-neuronal promoter
H20p. This five-colored strain inherits the neuron identifi-
cation ability of JN3039 and will enable whole-brain activ-
ity imaging with annotation. We could manually identify
130.3 ± 4.63 (mean ± standard error) nuclei out of 188 ±
4.08 (mean ± standard error) detected nuclei on average
from 12 adult animals (Fig. 3f, g). In total, we identified
171 out of 196 cells. The numbers of identified and
detected nuclei were slightly lower than JN3039, likely
because of the difference of experimental conditions
including resolution of the optics and photobleaching.
We tested the health of JN3038 animals because

worms often get sick by introducing multiple transgenes.
The JN3038 animals displayed reduced brood size and
moved slowly (Additional file 16: Figure S10A-D, Add-
itional file 17: Table S6). Further, we tested whether the
animals show normal salt chemotaxis. On a plate with
NaCl gradient, worms are attracted to the NaCl

concentrations which they have experienced with food
[26]. Additionally, they avoid the NaCl concentrations
which they have experienced without food [27]. Thus,
the salt chemotaxis behavior is a kind of associative
learning. Studying the neural mechanism of the behavior
will also elucidate that of the learning. The JN3038 ani-
mals showed salt chemotaxis and learning ability similar
to wildtype animals (Additional file 16: Figure S10E).
This result suggests the neural circuit of the animals is
healthy enough so that we will be able to dissect neural
mechanisms of the learning and the behaviors by using
the JN3038 strain.

Annotation algorithm in the computer-assisted semi-
automatic annotation framework
Although most neurons in the head region of an animal
could be annotated successfully by using our optimized
strain, the manual annotation task often takes a long
time and requires high expertise. Automatic methods for
neural identity annotation will reduce the difficulty.
However, such methods will suffer from low accuracy
because the positions of the cells show large variations
that disrupt the performance of a position-based cell an-
notation (Fig. 2d). Therefore, we developed an automatic
annotation method as a part of a computer-assisted
semi-automatic annotation framework. Note that our
aim is not to establish a fully automatic annotation
method, which will be extremely difficult, but to provide
a computer-assisted semi-automatic annotation frame-
work in which the accuracy can be improved through
human-machine interaction. An example usage is an ab
initio automatic estimation followed by manual correc-
tion. The computer estimation can also be used as a help
for a decision during manual annotation.
The proposed annotation method consists of three

parts: the generation of a large set of atlases (Fig. 4a),
bipartite matching, and majority voting (Fig. 4b). The
generated atlases capture high-order information of pos-
itional variations in the neuron ID dataset. During the
bipartite matching step, the positional information is in-
tegrated with the additional information including ex-
pressions of landmark promoters and human correction.
Majority voting reduces the effect of positional variations

(See figure on previous page.)
Fig. 3 Optimal combination of the cell-specific promoters increases the number of identified cells in an animal. a Number of positive cells and
stability of expression of cell-specific promoters. A cell was counted as positive for a promoter if the cell expresses the landmark fluorescent
protein in at least one animal. The positive ratio is a ratio of positive (expressing) cells over the total number of the cells (= number of tested
animals). Stability of expression was calculated as an average of the positive ratio over the cells in which at least one cell is positive for the
promoter. b Number of positive cells and sparseness of the expression pattern (see the “Methods” section) of the cell-specific promoters. Note
that, for visibility, only the several labels are shown in a and b. Fully labeled panels are shown in Additional file 12: Figure S8. c Visualization of
the optimal combination of the cell-specific promoters. The cells in the right half of the body are shown. d A part of c is zoomed for comparison
with e. e An example fluorescent image of JN3039 strain and annotated cell names. See Additional file 14: Figure S9 for enlarged image. f The
number of the detected and the identified nuclei in each animal. g The names of identified cells and the identification ratio, which is a ratio of
identified cells over the total number of the cells. The solid lines are guide for visualization
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by exploiting the large set of generated atlases and
returns multiple candidates that will reduce the difficulty
of the manual annotation.
In order to generate an atlas with fully annotated cells,

we combine positional information of cells from mul-
tiple partially annotated animals while maintaining the
relative position between the cells as much as possible.
We assembled the partially identified cell positions in
our neuron ID dataset as follows (Fig. 4a, see the
“Methods” section for detail):

A) Choose an animal 1 and extract the positions of the
identified cells.

B) Choose an animal 2 and register it to animal 1
based on the positions of commonly identified cells
in both animals.

C) Map the cells in animal 2 that were not identified in
the animal 1 according to the registration, and add
them to the identified cell list of animal 1.

D) Repeat steps B and C until all the animals were
covered.

E) Add the positions of cells that were not identified in
our neuron ID dataset using the positions of the
cells in White’s atlas.

The resulting atlas depends on the order of assembly,
which reflects the variation of the cell positions between
individual animals. By random sampling of the animals,
we generated around 3000 synthetic atlases that were
used to reduce the error rate of the estimation.
In the bipartite matching step, the cells in a target ani-

mal were assigned to those in an atlas. An assignment of
a cell in the target animal to the one in the atlas has a
cost based on the similarity (or dissimilarity) of the two
cells. The similarity scores are based on several factors
including but not limited to Euclidean distance, expres-
sions of landmark promoters, and the feedback from hu-
man correction as needed. The optimal combination of
the assignments that minimize the sum of the costs was
obtained by using the Hungarian algorithm. The name
of the cell in the target animal can be estimated as the
name of the assigned cell in the atlas in this step.
In the majority voting step, the bipartite matching of

the target animal was repeated with different atlases.
Each assignment of a cell is considered as a vote, and
the most voted assignment was considered as the top
rank estimation of annotation. Assuming the generated
atlases could capture the positional variations of the
cells, the vote of erroneous estimations will be dispersed
and the vote of correct estimation will be a top rank.
In order to validate our atlas generation, we compared

the position of cells in the generated atlases and the
dataset. We visualized the mean and the covariance of
the positions of the cells in the atlases (Additional file 18:

Figure S11A). The outline of the cell positions in the
atlas was similar to that in the dataset, suggesting that
our atlases capture the positional variations of the cells
in the dataset. The distances of mean positions of the
cells between the atlases and the dataset were small
(Additional file 18: Figure S11B, 1.43 μm in median), but
became large for the rarely detected cells. The covari-
ance of the positions of the cell between the atlas and
the dataset was also similar (Additional file 18: Figure
S11C), but the covariance for the atlases was larger than
that for the dataset when the cell was rarely detected in
the dataset. The variation of relative positions of the cell
pairs in the atlases was similar to that in the dataset
when the cell pair was co-detected in the dataset fre-
quently enough, and became larger when the cell pair
was less co-detected (Additional file 18: Figure S11D
and Additional file 19: Figure S12). These results indi-
cate that our atlases capture the positional information
of the cells and its variations with high-order informa-
tion (i.e., the variation of relative positions of the cell
pairs). These results also suggest the atlases will be more
precise when the neuron ID dataset includes a lot more
animals and annotated cells.
To validate our automatic annotation method, a five-

fold cross-validation test was performed. All the animals
in the neuron ID dataset were randomly divided into five
subsets. We performed a total of five tests. For each test,
we excluded one of the subsets and used the remaining
subsets for generation of atlases and used it to estimate
the annotation performance of the reserved set based on
the generated atlases. The error rate of bipartite matching
was relatively high, and the majority voting could deliver
significant improvements of the annotation accuracy
(Additional file 20: Figure S13). On average, 78.8% ± 6.71%
(mean ± standard error) nuclei were annotated and 46.2 ±
2.73 (mean ± standard error) nuclei were successfully esti-
mated as the top rank, and the error rate of the top rank
estimation was 40.1% ± 4.69% (mean ± standard error)
(Fig. 4b, c). As a control, two methods were introduced;
one method only considered the mean and covariance of
the cell positions of raw data (without using the atlases
and voting, see Fig. 2d). The other method considered the
mean and covariance of the cell positions in the atlases
(without using majority voting). The error rates of the two
methods were higher than those of the proposed method,
indicating that the majority voting step in the proposed
method contributes to the correct estimation (Fig. 4c). If
we considered the accuracy for the top 5 voted estima-
tions (shown as rank 5), the error rate decreased to
8.09% ± 2.24% (mean ± standard error).
The automatic annotation method was applied to the ani-

mals with fluorescent landmarks (strain JN3039, see
Fig. 3c–e). The error rates of the top rank estimation with
and without fluorescent landmarks were 38.5% ± 2.64%

Toyoshima et al. BMC Biology           (2020) 18:30 Page 9 of 20



Fig. 4 (See legend on next page.)
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(mean ± standard error) and 52.7% ± 1.84% (mean ± stand-
ard error), respectively, indicating that utilizing the fluores-
cent landmarks also contributes to the correct estimation
(Fig. 4d). If we considered the accuracy for the top 5 voted
estimations, the error rate decreased to 8.40% ± 1.95%
(mean ± standard error). These error rates were comparable
to the cross-validation results for the neuron ID dataset,
suggesting that our annotation framework will work cor-
rectly for the whole-brain activity imaging.
In our neuron ID dataset, dye-positive 12 neurons and

25 pharyngeal cells were overrepresented because of our
neuron identification strategy. We confirmed that this
imbalance had little impact on the error rate of the auto-
matic annotation for cells identified in JN3039 (Add-
itional file 21: Figure S14), indicating the robustness of
our automatic annotation method.
The automatic annotation method was also applied to

the animals in a microfluidic chip for whole-brain activ-
ity imaging (Additional file 22: Figure S15). The error
rates of the top rank estimation with and without fluor-
escent landmark were 52.1% ± 2.10% (mean ± standard
error) and 72.8% ± 2.16% (mean ± standard error), re-
spectively, and that of the top 5 voted estimations was
12.2% ± 1.32% (mean ± standard error). The worms were
compressed and distorted to be held in the microfluidic
chips, and the distortion of the worm may increase the
error rates. During whole-brain imaging of free-moving
animals [12–14]), the worms will be less compressed
and less distorted, and our algorithm may work better.
Additionally, our algorithm was implemented in the

GUI roiedit3d [10], and it can handle feedback informa-
tion from the human annotations (Fig. 4e). One can
choose the correct annotation from several estimated
candidates. Once annotations are corrected manually,
our automatic annotation method can accept corrections
and can use them to improve the annotation of other
neurons as well, because assignments inconsistent with
manual annotation are not allowed in the bipartite graph
matching step in our algorithm. Thus, our semi-
automatic framework reduces the difficulty of annota-
tion tasks. For another example, one can identify

neurons manually by using other information including
the neural activity or morphology; then, the automatic
estimation for the other neurons will be improved. The
final results can be added to the neuron ID dataset, and
the annotation algorithm will work more accurately.
Thus, the feedback system incorporates tacit knowledge
into the automatic annotation method. A detailed step-
by-step tutorial for semi-automatic annotation using
RoiEdit3D is provided as Additional file 23: Dataset S3.
Finally, we tested the effect of the manual correction to

the error rate of the automatic annotation method. We
randomly selected a wrong annotation of a cell in rank 1
estimation for JN3039 (see Fig. 4d), corrected the annota-
tion, and re-ran the automatic annotation method using
the manual correction information. This step was repeated
sequentially. The error rate decreased to zero when the
number of the manual correction increased (Fig. 4f). Man-
ual correction of one cell label led to 1.078 ± 0.0369
(mean ± standard error) increase in the correct cell label-
ling on average. This result indicates that our computer-
assisted semi-automatic annotation framework corrected
an additional 7.8% estimation by using manual correction
information. Similarly, we tested the effect of prior manual
annotation on the correct rate of automatic annotation.
Annotation of a single cell type was specified manually
before performing the automatic annotation for cells
identified in JN3039 (Additional file 24: Figure S16 and
Additional file 25: Figure S17). Prior manual annotation
of SMDVL gave the largest improvement of the correct
rate (0.59%, about 2 cells). Thus, through the inter-
active process, our algorithm will make human annota-
tion tasks more efficient.

Discussion
In this study, we obtained volumetric fluorescent images
of 311 animals using 35 promoters and created a neuron
ID dataset that contained the positions of the identified
cells and expression patterns of promoters in the re-
spective animals. Utilizing the neuron ID dataset, we
evaluated the variation of the positions of the cells and
demonstrated the difficulty of performing accurate

(See figure on previous page.)
Fig. 4 An automatic annotation method and evaluation. a The outline of the atlas generation method. b The outline of the automatic
annotation method. The schemes of bipartite graph matching and majority voting are shown. c Error rates of the automatic annotation method
for the animals in the neuron ID dataset. The names of the cells were estimated based on their positions. The error rate was calculated as
1 – (Ncorrect)/(Nannotated) for each animal, where Nannotated is the number of human-annotated cells (ground truth) and Ncorrect is the number of
cells whose annotation by the algorithm was correct. Cells un-annotated by human were not included in the calculation of error rate. The rank R
indicates that it is considered correct if the correct annotation appeared in the top R estimations by the algorithm. The error rates were evaluated
by cross-validation, and mean ± standard deviation over well-annotated six animals is shown. d Error rates of the automatic annotation method
for the strain JN3039 that expresses the fluorescent landmarks. The names of the cells were estimated based on their positions with or without
the expression of landmark promoters. Mean ± standard deviation over 15 animals is shown. e The automatic annotation method was integrated
in the graphical user interface roiedit3d that enables feedback between automatic and manual annotations. f The effect of manual correction on
the error rate of automatic annotation. A wrong annotation of a cell in rank 1 estimation for JN3039 (see Fig. 4d) was corrected, and the
automatic annotation method was performed by using the correction information. This step was repeated sequentially

Toyoshima et al. BMC Biology           (2020) 18:30 Page 11 of 20



annotation of the neurons. Based on statistical analyses
using our neuron ID dataset, we chose the combination
of the promoters optimal for our annotation tasks. The
optimal strains we produced enabled rational annotation
of most head neurons in an adult animal. We proposed
a semi-automatic annotation method and validated its
performance on head neurons of adult worms for
whole-brain imaging. Thus, we successfully integrated
the annotation techniques with the whole-brain activity
imaging.
The cell positions of real animals and their variation

are the most important information for cell identifica-
tion. As far as we know, this study is the first report
about the large-scale information of the positions of the
cells in the head region of adult C. elegans, which lead
to the systematic and comprehensive method to the an-
notation of the head neurons. On the other hand, the
neuron ID dataset is still incomplete. Several cells were
underrepresented or not detected in our dataset (Fig. 1d).
We found the number of detection counts was one of
the factors contributing to the error rate of the auto-
matic annotation method (Additional file 21: Figure
S14). The additional measurement for the neuron ID
dataset will improve the error rate of the automatic an-
notation method.
Through the analysis of the neuron ID dataset, we found

that the variation of cell positions is very large. Although
we carefully removed the deformation caused by the pos-
ture of worms by using quadratic transformation, we can-
not show our alignment methods were able to remove
such deformation completely. While elastic transform-
ation methods such as thin plate spline [28] and coherent
point drift [29] could be used for registering cell positions,
the effect will probably be limited because the variability
in cell positions are non-uniform. We found inter-animal
variability was larger than temporal differences (i.e., intra-
animal variability) in our experimental setups. This result
suggested that the inter-animal variability rather than
intra-animal variability was the main cause of the errors in
the automatic annotation.
The deformation of worms in the microfluidic chip,

which is used for observing the response of neurons to
sensory stimuli, might increase the variation of cell posi-
tions and affect the error rate of the automatic annota-
tion. Measuring and accumulating the position of cells
in animals under the microfluidic chip may decrease the
error rate of automatic annotation if the deformation by
the chip is common between animals.
The design of automatic annotation methods is based

on the analysis of the neuron ID dataset. We found
some co-varying neuron pairs (Additional file 9: Figure
S6), but higher-order (i.e., triplet or more) co-variations
were not captured explicitly in this paper. The atlas syn-
thesis process in our automatic annotation method was

designed to include these co-varying neuron pairs and
higher-order information in the neuron ID dataset even
if the information was not captured explicitly. We devel-
oped a comprehensive method to implicitly handle such
variation through atlas generation and annotation based
on majority voting. On the other hand, the automatic
annotation method introduced in the ongoing neuroPAL
project [30] utilized fluorescence intensity information,
which can be a positive addition to our method to fur-
ther improve the overall annotation performance.
Cell identification mainly relies on cell position and

fluorescence information. Considering the fluorescence
information, our optimal strain increased the number of
identified cells in an animal to 156.3 cells on average. This
covers 79.7% of 196 neurons and neuron-like cells (includ-
ing XXX atypical hypodermal cells, GLR glial cells, and
pharyngeal gland cells) located in the head region. Al-
though this was a dramatic improvement compared to
single promoters in the neuron ID dataset, a 100% cover
rate was not achieved in this study. In order to improve
the cover ratio, increasing the number of fluorescent
channels and landmarks will be important. Long-Stokes
shift fluorescent proteins might be good candidates
because they use irregular fluorescent channels that will
not be used in standard application. Actually, CyOFP1,
one of the long-Stokes fluorescent proteins [31], was used
in the neuroPAL project [30]. In our case, however, these
proteins disrupted the neighboring fluorescent channels
by leaking out. Employing color deconvolution techniques
will increase the number of substantial fluorescent chan-
nels and may improve the cover rate, as well as the accur-
acy of the annotation algorithm.
The images of the animals we recorded will have use-

ful information for annotation including the size of the
nuclei and intensities of the fluorescence. In the manual
annotation process, we utilized these pieces of informa-
tion for improving the accuracy. On the other hand, our
automatic annotation algorithm did not utilize these
pieces of information and it may be one of the causes of
relatively low accuracy of the algorithm. Recent advances
in artificial neural networks especially in the field of
image analysis will enable utilization of such information
for automatic annotation. It is well known that artificial
neural networks require a large amount of training data
composed of images and the corresponding ground
truth. Our neuron ID dataset contains images with iden-
tity information and will be ideal for the training data,
but the number of data may not be enough. Our method
that makes annotation more efficient will play an im-
portant role for opening up the path to the utilization of
artificial neural networks in the future.
There is no dataset of cell positions that can be used as

a benchmark of cell identification methods. For example,
a new method that solves the cell identification problem
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as a nonlinear assignment problem was reported recently
[32]. The proposed method was performed only on syn-
thetic data. To evaluate the real performance of annota-
tion methods, the methods should be tested on real data.
Our neuron ID dataset will be an ideal benchmark of
newly developed cell identification methods. Thus, our
study will facilitate the future studies for automatic anno-
tation methods.
The gene expression patterns often vary between indi-

vidual animals. Although the degree of variation is im-
portant information especially for the neuron
identification problems like this study, there are no
quantitative data for variation of promoter expression
patterns. Our dataset includes the probability of pro-
moter expression in a cell with multi-channel volumetric
images of individual animals. Additionally, recent works
utilizing single-cell RNA sequencing techniques also re-
vealed the variation of expression patterns of “cell-spe-
cific” genes [33, 34]. These data will form quantitative
knowledge of variation of promoter expression patterns.
In order to identify the expression patterns of pro-

moters, the most accurate method is testing whether the
fluorescence of the promoter-driven fluorescent protein
overlaps with the fluorescence of neuronal identity
markers [17]. In such cases, our standard strain and
automatic annotation method will help the selection of
markers through objective estimation of cell identities.
Our framework of creating the neuron ID dataset and

developing automatic annotation method can be applied
to species other than C. elegans. For covering all neu-
rons, the number of available cell-type-specific pro-
moters and their variety will be important.

Methods
Strains and cultures
C. elegans strains used in this study are listed in Table 1.
The sequences of promoters are summarized in Add-
itional file 26: Dataset S4. Animals were raised on nema-
tode growth medium at 20 °C. The E. coli strain OP50
was used as a food source.

Brood size counting
The brood size was counted as previously described
[35]. Briefly, an L4 animal was isolated to a seeded
NGM plate and moved to a new seeded NGM plate
every 24 h. Dead eggs in a plate were counted 48 h after
the parent animal was moved into the plate. The age of
worms (adult, L4, under L3) and male adults were
counted 96 h after the parent worm was moved into the
plate. The brood size was obtained as a sum of the num-
ber of dead eggs and the number of living animals. The
adult ratio was obtained as the number of adult her-
maphrodites divided by the brood size. The male ratio
was obtained as the number of adult males divided by

the brood size. The values from more than 8 biological
replicates (n = 8 plates for N2, n = 9 plates for JN3038,
n = 10 plates for JN3039, n = 11 plates for ZIM945, and
n = 10 plates for ZIM 1048) were analyzed by Tukey’s
post hoc test following one-way ANOVA (Kruskal-Wal-
lis test) with N2 as a reference.

Locomotion speed
The locomotion speed of adult animals was measured by
using the worm tracking system that identifies and
tracks tens of animals on a test plate [26]. Briefly, 30–50
adult animals were placed at the center of an 8.5-cm-
diameter plate and images of the whole plate were ac-
quired at 1 frame/s. The locomotion speed was obtained
as the movement of running animals (i.e., not in the
pause, reversal, or pirouette period) between 100 and
500 s. The median of locomotion speed was obtained
from every plate, and the medians of 5 strains from 5
biological replicates were analyzed by Tukey’s post hoc
test following one-way ANOVA (Kruskal-Wallis test)
with N2 as a reference.

Salt chemotaxis assay
The chemotaxis assays were performed as previously de-
scribed [27] with slight modification. Briefly, Bristol N2
and JN3038 animals were raised on NGM plate with
OP50 for 4 days and 6 days, respectively. The animals for
conditioning with food were picked and moved to the
conditioning plate including 25 mM or 100 mM NaCl
with food and cultivated overnight. The animals for con-
ditioning without food were exposed to conditioning li-
quid (5 mM potassium phosphate, pH 6.0, 1 mM CaCl2,
and 1mM MgSO4) with 25 mM or 100 mM NaCl for 1 h
at room temperature [36]. The conditioned animals were
placed on the center of an 8.5-cm-diameter plate with a
NaCl gradient from 35 to 95mM (assay plate). The ani-
mals were allowed to run for 30 min and chemotaxis
index was calculated as (nA − nB)/(nTotal − nO), where
nA, nB, and nO are the number of worms in area A (4-
cm-diameter region with high salt), area B (4-cm-diam-
eter region with low salt), and area O (maximum 2-cm-
diameter region around the center), respectively. nTotal
is the number of worms on the assay plate.

Microscopy
A set of static 3D multi-channel images of C. elegans
strains ranging from JN3000 to JN3036 and JN3041 was
obtained as follows. Day 1 adult animals were stained by
the fluorescent dye DiR (D12731, Thermo Fisher Scien-
tific) with the standard method [24]. Briefly, the worms
were incubated 2.5 h in M9 buffer with 10 μg/ml DiR,
transferred to the NGM plate with food, and cultivated
for 1 h. The stained animals were mounted on a 2% agar
pad and paralyzed by sodium azide. The fluorescence of
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Table 1 Strain list used in this study
Strain Genotype Used in

Bristol N2 C. elegans wild isolate Figure S10

JN3000 Ex[casy-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3001 Ex[ceh-10p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3002 Ex[daf-28p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3003 Ex[daf-7p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3004 Ex[dat-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3005 Ex[dyf-11p::nls4::YFP, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3006 Ex[eat-4p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3007 Ex[eat-4p::svnls2::TagRFPsyn;lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3008 Ex[flp-6p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3009 Ex[flp-7p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3010 Ex[flp-12p::nls::Venus, lin-44p::mCherry]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3011 Ex[gcy-22p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3012 Ex[gcy-28p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3013 Ex[gcy-7p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3014 Ex[glr-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3015 Ex[glr-2p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3016 Ex[glr-3p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3017 Ex[gpa-2p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3018 Ex[gpa-10p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3019 Ex[gpa-13p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3020 Ex[gpc-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3021 Ex[lim-4p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3022 Ex[ins-1::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3023 Ex[tdc-1::mTFP, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3024 Ex[ins-1(short)p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3025 Ex[mbr-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3026 Ex[nep-2sp::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3027 Ex[npr-9p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3028 Ex[odr-2p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3029 Ex[sdf-9p::SDF9::GFP, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3030 Ex[sdf-9p::nls::GFP, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3031 Ex[ser-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3032 Ex[ser-2(prom2)p::mTFP, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3033 Ex[sra-6p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN2101 Ex[tax-4p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3035 Ex[ttx-3p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3036 Ex[vem-1p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Figs. 1, 2, 3, and 4

JN3038 qjIs11[glr-1p::svnls2::TagBFPsyn, ser-2(prom2)p::svnls2::TagBFPsyn];
peIs3042[eat-4p::svnls2::TagRFP675syn, lin-44p::GFP]; peIs2100
[H20p::nls4::mCherry]; qjIs14[H20p::nls::YC2.60].

Figs. 3, 4, and S10

JN3039 qjIs11[glr-1p::svnls2::TagBFPsyn, ser-2(prom2)p::svnls2::TagBFPsyn];
peIs3042[eat-4p::svnls2::TagRFP675syn, lin-44p::GFP]; peIs2100
[H20p::nls4::mCherry].

Figs. 3, 4, and S10

JN3041 Ex[ptr-10p::nls::YC2.60, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]. Fig. 1

ZIM945 lite-1(xu-7); mzmIs4[Punc-31::NLSGCaMP5K; Punc-122::gfp] Figure S10

ZIM1048 lite-1(ce314); mzmIs4[Punc-31::NLSGCaMP5K; Punc-122::gfp] Figure S10
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the fluorescent proteins and the dye was observed se-
quentially using laser scanning confocal microscopy
(Leica SP5 with 63× water immersion lens and 2×
zoom). The sizes of the images along the x and y axes
were 512 and 256 voxels, respectively, and the size along
the z axis varied depending on the diameter of the ani-
mal. The sizes of a voxel along the x, y, and z axes were
0.240, 0.240, and 0.252 μm, respectively. Other optical
settings varied depending on the conditions of the sam-
ple and the microscopy. Typically, TagBFP was excited
by a 405-nm laser and detected at 415–470 nm. YC2.60
was excited by a 458-nm laser and detected at 465–505
nm (for CFP) and 525–570 nm (for YFP) simultaneously.
mCherry was excited by a 543-nm laser and detected at
570–620 nm. TagRFP675 and DiR were excited by a
633-nm laser and detected at 660–745 nm. Each voxel
was scanned twice at 400 Hz.
A set of 3D multi-channel images of strain JN3039 was

obtained as described above without using the fluorescent
dye DiR.
A set of 3D multi-channel images of strain JN3038 was

obtained as follows. Day 1 adult animals were conditioned
on a NGM plate with OP50 [26]. The conditioned animals
were introduced and held in a microfluidic device called ol-
factory chip [37]. The depth and width of the fluid channel
in the chip were modified to 35 μm each in order to reduce
the distortion of the worms. The animals and their head
neurons moved to some extent in the device because the
animals were not paralyzed. The fluorescence of the
tagBFP, tagRFP675, and mCherry channels was observed
simultaneously using customized spinning disk confocal
microscopy. TagBFP was excited by a 405-nm laser and de-
tected at 454–496 nm. mCherry was excited by a 561-nm
laser and detected at 514–625 nm. TagRFP675 was excited
by a 637-nm laser and detected at 754–816 nm. The expos-
ure time was 500ms. The sizes of the images along the x, y,
and z axes were 512, 256, and 50 voxels, respectively. The
sizes of a voxel along the x, y, and z axes were 0.28, 0.28,
and about 0.77 μm, respectively. For obtaining a time series
of 3D images of mCherry using JN3038, the exposure time
was 4ms, the size of the images along the z axis was 22
voxels, and the size of a voxel along the z axis was 2.00 μm.

Image analysis for the neuron ID dataset
All the nuclei in the images were detected by our image
analysis pipeline roiedit3D [10] and corrected manually.
The cells stained by the chemical dye were identified as
reported [24]. The cells marked by cell-specific pro-
moters were identified based on the reported expression
patterns [38, 39] and positions of the nuclei [3, 40]. The
nuclei of the pharyngeal cells were also identified based
on the positions of the nuclei [40]. The cells surrounded
by the identified cells were also identified if possible.

Correction of the posture of worms
First, all the positions of nuclei in a worm determined by
roiedit3D were analyzed by PCA and the first principal
component axis (PC1 axis) was defined as the anterior-
posterior axis. The positions of the nuclei were fitted with a
quadratic function along the PC1 axis (see Additional file 2:
Figure S1). The determined quadratic function minimizes
the sum of the squared distances from the fitted line to the
positions of nuclei along PC2–PC3 axis. The positions were
corrected so that the quadratic line was straightened and at
the same time the rolled posture of the animal was cor-
rected. The positions of the nuclei were projected onto the
plane with PC2–PC3 axes, and the sparsest direction from
the center was defined as the dorsal direction. The posi-
tions were rotated along the PC1 axis so that PC1 (antero-
posterior axis) is aligned to the x axis and the dorsal direc-
tion is aligned to the positive direction of the y axis. Then,
we estimated the anterior direction based on the density of
the lateral cells. The densest position was set as the origin
of the anterior-posterior axis (translation). The origins of
the dorsal-ventral and left-right axes were the same as the
origin of the PC2 and PC3 axes. The worms can be aligned
by these procedures. The positions of the animals in the
neuron ID dataset were corrected precisely based on the
positions of the dye-stained cells.

Variation of relative positions
Variation of the relative position of a cell pair was calcu-
lated as the determinant of the covariance of relative cell
positions. Let Xi and Yi be the positions of the cells X
and Y in the ith animal, respectively, and the cells were
identified in n animals.

X ¼ X1;X2;…;Xnf g
and

Y ¼ Y 1;Y 2;…;Ynf g
are n-by-3 matrices of the positions of the cells X and Y,
respectively. Then, the variation of relative positions of
cell X and cell Y is

V X;Yð Þ ¼ det cov X−Yð Þð Þ:
For visualization, V(X, Y) was divided by the median

value of all V. The pairs with n ≤ 3 were ignored because
the determinant of covariance cannot be calculated.
Less varying cell pairs were found based on permuta-

tion of animals (permutation test). A permutation of the
vector X permutes the order of elements of the vector X,
for example,

perm Xð Þ ¼ X j;…;X1;…;Xk
� �

:

The pair of cells X and Y was regarded as less varying
if
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V X;Yð Þ≤∀V perm Xð Þ;Yð Þ:
For the pairs of 4 ≤ n ≤ 10, all the permutations (equal to

or less than 10 ! ~3.6 × 106 combinations) were calculated.
For the pairs of n > 10, 1 × 107 permutations were ran-
domly selected and calculated.

Stability of expression
The positive ratio is a ratio of the number of positive (pro-
moter-expressing) cells over the total number of the same
cells (= number of tested animals). Let nX be the number
of cells that express the landmark fluorescent protein
driven by a promoter and let m be the number of tested
animals for the promoter. The positive ratio pX is

pX ¼ nX
m

:

Stability of expression was calculated as an average of the
positive ratio over the cells in which at least one cell is posi-
tive for the promoter. Let l be the number of cells in which
the promoter drives expression of the landmark fluorescent
protein in an animal. The stability of expression s is

s ¼ 1
l

Xl

X¼1
pX :

The algorithm for searching optimal combination of cell-
specific promoters and the definition of the sparseness
The most important factor for selecting promoters in
order to improve annotation accuracy is to achieve a
checkerboard-like coloring pattern for the ease of distin-
guishing neighboring cells. A simple metric to account
for this factor is to sum the number of neighboring cell
pairs that exhibit a different color based on cell-specific
promoters, where each pair is inversely weighted by the
distance between the two neurons. Such a metric can be
considered as a modification to an Ising model in phys-
ics. We choose a Gaussian probability model for the
weighting function with an empirically chosen value of
the standard deviation to be 9.6 μm. The metric M can
be written as

M ¼ 1
2

X
X∈S

X
Y∈S

I LX ; LYð Þw X;Yð Þ

I LX ; LYð Þ ¼ 1 if LX≠LY
0 if LX ¼ LY

�

w X;Yð Þ ¼ N XjY ; 9:6ð Þ;
where S is a set of all cells in an animal. X and Y are po-
sitions of cell X and cell Y, respectively. LX is the label of
cell X and LX = (1, 0) means that landmark protein of
color 1 is expressed in the cell X but that of color 2 is
not expressed. Because the experimental setup has a

limited amount of channels, we are able to perform an
exhaustive search for all possible combinations of the
available promoters, and compare the final values of the
metric as a reference for choosing the combination of
cell-specific promoters used in our experiment. We eval-
uated all the combinations for 3 promoters and 2 colors
(20,825 combinations). The scores of the single pro-
moter for single color were used as the index of
sparseness.

Generating atlases
To obtain an atlas with fully annotated cells, we need to
combine positional information of cells from multiple
partially annotated images while maintaining the relative
position between the cells as much as possible. We
achieve this goal by maximizing the consistency (or
smoothness) of a displacement flow when combining
different images, for which the displacement flow is de-
fined as follows.
Suppose that in two images, denoted by I0 and I1,

there coexist C annotated cells. The displacement of cell
i is denoted by di ¼ x1i −x

0
i where x0i and x1i denote the

positions of the cell in I0 and I1, respectively. Then, we
define a displacement flow field d0→ 1(x) from I0 to I1
on the entire space x ∈ℝ3:

d0→1 xð Þ ¼
PC

i¼1N xjx0i ;Σ
� �

diPC
i¼1N xjx0i ;Σ

� � : ð1Þ

Here, N(x| μ, Σ) denotes the density function of the
normal distribution with mean μ and covariance Σ
(please note that Σ is 3 × 3 covariance matrix and deter-
mines the effective range of the displacement of a cell).
This represents a flow field function interpolated by the
given displacements of the C cells in the two images.
When taking the weighted average in the calculation of
d0→ 1(x), larger weights are assigned to the displace-
ments of more neighboring cells with respect to x in I0.
To generate an atlas, we conducted the following steps

(see Fig. 4a):

1. Set a randomly ordered sequence {I1,…, I311} of the
311 partially annotated animals. We discard the
sequence if the I1 has less than 60 annotated cells.

2. For t∈ {2…, 311}, cells in It were sequentially
aligned to those in I1 as follows:
A) The positions of all annotated cells in I1 were

unchanged.
B) All annotated cells that coexisted in both I1 and

It were used to calculate the displacement field
dt→ 1(x) with a pre-determined Σ (Eq. 1).

C) All cells annotated in It but not in I1 with their
positions denoted by xt were shifted and aligned
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to I1 according to x1← xt + dt→ 1(xt). Add them
to the annotated cells in I1.

D) Terminate the iteration if all annotated cells
have been aligned in the synthesized reference
image.

In this scheme, a spatial pattern of produced cells was
largely affected by the interpolated flow fields. In general,
the performance will be poor if the number of observed
source displacements was small. To reduce such instabil-
ity, we skipped It and used it later when the It shared less
than half cells annotated in common with I1. Repeating
this procedure, we generated 3000 reference samples.
The generated reference samples serve as a set of virtual

atlases that imitate observed topological variations of
cellular positions across different worm samples. To ob-
tain more realistic atlases, we optimized Σ = diag(σ1, σ2, σ3)
in Eq. 1, which is the parameter to control the smoothness
of displacements in the sequential alignments. We defined
an objective function to reflect the similarity of the topo-
logical variations between our neuron ID data set and the
generated atlas. By optimizing such objective function and
taking the optimal values of the parameters as a reference,
we selected an empirical value of Σ = diag(9.6 μm, 9.6 μm,
9.6 μm). Details of the objective function and optimization
are in Additional file 27: Note S1.

Bipartite graph matching
Detected cells in a target animal and an atlas were matched
using the Hungarian algorithm to solve the bipartite graph
matching problem. The matching was achieved by com-
paring one or more selected features between cells. Here,
features refer to some quantitative properties for the cells
that can be used to distinguish the identity of a cell from
another. The most fundamental feature is the positions of
cells. Other typical features include cell volume, fluores-
cence intensities, and manual annotation results. For
performance measurements, positions and expression of
landmark proteins (i.e., binarized fluorescent intensities)
were used. Manual annotation results can be used as an
additional feature for improving the automatic estimations
with feedback from human annotation, but were not con-
sidered in performance test except for Fig. 4f. With such
features, the dissimilarity of cells was represented by a
matrix A, where the {i, j} entry is the distance of the feature
values between the ith cell in the target and the jth cell in
the atlas. When there are Nf features chosen, we can as-
semble them into a single matrix ABGM through a weighted
sum:

ABGM ¼
XN f

n¼1
wnAn;

where wn is the weight for each feature. We use wdis-

tance = 1, wlandmark = 20. For feedback from human

annotation, the assignments incompatible with the hu-
man annotation have infinity dissimilarity. With a given
assignment, we can calculate the sum of the dissimilarity
values in ABGM that correspond to the selected match-
ing. A modified Hungarian algorithm [41] was used to
minimize the total distance with respect to all possible
assignments under the constraint of one-to-one
matching.

Majority voting
Multiple name assignments of a cell in the subjective
animal were obtained by repeating the bipartite graph
matching using 500 different atlases. Each assignment
was considered as one vote, and the estimated names for
a target cell were ranked by vote counts. The estimation
for a cell was independent of each other, and multiple
cells may have the same estimated names. If the non-
overlapping result is required, one can assemble cost
matrix based on vote counts and apply the Hungarian
algorithm.

Calculation of error rate of automatic annotation
All the detected cells in a target animal other than hypo-
dermal cells were used as a target. The names of the
cells were estimated by our automatic annotation
method based on their positions. The expression of
landmark promoters were also used for Fig. 4d and Add-
itional file 22: Figure S15. The estimated results are
compared to the human annotation (ground truth). The
error rate was calculated as 1 – (Ncorrect)/(Nannotated) for
each animal, where Nannotated is the number of human-
annotated cells (ground truth) and Ncorrect is the number
of cells whose annotation is correctly estimated. Our
automatic annotation method returns multiple ranked
candidates for a target cell. The rank R error rate indi-
cates that it is considered correct if the correct annota-
tion appeared in the top R estimations. Un-annotated
cells were ignored in calculating the error rate. The ani-
mals that have less annotated cells were removed to
avoid the effect of deviation of the annotated cells.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-020-0745-2.

Additional file 1: Table S1. Summary of neuron ID dataset including
expression patterns of the promoters.

Additional file 2: Figure S1. Correction of posture of the worms. (A)
An example bright-field image of the head region of an adult animal
with curved posture. (B) The positions of the cells in the animal (shown
as blue circles) are projected onto the plane with PC1-PC2 axes and the
plane with PC2-PC3 axes, where PC1 is the 1st principal component (see
Methods). The fitted quadratic curve is shown as the red line. (C) The cor-
rected position of the cells.

Additional file 3: Figure S2. Performance and robustness of the
posture correction. (A) The variation of cell positions was evaluated as
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the volume of ellipsoid (corresponding to the determinant of covariance
of cell positions; see Fig. 2) before and after the posture correction. The
variation of cell positions was plotted against the mean cell position in
the anterior-posterior (AP) axis (circles and crosses). Note that the y axis is
in logarithmic scale. The lines indicate moving average obtained with a
window of ±15 μm. (B) The moving average of variation of cell positions
after posture correction steps that consist of principal component analysis
(PCA), quadratic curve fitting, rotation, and translation (see Methods),
each of which reduced the variations. (C) Up to 20% of the cells were
randomly removed before the posture correction that simulates overlook-
ing of cells in the nucleus detection step. The lines indicate the moving
averages of variation of cell positions after the posture correction. The
lines are overlapped, suggesting that the posture correction step is ro-
bust for the overlooking of cells. (D) Up to 20% of the cells either in the
anterior side or in the posterior side were removed before the posture
correction that simulates cells moving out of the view of the images. The
side in which the cells were removed was randomly chosen in each ani-
mal. The lines indicate the moving averages of variation of cell positions
after the posture correction. The lines are overlapped, suggesting that
the posture correction step is robust for the movement of the cells. The
summary statistics of (A)-(D) are in Additional file 4: Table S2. (E) The cell
counts are shown against the mean cell position in the AP axis. The small
counts of the cells in the posterior side might increase the instability of
the moving averages of ellipsoid volumes in the posterior side. (F) The
variation of cell positions is shown against the cell counts. The variation
and the cell counts did not seem to correlate in general.

Additional file 4: Table S2. Summary statistics for Additional file 3: Figure S2.

Additional file 5: Figure S3. Movements of the cells during time-lapse
imaging. (A) The mean position and covariance of cell positions before
the translation correction are shown as ellipsoids (see Fig. 2). An adult
animal of JN3038 strain (see below) was introduced in the customized ol-
factory chip (see Methods) and imaged for about 20 min (6000 volumes).
The nuclei in the volumetric movie were detected and tracked. Note that
the origins of the axes are the same as those of the obtained raw images
and the cell positions cannot be compared directly to other data includ-
ing Fig. 2a. (B) The mean position and covariance of cell positions after
the translation correction are shown as ellipsoids. The volumes of ellip-
soids are smaller than that in Fig. 2a, indicating that the temporal move-
ments alone cannot explain the large variations of cell positions shown
in Fig. 2. The summary statistics are in Additional file 6: Table S3.

Additional file 6: Table S3. Summary statistics for Additional file 5: Figure S3.

Additional file 7: Figure S4. Overlay plot of cell positions for all
worms. (A) The positions of cells in the left half of the body for all worms
are plotted. Colored circles indicate the positions of identified cells. Gray
circles indicate the positions of unidentified cells. Different colors mean
different identities. (B) Same as (A) but only for identified cells. (C) Same
as (A) but only for identified non-pharyngeal cells. (D) Same as (A) but
only for identified pharyngeal cells.

Additional file 8: Figure S5. Specific-cell-centered landscape. (A) Ori-
ginal landscape as a reference. This panel is basically the same as Fig. 2a,
but several cells are removed for visibility. (B) ASKR-centered landscape.
The position of ASKR cell is indicated as a cross. (C) MI-centered land-
scape. The position of MI cell is indicated as a cross. The same cell has
the same color in (A)-(C). The cells in the right side are shown. Several
cells are removed for visibility.

Additional file 9: Figure S6. Less varying neuron pairs. (A) Less varying
neuron pairs were obtained by random permutation of animals (see Methods)
and the less varying pairs in the left half of the body are shown by red lines.
The pairs including pharyngeal cells were omitted for visualization. (B) The less
varying pairs including pharyngeal cells are shown by red lines.

Additional file 10: Figure S7. Position of posterior pharyngeal bulb
affects cell positions. (A-C) A/P (A), D/V (B) and L/R (C) positions of dye
positive cells plotted against relative A/P positions of pharynx. The relative
A/P positions of pharynx were calculated from the mean difference of
positions of pharyngeal cells from reference. Blue crosses indicate the cell
positions in respective animals. The red lines and the red dotted lines
indicate regression lines and 95% confidence bounds, respectively. The
summary statistics are in Additional file 11: Table S4.

Additional file 11: Table S4. Summary statistics for Additional file 10:
Figure S7.

Additional file 12: Figure S8. Stability and sparseness of expression
pattern. (A) Number of positive cells and stability of expression of the
cell-specific promoters. Same as Fig. 3a but fully labeled. (B) Number of
positive cells and sparseness of expression pattern of the cell-specific pro-
moters. Same as Fig. 3b but fully labeled.

Additional file 13: Table S5. Evaluation result of promoter
combinations.

Additional file 14: Figure S9. An example fluorescent image of JN3039
strain and annotated cell names. Zoomed version of Fig. 3d-e for visibility.

Additional file 15: Dataset S2. Positions of nuclei and expression
patterns of landmark fluorescence in the whole-brain imaging strains as
the test data for automatic annotation and corresponding static 3D
images.

Additional file 16: Figure S10. Health of 4D strains. (A) Brood size of
4D strains including JN3038, JN3039, ZIM945 and ZIM 1048 were
compared to N2. The animals were counted at 96 h after the parent
animal was put on the plate (see Methods). The medians and the
standard errors are shown. The sample size are n = 8 plates for N2, n = 9
plates for JN3038, n = 10 plates for JN3039, n = 11 plates for ZIM945, and
n = 10 plates for ZIM 1048. The p-values of Tukey’s post hoc test
following one-way ANOVA (Kruskal-Wallis test) to N2 are shown. The
summary statistics are in Additional file 17: Table S6. (B) The ratio of adult
hermaphrodite in (A). (C) The ratio of adult male in (A). (D) The locomo-
tion speed of adult animals (see Methods). The means and the standard
errors for n = 5 assays are shown. The p-values of Tukey’s post hoc test
following one-way ANOVA (Kruskal-Wallis test) to N2 are shown. (E)
Chemotaxis assay of JN3038. N2 and JN3038 animals were cultivated at
25 mM or 100 mM of NaCl with or without food. The conditioned animals
were placed in the center of the assay plate with a NaCl gradient from
35 to 95 mM. The animals migrate to either side of the plate and chemo-
taxis index was calculated. A high chemotaxis index means the worms
migrated to a high salt region. Mean ± SEM for n = 6 assays are shown.
The p-values were obtained from a statistical test between JN3038 and
N2 at the same condition (Wilcoxon rank sum test).

Additional file 17: Table S6. Summary statistics for Additional file 16:
Figure S10.

Additional file 18: Figure S11. Comparison of the synthetic atlas and
the neuron ID dataset. (A) Visualization of the variation of the cell
positions in synthetic atlas. The cells and colors are the same as Fig. 2a.
(B) Distance of mean position of cells between the atlas and the neuron
ID dataset. (C) Ratio of volume of ellipsoid (covariance of the positions of
the cell) between the atlas and the neuron ID dataset. (D) Comparing the
variation of relative positions of dataset and that of atlas. The color
indicates how many times the neuron pair is co-detected in an animal of
the neuron ID dataset.

Additional file 19: Figure S12. Variation of relative position of cell
pairs. Variation of relative position of cell pairs. Orders of cells and colors
are the same as in Fig. 2c.

Additional file 20: Figure S13. Error rate of each bipartite matching and
majority voting. Error rate of each bipartite matching and majority voting
are shown in the blue histogram and the black lines, respectively. The
names of the cells were estimated based on their positions. The error rate
was calculated as 1 – (Ncorrect)/(Nannotated) for each animal, where Nannotated is
the number of human-annotated cells (ground truth) and Ncorrect is the
number of cells whose annotation by the algorithm was correct. Cells un-
annotated by human were not included in the calculation of error rate. The
rank R indicates that it was considered correct if the correct annotation ap-
peared in the top R estimations by the algorithm.

Additional file 21: Figure S14. Relationship between error rate of
automatic annotation for JN3039 and detected count in the neuron ID
dataset. The error rate of automatic annotation for cells identified in
JN3039 and detected count of the cell in the neuron ID are shown. The
red lines and the red dotted lines indicate regression lines and 95%
confidence bounds, respectively. The slope is − 4.55e-4 and the
confidence interval is from − 0.0659 to 0.0169. The p-value is 0.0247.
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Additional file 22: Figure S15. Error rates of the automatic annotation
method for the animals in a microfluidic chip. Error rates of the
automatic annotation method for the animals in a microfluidic chip for
whole-brain activity imaging (JN3038 strain). Mean ± standard deviation
over 12 animals are shown.

Additional file 23: Dataset S3. A tutorial for semi-automatic annota-
tion using our software.

Additional file 24: Figure S16. Correct rate of automatic annotation
and its improvement by manual annotation. (A) The effect of prior
manual annotation on the correct rate of automatic annotation. The
annotation of a single cell type was specified manually before
performing the automatic annotation. The error rates of automatic
annotation for cells identified in JN3039 are shown. (B) Improvement of
correct rate was obtained by subtracting the original correction rate from
the correction rate with prior manual annotation.

Additional file 25: Figure S17. Most valuable cells for improving
accuracy of automatic annotation. (A) Improvement of correct rate for
prior annotated cell itself. Difference of correct rate is 0.9 when the
correct rate of the cell in original case (i.e. without prior annotation) is
0.1. (B) Mean improvement of correct rate for the cells other than the
prior annotated cells. Prior annotation of SMDVL achieved about 0.59%
improvement of correct rate, indicating that 1.1 cells were corrected in
addition to SMDVL. (C) Mean improvement of correct rate through all
cells. Prior annotation of SMDVL achieved about 1.1% improvement of
correct rate, indicating that 2.0 cells were corrected.

Additional file 26: Dataset S4. Sequences of the promoters in Table 1.

Additional file 27: Note S1. Optimization of parameters for atlas
generation.

Additional file 28: Dataset S5. All codes for the GUI RoiEdit3D and
analysis pipeline to make figures.
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