Villemin et al. BMC Biology (2021) 19:70

https://doi.org/10.1186/512915-021-01002-7 BMC Bio | Ogy

®

Check for
updates

A cell-to-patient machine learning transfer
approach uncovers novel basal-like breast
cancer prognostic markers amongst
alternative splice variants

Jean-Philippe Villemin, Claudio Lorenzi, Marie-Sarah Cabrillac, Andrew Oldfield, William Ritchie” and
Reini F. Luco

Abstract

Background: Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are
misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression
profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and
sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more
subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific
biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in
breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice
variants to subclassify highly aggressive breast cancers.

Results: Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell
lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in
the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-
mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-
supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into
patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of
25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to
identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing
signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive
phenotype for this basal B-like breast cancer subtype.
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Conclusions: Using a novel machine learning approach, we have identified an EMT-related splicing signature capable
of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-
concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for
further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this
transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the
further identification of specific biomarkers for drug resistance and cancer relapse.
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Background

Breast cancer is a heterogenous disease with multiple mo-
lecular drivers and disrupted regulatory pathways [1, 2].
The development of large-scale genomics and transcripto-
mics methods has increased the capacity to identify
clinically-relevant tumour subtypes with distinct molecu-
lar signatures. These can be used for a better choice of
treatment and/or prediction of potential metastasis which
can improve survival outcome [3, 4]. However, patients
are still facing a high percentage of misdiagnosis in which
undetected early metastasis and/or inappropriate choice
of treatment can lead to deadly complications with the use
of unnecessary severe chemotherapies or the apparition of
drug resistance and subsequent tumour relapse [5]. Cur-
rently, breast cancer is classified into five major categories
(normal-like, luminal A, luminal B, Her2-positive and
basal-like) based on expression of three receptors:
oestrogen and progesterone hormonal receptors (ER and
PR) and the epidermal growth factor receptor ERBB2
(Her2). Basal-like are the most aggressive, and difficult to
treat, type of breast cancer tumour. They are usually nega-
tive for the three receptors, and thus called triple negative
breast cancer (TNBC), which represents 10-20% of all
breast cancers. These tumours are usually found in youn-
ger patients with a larger size and higher probability of
lymph node infiltration and metastasis [2, 6]. Furthermore,
the absence of all three receptors reduces the number of
targeted therapeutic strategies to be used, leaving nonspe-
cific chemotherapy as the standard treatment of choice,
which soon leads to dose-limiting side-effects, resistance
to treatment and finally clinical relapse in less than 5 years
[6]. A better understanding of the molecular differences in
between these tumour categories will improve the choice
of treatment and detection of early metastasis, which will
significantly impact patient’s outcome. There have been
many attempts to identify novel therapeutic targets and/or
prognostic biomarkers to better subclassify breast cancer
tumours [7]. Over 170 independent breast cancer suscep-
tibility genomic variants have been identified. Many of
which have been associated with a specific tumour cat-
egory, such as ER positiveness or Her2 amplification.
However, no clear subcategories exist despite tumour

heterogeneity and differences in clinical response to treat-
ment and tumour relapse within the same category [8—
10]. Interestingly, alternative splicing is an emerging
source of new biomarkers and therapeutic targets in can-
cer [11-15].

The alternative processing of mRNA precursors enables
one gene to produce multiple protein isoforms with differ-
ent functions, increasing protein diversity and the capacity
of a cell to adapt to new environments. An increasing
number of splice variants, and their respective splicing
regulators, have been shown to confer a selective advan-
tage to tumour cells. For instance, the splicing regulators
RBMS5, 6 and 10 favour tumour cell proliferation and col-
ony formation by regulating the alternative splicing of the
membrane-bound protein NUMB [16]. Post-translational
activation of the splicing factor SRSF1 (also known as
ASF/SF2) confers resistance to apoptosis by inducing in-
clusion of the anti-apoptotic splice variant in a network of
functionally related genes, such as Bcl-X and MclI [17].
Regulation of VEGF splicing is detrimental for stimulation
of angiogenesis [18]. A change in the alternative splicing
of the pyruvate kinase pre-mRNA can switch tumour cells
metabolism to adapt to the increased proliferation [19,
20]. Finally, a list of well-known alternatively spliced vari-
ants related to cell adhesion (CTNND1, CD44) and cyto-
skeleton organisation (ENAH, FLNB) is responsible for
the acquisition of migratory and invasive phenotypes ne-
cessary for distal metastasis [13, 21-24]. The existence of
functionally relevant cancer-specific isoforms is therefore
a promising new source of highly specific and less toxic
therapeutic targets for the development of isoform-
specific antibodies and/or splice-switching antisense oligo-
nucleotides [25, 26].

By taking advantage of an extensive transcriptomics and
anti-tumour compound screening information publicly
available in cancer cell lines from the Cancer Cell Line
Encyclopedia (CCLE) [27], we identified a splicing signa-
ture that can stratify basal breast cancer cell lines into two
well-known subtypes, basal A and basal B. In contrast to
basal-like breast cancer patients, basal breast cancer cell
lines are divided into two subgroups, basal A and basal B,
depending on the expression profile of a subset of basal
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(cytokeratins, integrins), stem cell (CD44, CD24) and mes-
enchymal markers (Vimentin, fibronectin, MSN, TGFBR2,
collagens, proteases) [28—-30]. Basal B cell lines are mostly
triple negative breast cancer cells that express classical
mesenchymal and stem cell markers characteristic of the
epithelial-to-mesenchymal transition (EMT), a biological
process in which epithelial cells acquire mesenchymal fea-
tures that are advantageous for the cancer cell, such as in-
creased cell motility to invade distal organs in metastasis,
resistance to apoptosis, refractory responses to chemo-
therapy and immunotherapy, and acquisition of stem cell-
like properties like in cancer stem cells [31, 32]. In con-
cordance, basal B cells are morphologically less differenti-
ated, with a mesenchymal-like shape, and a more invasive
phenotype in culture assays than basal A and luminal cells
[28, 33, 34]. We aimed to transfer this basal A/basal B
splicing classification into the clinic by using a semi-
supervised machine learning approach. We successfully
classified 40% of basal-like breast cancer patients (75/188)
from the Cancer Genome Atlas (TCGA) [35] as basal B-
like based on a unique 25 spliced gene signature charac-
teristic of cells undergoing EMT. In this signature, we
found well-known markers of malignancy, such as ENAH
EMT splice variant that promotes lung metastasis [36] or
CSF1 variant which promotes macrophage infiltration and
distal metastasis [37], together with new promising spli-
cing candidates of tumour progression and invasiveness
(PLOD2, CTNND1, SPAGY). Finally, expression of this
basal B signature was sufficient to identify triple negative
breast cancer tumours with poor survival, highlighting the
prognostic value of the newly identified splicing bio-
markers to subclassify one of the most heterogenous and
difficult to treat type of breast cancer. More studies
in cell lines, particularly regarding resistance to treat-
ment and cell invasion will be essential to refine this
splicing signature in view of orienting treatment or
predicting metastasis sites.

In conclusion, by adapting a machine learning ap-
proach, we were able to transfer the molecular know-
ledge obtained in experimental cell lines to identify
novel biomarkers of poor prognosis and metastasis
amongst triple negative breast cancers in patients. Fur-
thermore, the study of the regulatory pathway involved
in this specific splicing signature pointed to RBM47 as
one of the splicing regulators responsible for the basal
B-specific splicing signature, and for which differential
expression levels also correlate with distinct prognostic
values, turning this splicing factor a promising novel
therapeutic target. Further clinical and functional valid-
ation of the 25 splicing events proposed in our basal B-
specific splicing signature will open new perspectives in
the understanding of triple negative breast cancers and
the improvement of currently available therapeutic strat-
egies and survival outcome.
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Results

A distinctive basal B-like breast cancer splicing signature
Data mining of large-scale genomics and transcriptomics
datasets in breast cancer cell lines are a promising
source of novel biomarker and therapeutic targets [23,
38, 39]. We sought to leverage the wealth of transcripto-
mics and functional data available in cancer cell lines to
better understand different profiles of breast cancer.
Hierarchical clustering of changes in alternative splicing
of cassette exons and gene expression profile of 80
breast cancer cell lines from two extensive and comple-
mentary projects (Additional file 2: Table S1) revealed
basal B cell lines as a distinctive group of cells with an
expression and splicing profile significantly different
from basal A and luminal cancer cells (Additional file 1:
Fig. S1). To identify the transcriptional signature charac-
teristic of basal B cells, we repeated the hierarchical clus-
tering in just basal A and basal B cell lines to merge all
the differentially expressed and spliced transcripts re-
sponsible for the segregation of basal B cell lines (Fig. 1).
We found 635 genes and 217 spliced isoforms with sig-
nificantly different levels between basal A and basal B
cells (Fig. 1a, b). In line with published tissue-specific
and EMT transcriptomics analyses [40—42], most of the
genes differentially spliced were not affected at the ex-
pression level, suggesting that two different subsets of
genes, and thus regulatory layers, are responsible for the
basal B phenotype (Fig. 1c). Gene set enrichment ana-
lysis (GSEA) [43] between basal B and basal A cells con-
firmed the EMT and stem cell-like phenotype
characteristic of basal B cell lines (Fig. 2a, b), which was
supported with a higher CD44+/CD24—- stem cell score
(Fig. 2e) [28-30]. DAVID gene ontology analysis of
differentially expressed and spliced genes also underlined
biological terms that are hallmarks of EMT and cell in-
vasiveness, such as cell-cell junction (Fig. 2d) [44]. How-
ever differentially expressed genes were also enriched in
their own unique terms, related to extracellular vesicles/
plasma membrane organisation. Whilst differentially
spliced genes were specifically enriched in terms related
to GTPase activity, cytoskeletal protein and cadherin
binding, which reinforces the existence of two comple-
mentary regulatory pathways (Fig. 2d). Finally, another
malignant characteristic acquired by cancer cells under-
going EMT is resistance to chemotherapy, which often
leads to clinical relapse. Gene set enrichment analysis
found upregulation of genes resistant to the Epidermal
Growth Factor Receptor (EGFR) inhibitor Gefitinib
(Fig. 2¢), which is an alternative to hormonal therapy in
Her2+ breast cancer tumours, but is not efficient in
triple negative tumours [45]. Available drug assays from
the Genome Drug Sensitivity in Cancer portal (GDSC)
[46] confirmed the need of a higher concentration
(IC50) of Gefitinib, and other EGFR inhibitors (Erlotinib,
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Fig. 1 Basal cell lines are divided in two subgroups based on gene expression and splicing patterns. a Heatmap of the transcripts per million (TPM)
values of the 635 genes which differential expression can cluster breast cancer cell lines into basal A and basal B (P value < 10~ 2 by Kruskal-Wallis test).
b Heatmap of the percentage spliced-in (PSI) values of the 217 exons which differential splicing can cluster breast cancer cell lines into basal A and
basal B (P value < 10~ 2 by Kruskal-Wallis test). ¢ Venn Diagram of the genes differentially expressed and/or spliced between basal A and basal B cancer
cell lines. The overlap is not higher than expected by Fisher's exact test, two tail (p = 0.098)

Sapitinib), to have the same deleterious effect on basal B
compared to basal A cancer cells (Fig. 2f). Basal B cell
lines also showed a significant resistance to well-known
inhibitors of the cell cycle (irinotecan, taselisib, 5-

fluorouracil), drug inducers of cell death (AZD5582,
AZD5991) and other receptor tyrosine kinase inhibitors,
such as savolitinib which inhibits ¢-MET to reduce
tumour persistence and metastasis [47].
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Fig. 2 Basal B cell lines show mesenchymal, stem-like and resistance to treatment characteristics. a-¢ Gene Set Enrichment Analysis (GSEA) of differentially
expressed genes between basal A and B cell lines for three different signatures: Mammary Stem Cell, EMT and Resistance to Gefitinib. Up-regulated genes in all
signatures are enriched in basal B cell lines (FDR < 0.25). d Gene ontology analysis bar graphs for differentially expressed (left) and differentially spliced (right)
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values in basal A and B cell lines upon treatment with different drugs from the Genomics of Drug Sensitivity in Cancer 2 (GDS2) dataset. P values are calculated
using the Wilcoxon rank-sum test
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In summary, we have identified two distinct transcrip-
tional and splicing signatures, specific of basal B cell
lines, that underline an EMT phenotype with molecular
characteristics related to cell invasion, stemness and re-
sistance to chemotherapy. We next sought to investigate
whether this basal B-specific splicing signature could
also be used to subclassify basal-like/triple negative
breast cancer patients.

A semi-supervised machine learning approach to
subclassify basal-like breast cancer patients

As a first and simple approach, we performed a hier-
archical clustering followed by a k-means clustering (k =
2 for “A-like” and “B-like”) of the 188 patients, anno-
tated as basal-like in The Cancer Genome Atlas Program
(TCGA), using the 635 differentially expressed or 217
differentially spliced cassette exons characteristic of basal
B cell lines (Additional file 1: Fig. S2a,b). Using such
method, patients were forced to classify in one of the
two groups based on differences in gene expression or
splicing patterns. Since basal B cell lines show more in-
vasive, cancer stem cell-like phenotypes, we assessed
whether these aggressive characteristics were translated
to the “B-like” patient group through differences in dis-
ease specific survival (DSS) rates. Kaplan-Meier analysis
of DSS did not show significant differences between the
two subgroups of basal-like patients (Additional file 1:
Fig. S2¢,d). However, we did observe a tendency for “B-
like” patients to have a poor survival compared to “A-
like” when just looking at differences in splicing,
contrary to expression levels (p value =0.09 vs 0.57, re-
spectively—Additional file 1: Fig. S2¢,d).

In fact, it was not surprising that the transcript-level
and splicing signatures did not translate directly from
simplistic cell culture models to much more complex
tumour patients with specific cell micro-environments
and differences in cell heterogeneity. However, because
the patients showed clear “A-like” and “B-like” signa-
tures, we sought to develop a machine learning approach
that would allow us to transfer part of the molecular and
phenotypic observations found in cell-lines to patient
data. Transfer learning is a recent research methodology
that focuses on storing the knowledge gained when solv-
ing a problem, to apply it to a different, but related, one.
Because we wanted to ensure that the newly developed
cell-to-patient transfer learning algorithm could create
interpretable models, we used a decision tree-based ap-
proach called Random Forest. In this cell-to-patient ran-
dom forest classification method, we started by
classifying basal A or basal B cell-lines based on their
splicing and/or expression profile (Fig. 3a and Add-
itional file 1: Figs. S3-S4). Then, once the model was
trained on cell-lines, we would start integrating patient
data gradually into the model. This was done iteratively
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by integrating at each round of classification the patients
best predicted to be basal A-like and basal B-like, so
their added informative value could be used back to
train the system and improve the next round of classifi-
cation (Fig. 3a). With this semi-supervised approach, the
probability of assigning a patient to a specific subgroup
evolves and improves at each round based on the up-
dated information obtained from the best predicted pa-
tients, reaching at the end a stable population with the
labels ‘basal A-like’, ‘basal B-like’ or ‘unclassified’ deter-
mined by the algorithm after 10-12 rounds (Fig. 3b,c
and Additional file 1: Figs. S3b,c-S4b,c). Thanks to the
gradual addition of patients at each round of training,
there is a progressive increase, or decrease, in the feature
importance of the splicing variants used to classify pa-
tients (Fig. 3d and Additional file 1: Figs. S3d-S4d). Out
of the 188 basal-like patients, 75 were classified as basal
B-like, 88 as basal A-like and 25 could not be classified
based on their splicing signature. Using only expression
levels, there was a slight biased towards the basal A-like
phenotype, with 56 patients classified as basal B-like, 122
as basal A-like and 10 unclassified (Additional file 1: Fig.
S3b-c). Combining differentially spliced and expressed
features seemed to be the most performant classifier
with 84 patients as basal B-like, 100 as basal A-like and
just 4 unclassified (Additional file 1: Fig. S4b-c). Taken
together, depending on the features used (splicing pat-
terns, expression levels or both), patients were differently
classified in basal A-like or basal B-like.

An EMT-related basal B-specific splicing signature that
marks poor prognosis

To address which classifier translates the best to patients
the invasive, EMT-like and drug-resistant basal B pheno-
type found in cancer cells, we calculated the 5-year sur-
vival rate for each group of basal A-like and basal B-like
issued from the three types of classification. Only basal
B-like patients classified based on splicing levels had a
poor prognosis compared to basal A-like patients (log-
rank test p =0.0067, HR = 4.87; 95% IC: [1.37-17.28] in
Kaplan-Meier analysis and univariate Cox regression)
(Fig. 3e). Basal B-like patients subclassified based on
gene expression levels, or gene expression and splicing
features, did not show significant differences in disease
survival rate (Additional file 1: Fig.S3e-4e), suggesting
that splicing biomarkers might be more informative to
further subclassify basal-like patients based on prognosis.
We thus decided to focus on the role of alternative spli-
cing in identify triple negative basal-like breast cancer
with poor prognosis.

To extract the most informative splicing features from
the cell-to-patient transfer learning classifier, we used
the Boruta feature selection method [48]. This allowed
us to select the key splicing events responsible for the
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p value (P) discriminating the two groups are shown
A

Fig. 3 A Random Forest Classifier using knowledge transfer from cell lines to patients. a. Workflow scheme: a random forest (RF) model is built
using cell lines labelled as basal B (red) or basal A (blue). It is then run iteratively, integrating at each round patients whose probability to be
classified in one group or the other is amongst the ten highest. The classifier stops when no more patients can be classified. b Probability of a
basal-like patient to be classified as basal B-like, basal A-like or unclassified over each round. Yellow lines indicate thresholds used to classify a
patient as basal B-like (> 0.6) or basal A-like (< 0.4). ¢ Bar plot of the number of patients added at each round. Patients with the highest
probability to be classified are sequentially incorporated to the input cell lines in order to create a new classifier for the next round of integration.
d Evolution of the feature importance at each round of iterative training. In red are the 10 splicing variants (features) most informative at the
beginning of the transfer learning process. In blue are the 10 splicing variants most informative at the end. Only two exons remained informative
from the beginning to the end (in blue and red). The name of the top 10 final most informative spliced genes are written in blue and in
sequential order. e Kaplan-Meier plots of disease specific survival in basal A-like (blue) and basal B-like patients (red). Hazard ratio (HR) and logrank

basal A/B classification without the need to predefine ar-
bitrary thresholds (Fig. 4a). Out of the 217 differentially
spliced exons between basal A/B cell lines, just 25 were
needed to subclassify breast cancer patients in basal A
or basal B-like tumours (Fig. 4a and Additional file 3:
Table S2). Sashimi plots representing the splicing pat-
terns of some of these basal B-specific splicing events,
such as the well-known splicing biomarker of cancer
metastasis ENAH [26] and the newly identified splicing
biomarkers PLOD2, SPAG9 and KIF13a, validated the
observed changes in splicing between basal A and basal
B-like patients (Fig. 4b-c and Additional file 1: Fig. S5a-
b). Moreover, the changes in percentage of spliced-in
(PSI) of the 25 basal B-specific splicing events between
the two subtypes of basal-like patients correlated with
the observed splicing changes between basal A/B cell
lines (Additional file 1: Fig. S5c-d), further supporting
the transfer of knowledge from the laboratory to the
clinic. Finally, in the absence of publicly available RNA-
seq data on a second cohort of basal-like breast cancer
patients, we took advantage of three independent se-
quencing projects on breast cancer cell lines, different
from the ones used for the training of the semi-
supervised classifier (Additional file 2: Table S1). Distri-
bution of 52 independent breast cancer cell lines showed
a 93% accuracy in the spatial segregation (t-SNE) of
basal A from basal B cells based on the splicing pattern
of the 25 newly identified splicing events (Fig. 4d). Just
three cell lines were misclassified as basal A (HCC38,
SUM102 and MDA-MB-157). It is worth noting that
one of these, HCC38, was also labelled as basal A in the
DepMap portal (www.depmap.org), which validated our
methodology and the specificity of the splicing signature
towards a basal B-like phenotype.

Consistent with basal B cell lines being more mesen-
chymal, differences in the alternative splicing of these 25
basal B-specific splicing events in four different cellular
models of EMT, coming from different cell types and
methods of EMT induction [49-52], successfully clus-
tered epithelial cells from mesenchymal with a pattern
of splicing equivalent to basal A and basal B-like pa-
tients, respectively (Fig. 4e). Of note, another 25 gene-

based EMT-like splicing signature characteristic of lu-
minal breast cancer tumours has also been identified
capable of subclassifying mesenchymal-like breast cancer
tumours with poor prognosis [38]. Consistent with a
more luminal-specific signature, despite both marking
EMT phenotypes, not more than six splicing events were
found in common between the two splicing signatures
(ATP5C1, CTNNDI1, KIF13a, PLOD2, SEC3la and
SPAGY), which further supports the specificity of our
newly identified splicing signature for basal-like triple
negative breast cancer. Finally, using one of the first
established molecular subtypes of triple negative breast
cancer tumours based on gene expression, which is the
Lehman classification [53], we found that basal B-like
patients are mostly found in the categories associated
with mesenchymal stem-like (MSL) and immunomodu-
latory (IM) subtypes (Fig. 5a), which goes in line with a
gene set enrichment of terms related to inflammatory re-
sponses and hallmark of EMT (Fig. 5b).

When looking at the expression of well-known basal
and EMT biomarkers in the two subpopulations of basal
A/B-like patients, we found that basal A-like patients ex-
press classical basal/epithelial markers, such as E-
cadherin, EPCAM and cytokeratin KRT5/KRT6/KRT14,
together with ERBB3 and TOB1 which are markers of
more differentiated, non-invasive cells [2]. On the other
hand, basal B-like patients express classical EMT/mesen-
chymal markers such as Fibronectin, the EMT inducers
Twist and Slug, and the Zinc-finger transcriptional regula-
tors Zebl and Zeb2 which have recently been shown to
confer stemness properties that can increase the plasticity
and invasive capacity of the tumour cells [54] (Fig. 5¢c, d).
In line with a more aggressive, invasive phenotype, basal
B-like patients express cytoskeletal (MSN, FN1) and extra-
cellular matrix signalling proteins (TGFB1, TGFBR2,
FBN1, AXL), collagens (COL3A1, COL6A3) and proteases
(MMP2, TIMP1, CTSC, PLAU, SERPINE1/2, PLAT),
which are necessary for cell’s migration and dissemination
to distal organs during metastasis [2]. Finally, basal B-like
patients overexpress a recently identified new marker of
metastasis-initiating cells, the fatty acid receptor CD36
[20]. Clinically, the presence of CD36-positive cells has
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Fig. 4 The basal B-specific splicing signature is associated to EMT features. a Heatmap of the Percentage Spliced-In (PSI) values of the 25 cassette
exons most informative to classify TCGA basal-like patients into basal B-like (red) or basal A-like (blue). Claudin low tumours are highlighted in
green. b, ¢ Sashimi plots displaying ENAH and PLOD?2 splicing patterns in randomly selected patients classified as basal A-like and basal B-like.

d Changes in alternative splicing of these 25 basal B-specific splicing events is sufficient to properly cluster 55 basal breast cancer cell lines from 3
unrelated sequencing projects into basal B and basal A using t-SNE. Of note, three basal B cell lines, HCC38, MDA-MB-157 and SUM102 were
misclassified as Basal A cell lines (red dots). Although HCC38 has also been classified as Basal A in the DepMap portal (www.depmap.org).

e Heatmap of the PSI values of the 25 basal B-specific splicing signature in public RNA-seq datasets from four different EMT projects. Basal B-like
events have the same splicing patterns as EMT-induced cells
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been correlated with a lower survival rate in many carcin-
omas, including breast cancer, and inhibition of CD36 im-
pairs metastasis in breast cancer-derived tumours, turning
this receptor into an important biomarker of tumour cell
dissemination and a potential new target to reduce cell in-
vasion. The fact that basal B-like tumour cells co-express
this metastasis-initiating marker further strengthens the
aggressive nature of this tumour subclass and the clinical
relevance of the basal B-specific splicing signature in
tumour progression and relapse.

Overall, we have identified a novel splicing signature,
specific of triple negative breast cancer tumours, that
marks patients with the poorest prognosis. This basal B-
like splicing signature is responsible of a stem-like, EMT
phenotype that favours tumour growth, invasion of distal
organs and increased drug resistance, which eventually
leads to tumour relapse and metastasis. Interestingly,
some of the genes differentially expressed in these basal
B-like patients are well-known markers of metastasis-
initiating cells, such as the alternatively spliced CTNN
D1 and PLOD2 genes or the fatty acid receptor CD36,
turning these biomarkers into promising new targets for
innovative therapies, such as the use of splicing specific
antibodies [6, 26].

A metastasis-related common regulatory pathway for the
basal B-specific splicing signature

Hierarchical clustering of basal A and B cell lines based
on the differential expression of RNA-binding proteins
highlighted six RNA regulators, ESRP1, ESRP2, RBM47,
TMEM63A, KRR1 and RBMS3 (Fig. 6a) (Kruskal-Wallis
p <107°). Interestingly, ESRP1/2 and RBM47 are signifi-
cantly less expressed in basal B-like than basal A-like pa-
tients (Fig. 6b), consistently with the known inhibitory
effect of these three splicing regulators in EMT progres-
sion and metastasis [52, 55, 56]. Available transcripto-
mics data in ESRP1/2 and RBM47 lung carcinoma NCI-
H358-depleted cells [52] and RBM47 overexpressing
breast cancer metastatic MDA-MB-231 cells [57]
showed that 19 of the 25 splicing events responsible for
the newly identified basal B-specific splicing signature
could potentially be regulated by ESRP1/2 and/or
RBM47 in breast cancer cells (Fig. 6¢, d). Importantly, in
the cell types analysed, ESRP1/2 and RBM47 induce the
epithelial, basal A-like splicing phenotype, suggesting a
potential tumour suppressor effect for these splicing reg-
ulators (Figs. 6e—g, 4e and Additional file 1: S5c-d). Con-
sistently with this observation, low expression of RBM47
in basal-like breast cancer patients was associated with
poor overall survival (log-rank test p =0.031, HR = 3.36,
95% 1C:[1.05-10.79] Fig. 6h, i), which supports previous
experimental evidence of a role for RBM47 in supressing
breast cancer metastasis and progression [56]. In fact,
RBM47-dependent basal B-specific splicing events were
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found to be functionally interconnected by physical and/
or genetic interactions, which points to the existence of
a common basal B-specific regulatory network associated
with tumour malignancy (Additional file 1: Fig. S6a). In
support, most of RBM47-dependent basal B-specific spli-
cing events play well-known roles in cell-cell adhesion
(CTNND1) [58], cytoskeleton organisation (ENAH, SLK,
ENBP1) [59, 60], endocytosis (KIF13A, DNM2) [61] and
association with the extracellular matrix (PLOD2) [62],
which are all key processes for gaining the cell motility
and invasiveness necessary in tumour metastasis (54—
58). Of note, expression of just one of these basal B-
specific splice variants, which are CTNND1, ENAH and
PLOD?2, is sufficient to lower the disease-specific survival
rate of basal B-like breast cancer patients compared to
basal A-like (Additional file 1: Fig. S6b-g). These splicing
events could turn into promising new therapeutic strat-
egies aiming at specific key regulatory genes instead of a
pleiotropic splicing regulator that could have unsus-
pected secondary effects.

In summary, by taking advantage of extensive large-
scale transcriptomics data from breast cancer cell lines
and patients, we identified the first splicing signature
capable of subclassifying basal-like tumours based on
their aggressiveness and drug resistance. Importantly,
novel splicing biomarkers of poor prognosis were identi-
fied that should be further studied in more functional
assays to test their capacity to inhibit tumour invasion
and metastasis. Results from these assays will open new
perspectives in the development of improved target ther-
apies and more accurate diagnostic profiles to identify
the basal-like triple negative breast cancer patients with
a higher chance of relapse.

Discussion

Cancer-specific dysregulation of alternative splicing is a
promising source of cancer biomarkers and therapeutic
targets to improve diagnostics and thus overall survival
rate [63]. An increasing number of mutations at core
spliceosome components, such as S3FB1 and U2AFI, or
upregulation of specific splicing factors, such as SRSF1
and other members of the SR protein family, which are
now considered oncogenes, have been intimately linked
to tumour progression and malignancy [64]. Further-
more, an increasing number of alternatively spliced
events, like CD44, ENAH, CTNND1 and FLNB, have
been shown to impact cell invasion and metastasis on
their own, making them promising new targets for more
specific therapeutic strategies compared to the inhibition
of splicing regulators [22, 23, 65, 66]. Effectively, splicing
regulators are not only responsible for the regulation of
splicing of a subset of genes, but they are also respon-
sible for other RNA related functions such as translation,
mRNA export and nonsense-mediated mRNA decay [56,
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64], which can have numerous downstream deleterious
effects when inhibited in a targeted therapy. By specific-
ally targeting a key downstream splicing event, as in
splicing-specific immunotherapy, a more cancer-specific
and direct impact on the cell phenotype might be
achieved (134, 135).

Large scale public molecular data sets on genomics
(copy number and mutation), epigenomics, transcripto-
mics, proteomics, in vitro and in vivo cell invasiveness
and response to anti-tumour compounds in a large
number of patients (11,000 patients across 33 different
tumour types from the Genome Cancer Atlas) and
human-derived cell lines (1000 cancer cell lines across
36 tumour types from the Broad Institute’s Cancer Cell
Line Encyclopedia) has become an extraordinary toolbox
to identify novel prognostic markers of early metastasis

and/or resistance to specific drugs, which are the two
major reasons for clinical relapse and low survival rate
[67-69]. Unfortunately, the translatability of these pre-
clinical findings is often limited since culture cells are
not representative of the variety of individuals nor the
biological reality of the tumour’s multicellular environ-
ment. Yet, culture procedures are improving with the
creation of organoids, and machine learning approaches
combined with large-scale data mining are bypassing
some of these important caveats. This is the case of our
cell-to-patient random forest classifier approach, in
which the addition at each round of selection of novel
informative features, based on the patients classified in
previous rounds, allows an algorithm to make use of the
information learned from cell lines. Thanks to this ap-
proach, we were able to identify the first splicing
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signature, composed of 25 alternatively spliced exons,
capable of subclassifying basal-like breast cancer patients
into two subtypes with different prognoses: basal A- and
basal B-like.

Actually, this newly identified basal B-like splicing sig-
nature underlined a stem cell-like EMT signature, with
hallmarks of cell invasiveness and drug resistance. Five
of these 25 alternatively spliced genes are well-known to
play a role in cancer (ARHGEF11, CD44, CTNNDI,
ENAH, MBNL1) [70-72]. Six have been indirectly linked
to tumour malignancy and are thus new splicing targets
to study (CAST, CSF1, PLOD2, SLK, SPAG9, TSC2) [60,
62, 73-76]. The rest are completely unknown for their
splicing role in cancer, even though changes in expres-
sion of some of them have been shown to play a role in
tumour progression, chemosensitivity and metastasis
without specifically addressing which splice variant
(ATP5C1, BNIP2, FAT1, FNBP1, SEC31A, ANXAS6,
DNM1, DNM2) [61, 77]. Of special interest are ARHG
EF11 and CTNNDI splice variants. Both proteins are in-
volved in cell-cell adhesion and the basal B-specific
splice variants promote cell migration and invasiveness
in several cancer types, such as breast cancer (13,54,74,
67). Moreover, depletion of ARHGEF11 in basal breast
cancer cells is sufficient to alter cell morphology, which
suppresses the cancer cell growth and survival in vitro
and in vivo [71]. On the other hand, the existence of an
isoform-specific antibody for CTNNDI1 pro-invasive
splice variants turns this splicing candidate as a valuable
new target to reduce tumour metastasis [78]. ENAH and
CD44 are amongst the most studied splicing events
impacting cancer and are well-known biomarkers of
poor prognosis. ENAH’s inhibition decreases metastasis
by slowing down tumour progression and reducing cell
invasion and intravasation [79-81]. Whilst the change to
basal B splicing signature of CD44, a transmembrane
protein that maintains tissue structure, is sufficient to
drive an EMT and to increase cell invasion and plasticity
by promoting stem cell characteristics [22, 82]. Interest-
ingly, MBNLLI splicing regulation has also been involved
in pluripotent stem cell differentiation [83] and cell via-
bility via inhibition of DNA damage response [84].
Promising new splice variants with a potential link with
cancer are CSF1, PLOD2, SLK, SPAGY9 and TSC2. CSF1
is a macrophage marker which splice variant could cor-
relate with infiltration of tumour-promoting macro-
phages [73, 85]. Changes in the alternative splicing of
the procollagen-lysine PLOD2, which catalyses the de-
position and cross-link of collagens in the extracellular
matrix, have been intimately linked to EMT progression
and cervical, breast, lung, colon and rectal cancer prog-
nosis [40, 86]. Its inhibition reduced proliferation, migra-
tion and invasion of cancer cells, while its
overexpression promoted cancer stem cell properties
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and resistance to drugs [62, 87]. SLK was identified as a
prognostic biomarker in several cancers and is necessary
for the induction of cell migration and invasion during
EMT [60, 72, 88]. SPAG9 is a scaffold protein that orga-
nises mitogen-activated protein kinases and has been as-
sociated with invasion in several types of tumours and
prognosis [75, 89, 90]. Finally, TSC2 basal B-specific
splicing isoform cannot be phosphorylated by AKT,
which leads to a continuously activated mTOR pathway
and oncogenic autophagy [74]. More functional studies
on the impact of each of these cassette exons splice vari-
ants in cancer will increase our knowledge on tumour
progression and metastasis with the long term goal of
improving diagnostics and treatment. Of note, other
types of splicing events, different from the studied cas-
sette exons, have also been shown to play important
roles in tumorigenesis, such as alternative splice sites
and intron retention [91-93]. It is necessary to extend
this type of approaches to all types of splicing events
and validate them using independent cohorts of patients.
The increase of accessible sequencing data in primary
tumours will thus be essential to continue with this type
of approaches.

Finally, it is interesting to note that these 25 alterna-
tively spliced exons are basically dependent on three
well-known splicing regulators, ESRP1/2 and RBM47,
which are intimately linked to EMT and metastasis.
ESRP1 is the major regulator of a newly identified
epithelial-specific splicing signature [52]. Its expression
in cancer cells promotes tumour growth and a
mesenchymal-to-epithelial transition which are essential
for the formation of new tumours at distal organs during
metastasis [94, 95]. RBM47 is a newly identified splicing
regulator of EMT that has also been associated with me-
tastasis [56, 96, 97]. Through integrative analysis of clin-
ical breast cancer gene expression datasets, cell line
models and mutation data from cancer genome rese-
quencing studies, RBM47 was identified as a suppressor
of breast cancer progression and metastasis. It was found
mutated in patients with brain metastasis and its expres-
sion was necessary to inhibit brain and lung metastatic
progression in vivo [56]. Interestingly, despite regulating
just 9/25 splicing events of the basal B-specific splicing
signature, low expression of RBM47, and not ESRPI,
correlated with a poor prognosis and lower survival rate
in basal-like breast cancer patients, which increases the
interest to design new therapies targeting this splicing
regulator.

In fact, this basal B-specific splicing signature has
highlighted a subpopulation of basal-like triple negative
breast cancer patients differentially expressing several
hallmarks of invasive, EMT-like aggressive cancer, such
as the newly identified biomarker of metastasis CD36
[20]. CD36 is a fatty receptor expressed in metastasis-
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initiating cells. Neutralising antibodies that block CD36
completely inhibited the formation of metastasis in
orthotopic mouse models of human oral cancer, and
CD36 inhibition impaired metastasis in human melan-
oma and breast cancer-derived tumours. Interestingly,
the fatty acid-binding protein 7 (FABP7) correlates with
a higher incidence of brain metastasis and lower survival
rate in breast cancer patients, which all together points
to a potential connection between fatty acid metabolism
and metastasis in our subclass of basal-like breast cancer
patients [98]. Furthermore, cells expressing our newly
identified basal B-specific splicing signature also showed
resistance to several EGFR inhibiting drugs. Therapies
targeting EGFR have variable and unpredictable re-
sponses in breast cancer [99]. By better subclassifying
sensitive from resistant tumour cells, diagnoses could be
improved, which will impact the choice of treatment and
thus the chances of tumour relapse. Extensive drug
screening of cells derived from basal B-like patients
combined with machine learning strategies to transfer
the splicing knowledge obtained will certainly improve
the identification of much more suitable treatments for
triple-negative breast cancer cells and reduce tumour re-
lapse, thus improving the survival rate.

Conclusion

Taking advantage of extensive available experimental
data in breast cancer cell lines, we performed a
knowledge transfer to clinical data to identify the first
splicing signature capable of subcategorizing the most
aggressive and difficult to treat type of breast cancer,
which is basal-like triple negative breast cancer. Based
on the pattern of splicing of 25 splicing biomarkers,
we could identify two new subclasses of clinically
relevant basal-like tumours, basal A and basal B-like,
with different sensitivity to drugs and capacity to in-
vade distal organs, which has a direct impact on
prognosis. We propose that by testing all basal-like
patients with this novel signature, patients with in-
creased chances of creating early metastasis or
tumour relapse could be closely monitored to im-
prove their chances of survival. Similarly, by correlat-
ing alternative splicing patterns with drug resistance
in cancer cell lines, or even cancer cells isolated from
patients, more specific splicing biomarkers could be
identified for the most adequate and personalised
choice of treatment, which is one of the major chal-
lenges in triple negative breast cancer. Finally, the
newly identified basal B-specific splice variants under-
line a stem cell-like, highly invasive EMT phenotype,
with increased drug resistance, that could be used as
novel therapeutic targets to reduce cancer metastasis
and relapse, opening new perspectives into the
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development of improved and more specific treat-
ments for triple negative breast cancer tumours.

Methods

RNA-seq transcriptomics analysis: gene expression and
alternative splicing

RNA-seq reads were aligned to the human genome
(GRCh38, primary assembly) using STAR [100] version
2.5.2b with standard parameters. Gencode v25 (derivated
from Ensembl v85) was used for all analysis requiring
annotation.

TPMCalculator [101] (v0.0.1) was used to compute
transcripts per million (TPM) values and obtain read
counts. Q parameter was set to 255 to keep only unique
mapped reads and ExonTPM value was used to consider
only reads mapped to exons.

Whippet-quant from Whippet software (v10.4) was
used to compute Percentage Spliced-In (PSI) values for
splicing analysis. Conjointly to Kruskal-Wallis testing,
the output from Whippet-quant was further filtered to
include only events for which the sum of inclusion
counts (IC) and skipping counts (SC) was greater or
equal to 10 for both sets of samples. Whippet-delta was
used to compute differential splicing (deltaPsi) and prob-
ability that there is some change in splicing between
conditions. Two heuristic filters were applied on splicing
events as advised in whippet documentation; |deltaPsi| >
0.1 and P(|deltaPsi| > 0.0) > = 95% were considered reli-
able parameters to filter biologically relevant AS events.

When necessary, Biobambam2 [102] (v 2.0.87) was
used to transform bam files into fastq in order to be
processed by Whippet.

Gene ontology (GO) analysis was done using the DAVID
(v 6.8) [103] functional annotation tool (https://david.
ncifcrf.gov/home.jsp) using Benjamini-Hochberg adjusted P
value cutoff of 0.05 to define a term as enriched. Go terms
enrichment was restricced to GOTERM BP-FAT,
GOTERM MEF-FAT, and GOTERM CC-FAT, KEGG_
PATHWAY and REACTOME_PATHWAY.

Gene Set Enrichment Analysis (GSEA v20.0.5) was car-
ried out on the GenePattern [104] web platform using
phenotype for permutation type and 1000 for the number
of permutations to execute. FDR cutoff of 25% for poten-
tial true positive finding was used as documented in the
GSEA user guide. Read counts were previously normalised
using DESeq2 [105] (v 1.10.1) on the same Platform.

R version 3.6.2 was used all along this study excepted
for GSEA.

All heatmaps were done online using Morpheus
https://software.broadinstitute.org/morpheus/. ~ Values
were adjusted by Z-score. (subtract mean and divide by
standard deviation). Hierarchical clustering was done in
Morpheus. We selected “Metric One minus Pearson cor-
relation” as a measure of distance between pairs of


https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://software.broadinstitute.org/morpheus/

Villemin et al. BMC Biology (2021) 19:70

observation and “Average” as the linkage method. The
clusters were done using rows and columns together.
Columns were grouped by cancer subtypes.

Sashimi plots to look cassette exons events were done
using ggsashimi tool [106].

Machine learning and feature selection

First, we construct a classifier to distinguish basal B/A
cell lines using a Random Forest with 1000 trees. After,
we applied this model to the TCGA patients. Based on
Gini impurity, we computed the class probability to pre-
dict patient labelled as B-like or A-like. Then, mixing
initial cell lines with a subset of patients classified with
the more reliability (the ones picked up with higher class
probability not passing below a threshold of P =0.6), we
create a new model. Each addition of patients is called a
round, during which a new model is created, giving new
predictions (probabilities) for the remaining patients. By
limiting the number of new patients added at each
round (10 x n_current_round) (Fig. 3c and Add-
itional file 1: Figs. S3c-4c), the model can gradually learn
from the patient data and avoid overfitting. With such
conditions, we can observe a gradual shifting in feature
importance from the ones informative to classify cell
lines to the ones informative to classify patients and cell
lines (Fig. 3d and Additional file 1: Figs. S3d-4d). The al-
gorithm stops when it can no longer incorporate the pa-
tients into one or the other group given the cutoff of
P=0.6. ML analyse was done with Python 3.7.3 based
on scikit-learn version 0.21.2.

To select the more efficient features that were able to
separate B-like from A-like patients, we used Boruta
package (0.3) implemented in python. We ran it 10
times with different random states, on the 217 features
related to splicing and kept the ones that were present
at least 7 times on 10. We ended with 25 AS features.
Considering only these 25 AS features, we applied TSNE
function from manifold package (with perplexity = 20) to
3 other datasets of basal cell lines (n = 56) to check the
features were sufficient to distinguish spatially these cell
lines according to their labels.

For the classification using only differentially expressed
genes (Additional file 1: Fig. S3) or a mix of differentially
spliced and expressed features (Additional file 1: Fig.
S4), we applied the same strategy using the information
from the 635 differentially expressed genes and the 217
differentially spliced exons scaling independently the
values from the cell lines and patients with sklearn’s
StandardScaler. We also had to reduce the probability
threshold to 0.55 in the mixed model.

Breast cancer annotation
Basal B and A cells were labelled according to literature:
Neve et al. [28], Kao et al. [33], Marcotte et al. [107], Dai
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et al. [108]. PAM50 intrinsic subtype was retrieved from
https://www.cell.com/cancer-cell/fulltext/S1535-6108(1
8)30119-3 [109].

Claudin Low status was defined with script down-
loaded from https://github.com/clfougner/ClaudinLow/
blob/master/Code/TCGA.r [110] using dataset from
http://download.cbioportal.org/brca_tcga_pan_can_
atlas_2018.tar.gz [111, 112].

Survival analysis

Log-rank tests were performed using the functions surv
and survfit from R package (survival v3.1.8). A different
survival was considered significative if log rank test p
value was < 0.05. Coxph function was also used for uni-
variate Cox regression analysis in order to compute Haz-
ard Ratio and 95% Interval of confidence. Kaplan-Meier
curve was plotted using function ggsurvplot from R
package survminer (0.4.6). Plots were truncated at 5
years, but the analyses were conducted using all of the
data. All endpoints used for survival analysis in this
study were retrieved from this study [113].

Statistics
Wilcoxon rank-sum test was used to assess statistical
significance within boxplots.

They were noted. P<0.05 (x), P<0.01 (), and P<
0.001 (x#%), P <0.0001 (wxxx).

Kruskal-Wallis test was used to keep differential fea-
tures for expression (TPM values) or splicing (PSI
values) when Luminal, basal A and B cell lines were
compared and displayed in heatmap figures. A threshold
of p value <10-5 was used to filter out potential false
positive and reduce the number of features in order to
apply hierarchical clustering. This threshold was adapted
depending on the number of samples in the comparison.
For RNA binding proteins, a higher cut off of p <10-9
was used because 5 projects were pulled together.
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