Goig et al. BMC Biology (2020) 18:24
https://doi.org/10.1186/512915-020-0748-z

BMC Biology

Check for
updates

Contaminant DNA in bacterial sequencing
experiments is a major source of false
genetic variability
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Abstract

Background: Contaminant DNA is a well-known confounding factor in molecular biology and in genomic
repositories. Strikingly, analysis workflows for whole-genome sequencing (WGS) data commonly do not account for
errors potentially introduced by contamination, which could lead to the wrong assessment of allele frequency both
in basic and clinical research.

Results: We used a taxonomic filter to remove contaminant reads from more than 4000 bacterial samples from 20
different studies and performed a comprehensive evaluation of the extent and impact of contaminant DNA in WGS.
We found that contamination is pervasive and can introduce large biases in variant analysis. We showed that these
biases can result in hundreds of false positive and negative SNPs, even for samples with slight contamination.
Studies investigating complex biological traits from sequencing data can be completely biased if contamination is

neglected during the bioinformatic analysis, and we demonstrate that removing contaminant reads with a
taxonomic classifier permits more accurate variant calling. We used both real and simulated data to evaluate and

implement reliable, contamination-aware analysis pipelines.

Conclusion: As sequencing technologies consolidate as precision tools that are increasingly adopted in the
research and clinical context, our results urge for the implementation of contamination-aware analysis pipelines.
Taxonomic classifiers are a powerful tool to implement such pipelines.

Background
Whole-genome sequencing (WGS) has enhanced the
study of complex biological phenomena in bacteria, such
as population dynamics, host adaptation, or outbreaks of
microbial infections [1, 2]. In addition, democratization of
high-throughput sequencing technologies and continuous
improvements in laboratory procedures are also turning
WGS into a promising alternative for the clinical diagnosis
and surveillance of several pathogenic species [3—5]. Thus,
many efforts in the basic and clinical research fields are di-
rected to the improvement of bioinformatic pipelines to
ensure the robustness of the conclusions drawn.

Central to many bacterial WGS bioinformatic pipelines is
the identification of genetic variants. Incorrect identification
of variants can have a major impact on several areas of
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microbiological research. Applications based on variant
analysis include, but are not limited to, phylogenetics [6],
phylodynamics and dating [7], genome-wide association
studies [8], experimental evolution [9], epidemiological ana-
lyses [10], and drug development [11]. Furthermore, the
frequency at which each variant is observed in a sample can
be used to characterize population genetics processes. Ana-
lysis of the allele frequency spectrum enables the study of
population dynamics of diversity within a host or co-
existence of mixed lineages [12]. In the clinical field, variant
analysis at a genomic scale allows the identification of
pathogen species and genotypes, distinguish between re-
lapse and superinfections, or prediction of resistance phe-
notypes and transmission links.

While many factors are taken into account when devel-
oping SNP calling pipelines, surprisingly, the potential role
of contamination is seldomly considered [13]. However,
misinterpretation of contaminated data can lead to draw in-
correct conclusions about biological phenomena [14, 15].
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Genomic databases are known to encompass contami-
nated sequences, with assembled genomes that can con-
tain large genomic regions from non-target organisms
[16, 17]. Strikingly, a recent study revealed that depos-
ited bacterial and archaeal assemblies are contaminated
by human sequences that created thousands of spurious
proteins [18]. While the potential impact of contami-
nants has been considered in fields like metagenomics
or transcriptomics, most bacterial WGS analysis pipe-
lines lack specific steps aimed to deal with contaminant
data. This situation likely originates from the assump-
tions that microbiological cultures are mostly free of
non-target organisms and that even if present, contam-
inant sequences are unlikely to map to the reference ge-
nomes or are removed using standard filter cutoffs. To
date, the extent of contamination and its impact in bac-
terial re-sequencing pipelines has not been comprehen-
sively assessed.

In this work, we use both real and simulated data
to perform a detailed comparison of a standard bac-
terial mapping and SNP calling pipeline against 2 al-
ternative contamination-aware approaches. First, we
implement a taxonomic filter removing contaminant
reads that allowed us to assess the extent of contam-
ination and estimate its impact in a dataset compris-
ing 2600 samples of 13 different species from 12
bacterial WGS projects. Second, we compare the per-
formance of this taxonomic filter with a filter based
on the similarity of the alignments and evaluate the
impact of contamination in 8 WGS projects compris-
ing 1500 samples of Mycobacterium tuberculosis
(MTB) WGS samples.

We found that contamination events are frequent
across bacterial WGS studies and can introduce large
biases in variant analysis despite the use of stringent
mapping and variant calling cutoffs. Importantly, this is
not only true for culture-free sequencing strategies, but
also for experiments sequencing from pure cultures. We
show that the effect size is not dependent on the amount
of contamination and that samples with even low-level
contamination can accumulate dozens of errors, particu-
larly for non-fixed SNPs. We demonstrate that removing
contaminant reads with a taxonomic classifier allows the
implementation of more accurate variant calling pipe-
lines, and provide a validated workflow for WGS analysis
of MTB.

Results

Contamination is common across WGS studies, even
when sequencing from pure cultures

To assess the extent of contamination across bacterial
WGS studies, we taxonomically classified the sequencing
reads of 4194 WGS samples from 20 different studies
using Kraken, a metagenomic read classifier that has
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been extensively used and evaluated in the literature.
Out of these, 1553 samples corresponded to M. tubercu-
losis sequencing projects, here referred as the MTB
dataset, and 2641 to 13 other bacterial species, here re-
ferred as the bacterial dataset (Table 1). According to
taxonomic classifications, varying levels of contamin-
ation with non-target reads can be found in the different
studies (Fig. 1). From the bacterial dataset, Legionella
pneumophila, Acinetobacter baumannii, Listeria mono-
cytogenes, Pseudomonas aeruginosa, and Neisseria gonor-
rhoeae studies showed the expected taxonomic profile
from pure culture sequencing, since virtually all the
reads are classified in their respective target genus. By
contrast, contamination can be clearly found in the rest
of studies from this dataset, with an average of 45% of
samples per study having less than the 90% of the reads
coming from the target organism. The Treponema palli-
dum study represents an extreme case, with its samples
having an average of only 40% of reads coming from this
organism. This result is expected since in this study the
samples were sequenced directly from clinical specimens
using a bait capture strategy. However, high levels of
contamination can be found in other studies where se-
quencing is performed from pure cultures (Fig. 1a).

When looking at the MTB dataset, we also observed
contamination to be common across studies (Fig. 1b).
As expected, direct sequencing from clinical specimens
and early positive mycobacterial growth indicator tubes
(MGIT), which are inoculated with primary clinical sam-
ples, present higher levels of contamination in terms of
both the number of samples contaminated and the pro-
portion of non-target reads within them. Common con-
taminants for these samples comprise human DNA, and
bacteria usually found in oral and respiratory cavities
like Pseudomonas, Rothia, Streptococcus, or Actinomyces,
and can constitute virtually all reads in some samples.
However, as observed for the bacterial dataset, contam-
ination was also detected in studies in which the se-
quenced DNA came from pure culture isolates. For
instance, Bacillus, Negativicoccus, and Enterococcus rep-
resented up to 68%, 58%, and 32%, respectively, of differ-
ent samples from the KwaZulu study. Strikingly, 17 out
of 73 MTB samples from the Nigeria study were identi-
fied as Staphylococcus aureus (92 to 99% of reads). The
high-depth dataset was mostly free of contamination,
with the exception of two samples for which 3.32% of A.
baumannii and 2.83% of non-tuberculous mycobacteria
(NTM) were identified (representing 795,887 and 920,
379 reads, respectively).

A taxonomic filter to selectively analyze non-contaminant
reads

To assess the impact of these contamination events in
bacterial WGS analysis, we compared the outcomes in
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Table 1 Studies analyzed
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Study name Publication Runs analyzed ~ Sample source Dataset
Mozambique Unpublished 138 Clinical isolates MTB dataset
Kwazulu-Natal Cohen et al. 2015 433 Single colonies from clinical isolates MTB dataset

Nigeria Senghore et al. 2017 73
Belarus Wollenberg et al. 2017 552
High-depth sequencing Trauner et al. 2017 63
Sputum-capture sequencing ~ Brown et al. 2015 58

Sputum-direct sequencing Votintseva et al. 2017 68

MGIT sequencing® Pankhurst et al. 2016 168
A. baumannii Willems et al. 2016 36
C. difficile Stone et al. 2016 54
Enterococcus’ Tyson et al. 2018 197
K. pneumoniae Holt et al. 2015 285
L. monocytogenes Halbedel et al. 2018 424

L. pneumophila Timms et al. 2018 48

N. gonorrhoeae Yahara et al. 2018 272
P. aeruginosa Marvig et al. 2015 445
S. aureus Aanensen et al. 2016 337
S. enterica Gymoese et al. 2017 366
T. pallidum Pinto et al. 2016 25

Vibrio* Greig et al. 2018 152

MTB dataset
MTB dataset
MTB dataset
MTB dataset

Clinical isolates
Clinical isolates
Clinical isolates

Clinical respiratory specimens (culture-free sequencing
with a bait capture strategy)

Clinical respiratory specimens (direct culture-free MTB dataset

sequencing)

Early-positive MGIT cultures (liquid) MTB dataset

Single-colony recultured in broth Bacterial dataset

Pooled single-colony isolates Bacterial dataset

Isolates from retail meats Bacterial dataset

Human, animal, and environmental isolates Bacterial dataset

Clinical isolates from human Bacterial dataset

Pure culture isolates from human and cooling towers Bacterial dataset

Pure culture isolates from human Bacterial dataset

Clinical isolates from human Bacterial dataset

Clinical isolates from 186 hospitals in 21 countries Bacterial dataset

Human, animal, and environmental isolates Bacterial dataset

Clinical specimens (culture-free sequencing with a bait ~ Bacterial dataset

capture strategy)

Clinical isolates from human Bacterial dataset

*This study included sequencing samples from non-MTB organisms. We analyzed the 168 reported as MTB by the authors
This study included sequencing samples from 2 species (E. faecalis and E. faecium)
*This study included sequencing samples from different Vibrio species. We only analyzed the 152 reported as V. cholerae by the authors

variant calling for each sample before and after removing
contaminant reads as classified by Kraken. We refer to
this contamination removal methodology as a “taxo-
nomic filter” (detailed in the “Material and methods”
section). To assess whether our Kraken setup can be
safely used to remove contaminant reads across the ana-
lyzed datasets, we first estimated the proportion of reads
that can be classified up to the level of species and genus
for each organism using simulated sequence reads from
the corresponding reference genome. This analysis was
performed both including and excluding the reference
genomes from the database (Additional file 1: Table S1;
Additional file 2: Table S2). For most of the organisms,
more than the 99% of the reads could be classified at
species level for 250 bp simulated Illumina MiSeq reads
(median = 99.35%; 99.07% excluding the reference) with
the exceptions of K. pneumoniae (97.86%; 97.86% ex-
cluding the reference), S. aureus (95.01%; 94.98% exclud-
ing the reference), and T. pallidum (93.54%; 92.96%
excluding the reference). Additionally, excluding the ref-
erence genome caused Enterococcus faecalis to drop
from 99.55 to 90.59%. For 100bp simulated Illumina
HiSeq reads, the proportion of reads classified for each

organism was lower in every case (median =98.79%;
97.96% excluding the reference) with a dramatic drop
for T. pallidum (72.74%; 71.25% excluding the refer-
ence), and with the exception of M. tuberculosis that
remained at 99.98%. At genus level, Kraken was able
to classify most of the reads of each organism (me-
dian =99.89% and 99.61% excluding the reference for
250 bp simulations; median =99.77% and 99.1% ex-
cluding the reference for 100 bp simulations) with the
exception of S. aureus that remained around 95% in
every case and E. faecalis that was 91.17% after ex-
cluding the reference genome. Interestingly, for T.
pallidum, which showed to be the most difficult or-
ganism to classify at species level, 100% of reads were
classified at genus level even after excluding the refer-
ence genome. Therefore, to safely analyze the effect
that contaminant reads have in WGS of the bacterial
dataset, we applied the Kraken-based taxonomic filter
at the genus level (e.g., we removed all non-Acineto-
bacter reads from the A. baumannii study).

Second, we scanned all the WGS samples to estimate
the maximum proportion of reads Kraken is capable of
classify as the target organism in real samples
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(Additional file 1: Table S1). In most cases, there was at
least one sample per bacteria that could be classified as
well as the reference genome (median difference be-
tween real and simulated sequencing of 1% at species
level and 0.35% at genus level). The higher difference
was observed for T. pallidum for which the maximum
number of reads classified in a real WGS sample at
genus level was 94.75%. This most likely reflects that se-
quencing directly from clinical specimens usually pro-
duces contaminated samples.

Third, a fraction of reads that actually come from the
target organism may be misclassified, and thus, such
reads would be incorrectly removed by the taxonomic
filter. In order to estimate the magnitude of this error
in our analysis, we used Bracken to calculate the frac-
tion of misclassified reads that were expected to actu-
ally belong to the target organism. Overall, the
proportion of reads incorrectly eliminated by the taxo-
nomic filter as estimated by Bracken was very low (me-
dian=0.11%, IQR=1.32%). This proportion varied
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between different organisms (Additional file 3: Table S3).
For example, whereas for several organisms like A.
baumannii, only 0.07% of the reads eliminated by the
taxonomic filter are estimated to actually belong to Acine-
tobacter, in the case of K. pneumoniae, in which a high
proportion of reads remain unclassified or are assigned to
Negativicoccus massiliensis, 3.65% are estimated to actu-
ally belong to Klebsiella.

Additionally, it can be argued that highly contami-
nated samples are likely to be detected by basic sequen-
cing quality controls regardless of the implementation of
specific contamination-control analysis. In contrast, con-
taminating reads would likely pass unnoticed when
enough data from the target organism is produced and
quality parameters like sequencing depth or genome
coverage meet certain criteria. Furthermore, the mea-
sures of the impact of contamination in SNP analysis
may be biased by including highly contaminated data.
Thus, for the following analyses, we discarded samples
with contamination higher than 50% or depths lower
than 40x (only a minimum of 20x was required for T.
pallidum, see the “Material and methods” section for a
further explanation). From the initial 2641 samples of
the bacterial dataset, 2233 met these criteria (408 had
less than 40x depth and 16 had more than 50% of con-
tamination (Additional file 4: Table S4)).

Contamination impacts bacterial WGS analysis

The expected effect of mapped contaminant reads is to
produce mixed calls, leading to the identification of false
positive variable SNPs (vSNPs). These false positive calls
would alter the frequencies calculated at a given pos-
ition, which might also produce false negative fixed
SNPs (fSNPs) by lowering the frequency below the re-
quired cutoff to call fixed variants (90% frequency in this
work). The Pearson correlation coefficient between re-
moving vSNPs and recovering fSNPs was of 0.76 (Fig. 2).
However, not all the contaminant reads are expected to
affect positions with fSNPs, and in fact, for 405 samples
(18%), the taxonomic filter removed the false positive
vSNPs without affecting any fSNP. Similarly, in 38 sam-
ples (3%), we observed the recovery of at least 1 false
negative fSNP without removal of vSNPs. Notably, we
did not observe a correlation between the number of
vSNPs removed and the degree of contamination of a
sample  (Pearson’s correlation coefficient = - 0.06)
(Table 2). This result suggests that the impact in variant
analysis is highly dependent on the identity of both the
contaminant and the target organisms, rather than the
number of contaminating reads.

Overall, the impact of removing contaminant reads on
vSNP and fSNP inference depended heavily on the spe-
cies considered. For example, virtually, no change was
observed for N. gonorrhoeae samples (Table 2, Fig. 3)
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while a mean number of 89 vSNPs were removed and 57
fSNPs recovered for A. baumannii samples. The greatest
change was observed for K. pneumoniae, S. aureus, and
Salmonella enterica datasets. However, in these cases,
the impact of contaminant reads might be overestimated
due to the incorrect elimination of target reads by the
taxonomic filter. In many WGS applications, genetic var-
iants are not analyzed on a sample basis but across the
entire dataset. We therefore evaluated the impact of
contaminant reads on polymorphic positions called
across datasets. On average, the total number of poly-
morphic positions was reduced by 1.51% for fSNPs
(range 0—-6%) and 8.67% for vSNPs (range 0-41%) (Fig. 3,
Additional file 5: Table S5).

We also observed a small proportion of fSNPs to be
systematically removed by the taxonomic filter (me-
dian = 0.2% of fSNPs, ranging from 0 to 5.6% between
studies; Additional file 6: Table S6). Those positions can
be considered false negatives introduced by the pipeline,
including inconsistencies of the mapping software, and
the inability of Kraken to classify a small proportion of
reads disregarding their similarity to the reference gen-
ome. We observed this to occur mostly in regions of low
coverage that could be the result of, for instance, hard-
to-map regions like repetitive elements or different
strains coexisting in the same sample one of which has a
deletion. In such regions, eliminating only one read can
lead to greater differences in frequencies making the
position fall below the required thresholds to call a fSNP
(Additional file 7: Figure S1). Most of the fSNPs incor-
rectly removed after the taxonomic filter were caused by
the inability of Kraken to classify some reads up to the
level of genus. This behavior is a known limitation of the
taxonomic classifiers for conserved regions among bac-
teria. However, in many cases, the incorrectly eliminated
sequences corresponded to reads mapped with 100%
identity to the reference genome and surrounded by
other sequences that were classified, even at the level of
species, despite having several SNPs. This is probably
due to the fact that for some reads, the k-mers in which
they are decomposed do not allow Kraken to classify be-
yond a given taxonomic level, disregarding the sequence
diversity. However, since the immediate contiguous
reads can be correctly classified, this bias is normally
compensated by the sequencing depth.

Unexpectedly, we also observed an inconsistency of
the mapping software (bwa-mem) to be responsible for a
small fraction of the SNPs that are either removed or re-
covered after applying the taxonomic filter. In these
cases, we observed that the number of supporting reads
at a given position differed in one read despite the fact
that none of the reads mapping to that position were
classified as contaminant. Surprisingly, we observed this
to be the result of the exact same read, mapping to the



Goig et al. BMC Biology (2020) 18:24 Page 6 of 15

100,000 = Pearson Correlation Coefficient = 0.76

. L
o L
=
& 10,000 +—
S) _ Study
I [ . A. baumannii
o ° p—
c r C. difficile
2 1,000 = E. faecalis
E & E.faecium
— r L[] ° ° .
() F e K. pneumoniae
& 3 .
© e L. pneumophila
8 100 13 e L. monocytogenes
jus C
] C o N. gonorrhoeae
B e P aeruginosa
[}
u S. enterica
- 10 +—
0 3 S. aureus
o ~
= C T. pallidum
wn
Y- r V. cholerae

1=

0+ L ] L J O 0SSN BN IO @ T

| A | R | R | R | NN | M |
0 1 10 100 1,000 10,000 100,000
VvSNPs removed after taxonomic filter

Fig. 2 Correlation between the number of vSNPs removed and the number of fSNPs recovered after contamination removal with the
taxonomic filter

_

Table 2 Effect of applying the taxonomic filter in the variant analysis of samples of the bacterial dataset

Study Mean percentage of  Mean number of ~ Mean number of  Pearson’s correlation coefficient ~ Pearson’s correlation coefficient

target organism (%)  vSNPs removed  fSNPs recovered  between removal of vSNPs and  between removal of vSNPs and
(median; IQR) (median; IQR) recovery of fSNPs percentage of target organism

A. baumannii 97.30 89 (43; 165) 57 (10; 113) 0.99 0.25

C. difficile 76.74 299 (397; 379) 27 (16; 32) 045 023

E. faecalis 89.96 30 (19; 33) 4(3;5) 0.65 -0.13

E. faecium 94.38 9 (5, 10) 3(2;5) 047 -045

K. pneumoniae 84.38 549 (62; 112) 73 (13;41) 0.76 - 044

L. pneumophila 99.06 12 (0; 8) 301 0.99 —-063

L. monocytogenes 9842 20: 1) 0 (0; 0) 049 —-043

N. gonorrhoeae 99.17 0 (0; 0) 0 (0; 0) 034 —-0.09

P. aeruginosa 9743 9(2; 14) 10; 1) 0.50 —-0.11

S. enterica 95.01 97 (91, 87) 7(6;12) 0.14 0.02

S. aureus 9142 50 (22; 50) 939 0.54 -0.10

T. pallidum 39.75 45 (34; 52) 6 (54 063 -048

V. cholerae 91.32 9 (5 16) 2(1;3) 0.76 -056
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Fig. 3 Fraction of polymorphic positions with vSNPs removed after applying the taxonomic filter

same genomic position, but with different qualities for
the filtered and non-filtered fastq files. The fact that the
fastq files are different (because some reads are removed
in the filtered fastq) makes bwa to produce different re-
sults for a small number of reads (between 1 and 6 in
our tests) that are filtered because of the mapping qual-
ity cutoff (60). We confirmed this behavior by randomly
sorting and mapping different times a set of fastq files
(tested versions 7.10, 7.12, and 7.17). This is likely due
to the heuristics implemented in the seed-and-extension
algorithm of bwa-mem.

Interestingly, we observed Negativicoccus massiliensis
to be present at high proportions in several datasets.
Analyzing a subset of these reads using the NCBI blast
utility revealed that they present nucleotide similarity
with eukaryotic organisms (e.g., Cyprinus carpio and
Plasmodium vivax). Despite being contaminant reads,
their classification as N. massiliensis is clearly artifactual,
probably due to the absence of eukaryotic organisms in
our database other than human. Similarly, Kraken left a
high proportion of reads unclassified in many samples.
This could be mainly due to either the absence of the or-
ganism from the database, or the sequences that Kraken
cannot classify up to the level of genus, for instance
when analyzing organisms with high genetic diversity.

Indeed, when using the NCBI blastn to search a random
subset of unclassified reads in the non-redundant data-
base (nr), we observed three main patterns: reads that ei-
ther did not produce significant matches with any
organism, or came from eukaryotes not present in our
Kraken database; reads that produced partial alignments
with many different taxa; and reads that produced good
alignments, even with the target organism, but having
alignment identities below 90%, what makes Kraken un-
able to find exact matches of 31 bp.

Implementation of a contamination-aware analysis

pipeline: Mycobacterium tuberculosis as a test case

The analysis of the bacterial dataset revealed that con-
taminant reads can have a major impact in bacterial di-
versity estimations. It is clear, however, that a unique
approach might not be appropriate for all organisms and
that implementations of contamination-aware pipelines
must take into account the genetic particularities of each
organism and rely on comprehensive validations. Follow-
ing the analysis of the bacterial dataset, we implemented
and extensively evaluated two contamination-control ap-
proaches on top of a specific analysis pipeline for M. tu-
berculosis, which is the pathogen our laboratory is
focused on. We tested the Kraken-based taxonomic filter
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at species level (Mycobacterium tuberculosis complex)
and a similarity filter that removes read mappings with
identity and length lower than 97% and 40 bp, respect-
ively. We tested both approaches using simulated and
real sequencing runs. In first instance, we used simulated
experiments to evaluate how non-MTB reads are
mapped to the MTB reference genome and quantify the
false positive and negative SNPs that arise consequently.
We mapped simulated sequencing samples of 45 organ-
isms to the MTB reference genome, including oral and
respiratory = microbiota, clinically common non-
tuberculous mycobacteria, and human reads. As ex-
pected, conserved genes like the 16S, rpoB, or the tRNAs
constitute hotspots where contaminant sequences are
frequently mapped. However, non-MTB alignments are
not only produced in these regions but across the refer-
ence genome (Fig. 4a). This is dependent on the phylo-
genetic relationship of the contaminant organism to the
one being studied. Non-tuberculous mycobacteria repre-
sent the best example of this, as their read mappings can
produce high sequencing depths along the MTB refer-
ence genome. Human reads, which are a frequent con-
cern in clinical studies, did not produce any alignments
at all.

Next, we evaluated the performance of the taxonomic
filter and the similarity filter using in silico contaminated
samples. Although both approaches reduced the number
of non-MTB mappings, the taxonomic filter showed the
best performance, eliminating all non-MTB alignments
with the only exception of a proportion of Mycobacter-
ium avium reads. Accordingly, the number of false posi-
tive vSNPs due to contaminants was reduced with both
methods, but in the case of the taxonomic filter, almost
all erroneous SNP calls were eliminated (Fig. 4b). Only
contamination with M. avium, a closely related bacteria,
compromised its performance. Nonetheless, the errors
observed were notably lower than when only using a
mapping quality threshold (60 in this work). For ex-
ample, when a 5% of M. avium was present, the 3325
false positive vSNPs and 51 false negative fSNPs identi-
fied were reduced to 24 and 9, respectively, after apply-
ing the taxonomic filter. The few false negative fSNPs
observed in Fig. 4b which are systematic between all
methods were due to some positions next to hard-to-
map regions that do not pass the coverage cutoffs re-
quired to call a fSNP in contaminated samples.

Remarkably, even a 5% of contaminating reads can
introduce a large number of false positive vSNPs. As ex-
pected, the erroneous calls produced by such small con-
tamination fall mainly in conserved regions. However, in
agreement with the results shown in Fig. 4a, spurious
SNPs can be called across the genome (Additional file 8:
Figure S2). Importantly, it is precisely because many of
the contaminant alignments are produced in conserved
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genes that we predicted false antibiotic resistances, in-
cluding well-known mutations to first line drugs in
MTB treatment (Additional file 9: Table S7).

We also evaluated whether these filters systematically
remove sequencing reads from particular genomic re-
gions leading to biases produced by the methodology it-
self. To do so, we analyzed the mean sequencing depth
obtained across the genome, before and after applying
the filters, for all the samples of the MTB dataset that
have less than 1% of contamination (984 samples; 78%
of the samples analyzed). Importantly, we observed the
taxonomic filter to systematically remove sequencing
reads coming from the 16S gene due to the inability of
Kraken to classify many reads coming from this gene up
to the level of species. However, for the rest of the gen-
ome, it showed an excellent performance, with virtually
no differences in depth, even for conserved regions like
the 7poB gene (Additional file 10: Table S8). On the con-
trary, the similarity filter produced a systematic decrease
in depth across the genome. In the 97% of the genome,
the sequencing depth was reduced more than 1x, with
several regions showing larger decreases (Add-
itional file 11: Table S9).

Impact of contamination in clinical WGS samples of
Mycobacterium tuberculosis
After evaluating the performance of the taxonomic and
similarity filters, we used them to remove contaminants
in a dataset comprising 1553 MTB WGS samples from 8
different studies. As done for the bacterial dataset, we
only analyzed samples with at least 50% of reads classi-
fied as Mycobacterium tuberculosis complex and 40x of
median sequencing depth (20x for direct sequencing
from clinical specimens) to discard heavily contaminated
samples (1267 samples, 81.6% of the MTB dataset).
Given that the taxonomic filter showed to be ex-
tremely conservative with all genomic positions except
the 16S gene, we discarded from the following analyses
any SNP called in this region (rrs, rri, rrf). Therefore, the
differences observed in variant analysis when applying
this filter can be attributed to noise introduced by con-
tamination. In accordance, we expected no differences in
variant calling in samples not affected by contaminants.
When analyzing real WGS MTB samples with the taxo-
nomic filter, we observed no variant change for 788 sam-
ples (62% of the samples analyzed). Importantly, this
agreement was true for samples with low-level contam-
ination (less than 1%) but also for samples with higher
number of contaminant reads (up to 31%), probably
from organisms genetically distant to MTB. Overall, the
numbers of SNPs either removed or recovered after ap-
plying the taxonomic filter were independent of the level
of contamination of a sample (Pearson’s correlation co-
efficient = 0.03).  Altogether, these results strongly
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suggest that the changes observed in variant analysis after
applying the taxonomic filter can be attributed to noise in-
troduced by contaminants rather than a methodological
bias. On the contrary, the similarity filter always removes
variant positions even for the 984 samples with 99% of
MTB. This is in agreement with the higher rate of false

negatives observed in the in silico experiments.

Mapped contaminant reads introduce new variants
that alter the allele frequencies. After applying the taxo-
nomic filter, we observed a mean change of 42% allele
frequency (median =41%; IQR=36%). As shown in
Fig. 5, the main consequence of these alterations is the

introduction of many false positive vSNPs, even for sam-
ples with contamination levels as low as 5%. However,
altering allele frequencies can also lead to call false nega-
tive vSNPs, and false positive and negative fSNPs.
Among the 38% of samples for which at least 1 change
was observed, the taxonomic filter removed on average

761.7 vSNPs (median =18) and 4 fSNPs (median = 1),

and recovered 1.7 vSNPs (median=1) and 5.9 fSNPs
(median =2). On average, the total number of poly-
morphic positions within each study was reduced by
0.4% for fSNPs (range 0-2%) and 43% for vSNPs (range
3-95%) (Fig. 3, Additional file 5: Table S5). Applying the



Goig et al. BMC Biology (2020) 18:24 Page 10 of 15
p
fSNPs VSNPs Study
r 100,000 ¢ - ° Belarus
F F Sputum capture-sequencin
10,000 & - P! P! q 9
E E Sputum direct-sequencing
@ False positive 1000 E i g KwaZulu
% SNPs 100 E £ R @ d phg § o MGIT sequencing
- — ° oo
2o E E "0 ° o .,0,;%. % o Mozambique
3 °
GCJ _g 10 $ - b4 (&?;3( a o Nigeria
E ° E -
= g ° ? Py £ = % o High-depth sequencing
C el LR o -_Bm @ ® 8 ® O . L 1 4
= 3 IS «
= E 0000
dq'_‘) v False negative 106 ° e ) ° 3
© = SNPs E
o9 1004~ o
=Z o
wn £ r 100,000 4~ c T
c o E 3
o % 10,000 e
= 10004 i ¢
o -"gu False possi;:\;,e a8 e I %’
(] S r (N °
£ g c ° ) %os;%fm =
[a s .°  ou E MRS AT L =
< E ¢ D YO 7 Bl Y
& E — s Saea (F =
= 0% oo ooaBifcely | S CTRLANEY |
E 8%
False negative 10E o ° Dog\oac h
SNPs £
100 o

10% 20% 30% 40% 50% 60% 70%

methodologies tested

80% 90% 100% 10%
Percentage of MTB reads

Fig. 5 Differences in SNP calling in samples of the MTB dataset between a standard pipeline and the two contamination-control

20% 30% 40% 50% 60% 70% 80% 90% 100%

similarity filter removed on average 129.1 vSNPs (me-
dian = 20) and 6.1 fSNPs (median = 5) and recovered 2.6
vSNPs (median = 2) and 2.3 fSNPs (median = 2).

Sequencing directly from clinical specimens is subject to
greater alterations in variant analysis (Fig. 5) since this strat-
egy usually yields highly contaminated samples and limited
sequencing depth. In these cases, the SNP frequencies are
more sensitive to contaminant reads since only few reads
can be responsible for a shift in the frequencies that make a
position to fall below or above the required thresholds to
call a variant (Additional file 7: Figure S1). However, a high
sequencing depth does not guarantee an analysis safe of er-
rors either. This effect can be observed in the high-depth
sequencing study, a work based on low-frequency variant
analysis from samples with more than 1000x sequencing
depth. In this study, 7 samples out of 63 showed changes in
the SNP analysis after applying the taxonomic filter. On
average, 16.9 false positive VSNPs were removed (ranging
from 2 to 42 vSNPs), and for 1 sample, 3 false negative
fSNPs and 2 vSNPs were recovered. Remarkably, no strong
contamination was detected for these samples (with MTB
ranging from 96.86 to 99.84%). For instance, in a sample
with as much as 99.84% of MTB, the taxonomic filter re-
moved 13 false positive vSNPs in 12 different genes across
the genome.

Discussion
In this work, we analyze more than 4000 WGS samples
from 14 different pathogenic bacterial species to evaluate

the extent and impact of contamination in bacterial
WGS studies. We show that presence of sequencing
reads from contaminating organisms is frequent, even
when sequencing is performed from pure culture isolates
(Fig. 1). Beyond inappropriate laboratory practices, there
are several potential sources of contamination which de-
pend on different factors such as the type of sample
processed and its origin, or the protocols followed for
culture, DNA extraction, and sequencing. For instance,
Salter et al. demonstrated that contaminating DNA in la-
boratory reagents can critically impact microbiome ana-
lysis from low-biomass samples [19]. Culture-free
sequencing approaches for unculturable or slow-growing
pathogens, such as T. pallidum or MTB, entail the pres-
ence of high amounts of contaminating DNA from the
host organism. Other sources unrelated to sample hand-
ling are also possible. For example, the S. aureus samples
supposed to be MTB from the Nigeria study are most
likely an error during data submission to the genomic
repository. Regardless of the source of contamination,
the shared consequence is the presence of non-target
reads in the sequencing files that might impact the re-
sults of genomic analysis.

We evaluated such an impact and demonstrate that
contaminant reads suppose a pitfall in re-sequencing
pipelines, since they are unexpectedly frequent and can
have major implications in variant analysis, which is the
foundation of many genomic analyses. As expected, con-
tamination is a major issue when sequencing DNA that
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has not been extracted from pure cultures or single col-
onies, as is often the case for clinical specimens. How-
ever, we show that experiments sequencing from pure
cultures are not necessarily free of contamination, and
that using standard mapping quality parameters is not
enough to deal with contaminant reads. Therefore, bio-
informatic pipelines assuming that all the reads success-
fully mapped are from the target organism might lead to
a biased variant analysis. We show that the errors intro-
duced by contamination are very variable among differ-
ent studies, (Table 2; Fig. 3; Fig. 5), which differ not only
on the organism being sequenced but also on the sam-
pling source and laboratory protocols. For example, in
the T. pallidum study, where samples are heavily con-
taminated, very few differences are observed in the vari-
ant analysis. This stems from the fact that most of the
contamination in this study comes from human reads,
unlikely to map to the T. pallidum genome. On the con-
trary, for the L. pneumophila dataset, a sample with
96.27% of Legionella had 79 vSNPs and 5 fSNPs re-
moved, and 17 fSNPs recovered after filtering a 3% of
unclassified reads. According to the NCBI blast, a frac-
tion of those reads was from Legionella spiritensis. The
downstream relevance, however, is not directly propor-
tional to the absolute number of erroneous SNPs and
frequencies, but to what that errors mean for each or-
ganism. For example, for organisms with low genetic di-
versities, like in the case of MTB, a change in few fSNPs
can have major implications in epidemiology studies
since transmission cutoffs vary between 5 and 12 fSNPs
[20]. This is also true when predicting drug resistance,
particularly considering that many drug resistance-
associated genes are conserved among bacteria and
hence more prone to recruit contaminant mappings.
Likewise, the higher impact observed for vSNPs, both in
terms of absolute numbers and frequencies, can have
large implications in those applications based on the
analysis of the allele frequency spectrum, for example,
when studying complex traits in bacterial populations.
For instance, vSNPs are analyzed to determine heterore-
sistance to antibiotics [21], within host diversity of path-
ogens [22], host adaptation of bacteria [23], and even to
delineate between patient transmission of pathogens
[24]. While not specifically tested in our analysis, our re-
sults also have obvious implications in other applications
which highly depend on the variation detected (e.g.,
cgMSLT typing) or when contaminant reads are incor-
porated in de novo assemblies [18].

The main limitation of our study is that we have based
our estimations on the taxonomic classifications of Kra-
ken. However, taxonomic classifiers are known to mis-
classify a proportion of reads that are thus incorrectly
identified as contaminants. We took into account several
considerations to control for the potential biases in our

Page 11 of 15

analysis. Whereas Kraken is computationally expensive,
its performance has been demonstrated in several stud-
ies to rank among the best up to date [25-27]. Secondly,
since distinguishing between closely related species may
be difficult, to be conservative, we performed the taxo-
nomic filter at the genus level instead of species. Add-
itionally, we estimated the error introduced by Kraken in
our own setting, particularly regarding unclassified and
misclassified reads, and showed that the error rate was
very low (Additional file 1: Table S1; Additional file 2:
Table S2; Additional file 3: Table S3), in agreement with
published data. Despite these measures, we might have
under- or overestimated the impact of contaminant
reads in some cases. For example, by removing non-
target reads at the level of genus, we might have under-
estimated the impact of potential contamination, given
that contaminant reads from the same genus (but differ-
ent species) are more likely to map to the reference gen-
ome and thus impact variant analysis. Our analysis also
showed that Kraken might have overestimated the num-
ber of contaminant reads in some datasets due to, for
example, exchange of genetic material between species
(K. pneumoniae, S. aureus, S. enterica) or the absence of
enough genetic diversity in the database.

Altogether our results show that contaminant reads in
re-sequencing experiments are frequent and can greatly
bias variant analysis at a genomic level. However, based
on our results, it is clear that different settings will re-
quire different contamination-control strategies that take
into account the genetic particularities of each organism.
Whereas the taxonomic filter we propose seems to per-
form well in many situations, in the case of highly di-
verse bacteria, other approaches might be better suited.
For instance, coverage information and k-mer frequen-
cies [28, 29] can be used to distinguish between target
and contaminant reads when these are present in signifi-
cantly different proportions. Similarly, detecting cross-
contamination with strains of the same species is chal-
lenging and requires specific strategies. These strategies
can include detection of vSNPs at lineage-defining posi-
tions, calculation of biased allele ratios [30], or Bayesian
statistical modeling [31].

Importantly, different implementations of such strat-
egies should be extensively evaluated and validated.
Here, we provide such an evaluation for the pathogen
our laboratory is focused on: M. tuberculosis. In addition
to the taxonomic filter, we evaluated a second contamin-
ant filtering approach based on the similarity of the read
alignments. In this case, the Kraken-based taxonomic fil-
ter clearly outperformed the similarity filter what is
probably true for other organisms with representative
genomes in the databases and moderate genetic diver-
sities (Fig. 4, Fig. 5, Additional file 1: Tables S8 and S9,
and Figure S1).
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The analyses for MTB reveal a large number of vari-
ants introduced by contaminants with downstream con-
sequences when calling vSNPs and fSNPs as well as the
wild type. Remarkably, we show that contamination can
introduce substantial errors in samples that could be
considered “pure” or with high sequencing depths, im-
plying that contamination-aware pipelines will be needed
in any circumstance.

Contamination has been recognized as a major source
of error in genome assemblies and other fields like meta-
genomics [16, 19]. However, the role of contamination in
re-sequencing pipelines is usually neglected. Whereas
some groups are already aware of this issue, most bacterial
re-sequencing pipelines are still lacking contamination-
control strategies or, if any, these are rarely detailed in
published works. Based on our findings, we call for the in-
clusion of contamination control as a basic quality param-
eter and the use of validated contamination-aware
pipelines in any bacterial WGS study. These analyses pipe-
lines should be capable of, at least, reporting the contami-
nated samples and their contaminants to be later
interpreted by the researcher. Ideally, they should be able
to produce accurate results regardless of the extent of
contamination of a sample. Pipelines capable of accurately
analyzing contaminated WGS data will soon become es-
sential, since the improvement of laboratory protocols al-
lows the sequencing of an increasing number of bacterial
species directly from clinical specimens [32, 33]. In this
work, we provide a highly accurate contamination-aware
pipeline for MTB WGS analysis that will be extremely
helpful in the upcoming studies and clinical applications
sequencing MTB directly from respiratory samples.

Material and methods

Datasets analyzed from bacterial WGS studies

In order to detect contamination through different studies
and evaluate its impact in bacterial WGS experiments, we
analyzed WGS runs from 20 different studies. We consid-
ered studies that have been published recently and for which
[llumina sequencing reads were already available. The data-
sets comprised 8 MTB studies and 12 studies of other 13
relevant pathogenic species. Nineteen of these datasets were
publicly available beforehand [34-52]. To include a dataset
generated in our laboratory, we sequenced 138 MTB sam-
ples from Mozambique in the Illumina MiSeq platform. A
total of 4194 Illumina runs were analyzed, comprising 1553
MTB samples (MTB dataset) and 2641 samples from the
rest of organisms (bacterial dataset) (Table 1).

Whole-genome sequencing of MTB samples from
Mozambique

DNA extractions were performed in heat-inactivated
samples of MTB Lowenstein-Jensen cultures with an au-
tomated DNA extraction platform (NucliSENS EasyMag;
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bioMérieux). Sequencing libraries were prepared with
Nextera XT DNA Library Preparation Kit v3 (Illumina,
San Diego, CA) following the manufacturer’s instruc-
tions. Whole-genome sequencing was performed on the
Ilumina MiSeq instrument with 2X300bp paired-end
reads.

Contamination assessment using Kraken

In order to assess contamination in each dataset, se-
quencing reads were taxonomically classified using
Kraken [53] with a custom database comprising all se-
quences of bacteria, archaea, viruses, protozoa, plasmids,
and fungi in RefSeq (release 78), plus the human gen-
ome (GRCh38, Ensembl release 81). Kraken classifica-
tions and Kraken database setup were performed with
default parameters. Bracken [54] was used to estimate
the number of misclassified reads that could be reas-
signed to the target organism.

Analysis pipeline
To analyze WGS data, we used a general analysis pipe-
line for read mapping and variant calling. In summary,
bases with an average quality below 25 in a 20-bp win-
dow were trimmed and reads shorter than 50 bp were
filtered. Sequences were then mapped to the reference
genome of each organism using bwa-mem [55]. We used
as reference genomes those used by the authors in their
respective manuscripts when specified and otherwise the
representative genome of RefSeq (Additional file 12:
Table S10). For MTB samples, we used the genome of
the inferred most recent common ancestor of the Myco-
bacterium tuberculosis complex. Alignments with map-
ping qualities (MAPQ) below 60 were removed. Variants
were then called and filtered using two different set of
parameters to call fixed SNPs (fSNPs) and variable SNPs
(vSNPs). The cutoffs to call fSNPs were minimum depth
of 20 reads, with the variant observed in at least 20
reads; average base quality of 25; p value cutoff of 0.01,
observed in both strands; and minimum frequency of
90%. The cutoffs to call vSNPs were minimum depth of
10 reads, with the variant observed in at least 6 reads;
average base quality of 25; p value cutoff of 0.01, ob-
served in both strands; and minimum frequency of 10%.
We also removed SNPs near indels in a window of 4 bp.
For MTB samples, we used an additional annotation fil-
ter to remove SNPs in repetitive and mobile regions.
Additionally, to call fSNPs, we used a density filter re-
moving SNPs within high-density regions (allowing a
maximum of 3 SNPs in 10bp windows). This filter is
commonly used in MTB WGS data since it is not ex-
pected to observe many contiguous variants given the
extremely low genetic diversity of this species.

We compared this general analysis pipeline with two
approaches for contamination removal. The “taxonomic
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filter” consisted of the removal of contaminant reads
after the trimming step, prior to mapping. For MTB
samples, we removed those reads classified by Kraken as
any species other than Mycobacterium tuberculosis com-
plex. In the case of organisms other than MTB, to be
conservative, we removed the reads classified as any or-
ganism other than the target at the level of genus, keep-
ing also those sequences classified as phages of those
organisms. For MTB samples, we additionally evaluated
a method consisting in a custom similarity filter. We
tested several combinations that filtered the alignments
based on their similarity, length, and mapping quality
(Additional file 13: Figure S3). The similarity filter finally
consisted in the removal of alignments with length, iden-
tity, and quality below 40 bp, 97%, and 60, respectively.
We only considered for analysis samples with more
than the 50% of the target organism and with a median
sequencing depth of at least 40x. In the case of studies
performing WGS directly in clinical samples (sputum-
capture sequencing, sputum-direct sequencing, and
Treponema studies), we analyzed those samples that had
at least 20x of median coverage, since this type of se-
quencing is expected to sequence samples with lower
coverages and high proportions of non-target reads.

Generation of simulated datasets

We used the reference genome of each organism to gen-
erate simulated sequencing samples using ART [56]. We
generated paired-end sequencing data of 250 and 100 bp
using the error profiles of Illumina MiSeq (--ss MSv3)
and [lumina HiSeq (-ss HS20) platforms, respectively.
This allowed us to estimate the proportion of reads that
cannot be classified by Kraken up to level of genus and
species for each organism. The same approach was used
to generate sequencing runs of different bacterial con-
taminants commonly observed in MTB WGS samples
(see below). The command line used to generate the
sample was as follows: art_illumina -ss [MSv3 | HS20]
--rcount 2000000 -1 250 --mflen 800 --paired --minQ 25
-5 300

Evaluation of the impact of contamination and
methodology validation
We generated simulated sequencing of the MTB refer-
ence genome, the human genome (GRCh38, Ensembl re-
lease 81), and 44 different non-MTB bacterial species
(Additional file 14: Table S11). This allowed us to per-
form two kinds of experiments (mapping of non-MTB
reads to the MTB reference genome and analysis of
mock contaminated samples) as explained further below.
In order to inspect which regions of the reference gen-
ome are susceptible of recruiting non-MTB reads, we
mapped the simulated reads and then measured the
mean sequencing depth across the genome in 1000 bp
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windows. To assess whether false positive SNPs and
drug resistance predictions are produced by these non-
MTB mappings, we generated mock contaminated sam-
ples by mixing sequencing reads of the reference gen-
ome with different proportions (5%, 15%, 30%, and 70%)
of other organisms corresponding to 12 common con-
taminants identified in the MTB dataset. Therefore, any
SNP identified when analyzing these samples would be a
false positive, attributable to contamination.

In addition, we mapped these mock samples to a
modified version of the reference genome where we in-
troduced random mutations each 100bp, and all the
drug resistance conferring mutations described as “high
confidence” in the PhyResSE catalog [57]. Therefore, any
of the introduced SNPs that were undetected when ana-
lyzing these samples would be false negatives attribut-
able to contamination.
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