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Abstract

Background: Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather
complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle
Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis. This
process includes the integration of new neurons, as well as remodeling and elimination of larval neurons.

Results: We find that the sensory neurons of the larval antennae are reused in the adult antennae. Further, the
larval antennal lobe gets transformed into its adult version. The beetle’s larval antennal lobe is already glomerularly
structured, but its glomeruli dissolve in the last larval stage. However, the axons of the olfactory sensory neurons
remain within the antennal lobe volume. The glomeruli of the adult antennal lobe then form from mid-
metamorphosis independently of the presence of a functional OR/Orco complex but mature dependent on the
latter during a postmetamorphic phase.

Conclusions: We provide insights into the metamorphic development of the red flour beetle’s olfactory system
and compared it to data on Drosophila melanogaster, Manduca sexta, and Apis mellifera. The comparison revealed
that some aspects, such as the formation of the antennal lobe’s adult glomeruli at mid-metamorphosis, are
common, while others like the development of sensory appendages or the role of Orco seemingly differ.
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Background
In insects, olfactory perception usually starts at the che-
mosensory sensilla of the antennae and palps. The sen-
silla house the chemosensory neurons (CSNs). CSNs
divide into olfactory sensory neurons (OSNs) and gusta-
tory sensory neurons (GSNs). The OSNs present the
olfactory receptors, either odorant receptors (ORs) or
ionotropic glutamate-like receptors (IRs), in their

membranes [1–5]. Notably, most sensory information
received by the OSNs of insects stems from a functional
heteromer of specific odorant receptors (ORs) and the
odorant receptor co-receptor (Orco) [6]. Thus, elimin-
ation of Orco typically leads to a loss of most olfactory
transduction [7–12].
The OSNs then relay the olfactory information via

their axons to the respective primary processing centers.
For the antennal OSNs, these centers are the antennal
lobes, while those of the palpal OSNs differ among spe-
cies. In hemimetabolous insects, the signal from palpal
OSNs gets processed in the glomerular lobes (LGs) [13].
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The current picture of olfaction in holometabolous in-
sects states that the palpal signals are also processed in
the ALs [14–18]. However, at least in the red flour bee-
tle, the palpal OSNs do not project into the ALs but into
the paired LGs and the unpaired gnathal olfactory center
(GOC), which is a glomerularly organized neuropil
within the gnathal ganglion [5].
In holometabolous insects, the lifestyle of imagines

and larvae typically differs. Consequently, during meta-
morphosis, the olfactory system’s morphology is remod-
eled to reflect the new challenges. Already the larvae of
holometabolous insects possess olfactory appendages,
while the complexity of the primary processing centers
differs among species. The larvae of Tribolium casta-
neum possess elaborate antennae with three distin-
guishable segments (scape, pedicel, flagellum) [19, 20],
which is also described for the red flour beetle’s close
relative Tenebrio molitor [21] and some other beetles
[22–24]. The larval antennae of the hawkmoth Man-
duca sexta are similar in structure [25, 26], whereas
the larvae of flies only possess functional equivalent
dorsal organs [27, 28].
The adult antennae of the vinegar fly Drosophila mela-

nogaster [29, 30] and the hawkmoth Manduca sexta [31]
are built from imaginal disks during the pupal stage,
whereas the antennae of the hemimetabolous American
cockroach Periplaneta americana grow gradually with
every molt [32, 33]. Previous studies on appendage de-
velopment in holometabolous insects focused on species
with imaginal discs or cells. However, it is discussed that
reusing larval appendages to build their adult equivalents
is the more ancestral state [34]. This mechanism is
found during the development of the adult legs of the
red flour beetle [35], of which the antennae are serial ho-
mologs [36]. We used transgenic lines labeling CSNs
and OSNs, in combination with cell birth detection, to
visualize and follow the sensory neurons of the antennae
throughout pupal formation and metamorphosis to in-
vestigate the origin of the beetle’s adult antennae.
Previous studies showed that the organization of the lar-

val antennal lobes (ALs) differs between holometabolous
insect species. In the lepidopteran M. sexta and the hy-
menopteran Apis mellifera, the larval ALs are not glomer-
ularly organized [37, 38], whereas the larval ALs of the
mealworm beetle Tenebrio molitor are glomerularly orga-
nized [39]. Further, the larval ALs of D. melanogaster pos-
sess glomeruli but with a lower count and one-to-one
wiring between receptor neurons and glomeruli [40]. Be-
sides, in the hemimetabolous American cockroach Peri-
planeta americana, the ALs show similar numbers of
glomeruli in nymphs (larvae) and adults [41].
So far, studies indicate that OSNs are required for the

proper formation of the adult AL glomeruli. In M. sexta,
de-antennation leads to non-glomerular ALs [42].

Further, in the clonal raider ant Ooceraea biroi, de-
antennation leads to a heavily reduced glomeruli number
[43]. In the ant, the same result was achieved in Orco
knock-out experiments [44, 45]. The authors suggest
that the effect is more likely due to the loss of the major-
ity of OSNs caused by the knock-out. Knock-out studies
on the metamorphic development of the ALs of D. mel-
anogaster indicate that activity of the OR/Orco complex
is not necessary for the formation of AL glomeruli [7,
46, 47], which is also reported for the malaria mosquito
Anopheles gambiae [48].
In our study, we used (immuno)-histochemistry to

visualize the formation of the adult glomeruli of the ALs
and the GOC of the red flour beetle. We took advantage
of the strong dsRNA injection-induced systemic RNA
interference [49–51] to effectively knockdown Orco just
before the pupal formation to study the role of Orco on
the formation of the AL glomeruli in T. castaneum.
Within the ALs, the olfactory information perceived

by the OSNs is processed by a network of glomeruli
connecting local interneurons (LNs). Olfactory represen-
tations, shaped by the LNs, are mainly due to the inhibi-
tory transmitter gamma amino-butyric acid (GABA), the
excitatory transmitter acetylcholine [52–65], and numer-
ous neuropeptides [13, 66–68]. As evident from D. mela-
nogaster [60] and many other insects [13, 69], the vast
majority of LNs use the inhibitory transmitter GABA,
therefore providing a good estimate for LN numbers.
Insight into the LN development in beetles is pro-

vided for T. molitor, a close relative of T. castaneum.
In T. molitor, GABA expressing LNs (somata in the
cluster “CL7”) are present in larvae, remain present
with similar numbers with the onset of metamor-
phosis, and eventually rise in numbers throughout
metamorphosis [39]. To study the development of the
AL LNs in the red flour beetle, we labeled GABAer-
gic neurons by immunohistochemistry against glu-
tamic acid decarboxylase (GAD), which catalyzes the
decarboxylation of glutamate to GABA. We deter-
mined the number of GAD immunoreactive cells in a
lateral cluster comparable to the cluster “CL7” in T.
molitor and used reliable neurogenesis detection with
EdU [10] to determine their origins.

Results
Antennae, sensory neurons, and antennal lobe glomeruli
The T. castaneum larvae possess a pair of three-
parted antennae, each consisting of scape, pedicel,
and a reduced flagellum (Fig. 1) [19, 20]. The distal
trichoid sensillum (sTri) and the placoid sensillum or
plate organ (sPla) of the larval antenna are both la-
beled in the CSN-labeling EF-1-B-DsRed line (Fig. 2),
as well as in the OSN-labeling partial Orco-
Gal4xUAS-DsRed line (Fig. 3A).
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Late during the last larval instar and within the first
few hours of the prepupal stage, the CSNs retract their
dendrites. Further, their somata relocate into the head
capsule, where they are detectable in later prepupal
stages (Figs. 2B, C; 3B; 4). At this time, the gross morph-
ology of the adult antenna is already found beneath the
larval cuticle (Fig. 4; Additional file 1: Figure S1 A, B)—
with the labeled CSNs (Additional file 1: Figure S1 A’,
C) and OSNs (Additional file 1: Figure S1 D) located in
its tip (Fig. 4, Additional file 1: Figure S1 A’). As the par-
tial Orco-Gal4xUAS-DsRed line labels fewer neurons,
which results in a much weaker signal, and as imaging
requires scanning through two cuticles (larval and
pupal), we were not able to acquire confocal stacks of

the OSNs in prepupae suitable for volume rendering as
provided for the CSNs.
Simultaneously, OSN axons are found within the an-

tennal lobe (Fig. 4; Additional file 2: Figure S2). During
the last hours of pupal stage P0%, the gross distribution
of OSNs in the last three segments of the flagellum be-
comes readily visible (Figs. 2d and 3D, Additional file 3:
Video S1 and Additional file 4: Video S2). During the
following stages, the OSN number rises (Figs. 2E, F and
3E, F; Additional file 3: Video S1 and Additional file 4:
Video S2) and mostly resembles the adult distribution
(Figs. 2G and 3G) at about P50% (Fig. 2F). EdU injec-
tions into the prepupa with subsequent dissection at
P0% revealed that the CSNs found in the antennae of

reduced
flagellum

distal sTri

sPla

sSty

sCoe
pedicel

scape

reduced
flagellum

pedicel

scape
cuticular AF

EF1B

Fig. 1 Structure of the larval antenna. Volume rendering of a confocal image stack. Depicted in gray the cuticular autofluorescence and orange
the reporter signal in the EF-1-B-DsRed line representing CSNs. sTri – trichoid sensilla, sSty – styloconic sensilla, sPla – placoid sensilla, sCoe –
coeloconic sensilla. Scale bar 50 μm

EF1B EF1B EF1B EF1B EF1B EF1B EF1B

P20%fresh P0%late PPearly PPlate LL P50%A B C D E F adultG

Fig. 2 Development of the antennal chemosensory neurons (CSNs). Volume rendering of the reporter signal in the antenna at different
developmental stages in the EF-1-B-DsRed line. A The dashed line depicts the outline of the antenna based on the autofluorescence of the
cuticula. In the last larval instar (LL), CSNs innervate the placoid and the distal trichoid sensillum. B, C The neurons retract from the larval antenna
during the prepupa (PP), and the somas relocate into the head capsule. D With the onset of metamorphosis, CSNs are found at the distal end of
the adult antennae. E–G Their number rises until stage P50% when their gross distribution already resembles that of the adult antenna. Scale bars
A–C 25 μm; D–G 100 μm
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fresh pupae are born before pupation (Fig. 5A, B), while
EdU injections at P0% and detection at A0 revealed that
the majority of adult CSNs are born during metamor-
phosis (Fig. 5C).
In the early phase of the last instar larvae, the about

45 AL glomeruli (mean = 44.75, SD = 3.42; NALs = 12)
are defined in the f-actin and synapsin labeling (Fig. 6A-
A’’). The glomerular organization vanishes during the

late phase of last instar larvae in the f-actin and synapsin
labeling (Fig. 6B-B’’). In the prepupa up to pupal stage
P30%, a glomerular organization within the antennal
lobe is absent (Fig. 6C-C’’, D-D’’). At pupal stage P40%
(Fig. 6E-E’’), glomerulization becomes visible in the f-
actin staining, with incipient glomerulization visible in
the synapsin staining. At mid-metamorphosis (P50%;
Fig. 6F-F’’), glomerulization is obvious in the f-actin

Orco Orco Orco Orco Orco Orco Orco

fresh P0% P20%late LLBmid LLA C late P0D E F GP30% adult

Orco Orco Orco Orco Orco Orco Orco

fresh P0% P20%late LLBmid LLA C late P0D E F GP30% adult

Fig. 3 Development of the antennal olfactory sensory neurons (OSNs). Volume renderings from confocal image stacks of the reporter signal in
the antenna at different developmental stages within the Orco-GAL4xUAS-DsRed line. The dashed lines depict the outline of the antenna based
on the autofluorescence of the cuticula. A, B In the last larval instar (LL), OSNs innervate the placoid and the distal trichoid sensillum. C The OSNs
retract from the larval antenna during the prepupa (PP) and are with the onset of metamorphosis found at the distal end of the adult antenna.
E–G Their number rises until P50% when their distribution already resembles the adult antenna. Scale bars A, B 25 μm; C–G 100 μm. Two time-
lapse videos of approx. the first 30 h of OSN-development are available as Additional file 3: Video S1 and Additional file 4: Video S2

Fig. 4 Metamorphic development of the T. castaneum antennae and antennal lobes. The upper row visualizes the location of the OSNs
(magenta) within the antennae and head capsule, while the lower row displays the OSN axons and their arborizations within the ALs, as well as
the state of AL glomerulization. LL - last larval instar, PP - prepupa
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Fig. 5 Genesis of the antennal CSNs. Antennal maximum projections of the reporter signal in the EF-1-B-DsRed line (magenta), as well as EdU-
labeled cells (green). A-A’’, B-B’’ After EdU injection in the prepupa (PP), none of the CSNs in the antenna at P0% is labeled with EdU. C-C’’ After
EdU injection at P0%, a large amount of CSNs in the adult antenna at A0 is labeled. Scale bars A-A’’, C-C’’ 50 μm, B-B’’ 25 μm
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Fig. 6 Development of the adult antennal lobe glomeruli. Representative optical slices of the antennal lobes of the red flour beetle T. castaneum
at different developmental stages (LL - last larval instar, PP - prepupa, P - pupal stages), visualized by synapsin (magenta) and phalloidin (green)
staining. Scale bars 10 μm
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staining. In the synapsin staining, weak yet distinct glo-
merulization is visible. At this stage, the antennal lobes
consist of about 70 (mean = 68.44, SD = 1.89; NALs = 9)
glomeruli, which is also the number found in freshly
eclosed (A0) beetles [70].

Role of Orco during the formation of the antennal lobe
glomerular map
We find Orco-expression in pupae already before
glomerulization of the adult ALs starts (Fig. 3, Add-
itional file 5: Figure S3). In experiments using
dsRNA-injection-induced systemic RNA interference
(RNAi) against Orco and thereby effectively blocking
OR/Orco driven olfactory transduction [10], we find
that a knockdown of Orco induced in late larvae
seemingly does not block the formation of the olfac-
tory glomeruli. The AL glomeruli are still easily
distinguishable in freshly eclosed (A0) knockdown
beetles (n = 8; Fig. 7A) as they are in wildtype bee-
tles (n = 7; Fig. 7B; compare also [70]). Further, the
same experiments showed that in 7-day-old (A7)
beetles, glomerulization is heavily reduced in knock-
down beetles (n = 7; Fig. 7C), while they are clearly
visible in the wildtype (n = 7; Fig. 7D; compare also
[5, 67]). However, even in 7-day-old knockdown

beetles, the OSNs still locate in the antennae, with
their dendrites within the olfactory sensilla (Fig. 8B).

Local neurons of the antennal lobe (AL)
In D. melanogaster [60] and many other insects [13, 69],
the vast majority of the AL LNs use the inhibitory trans-
mitter GABA, which is synthesized by GAD. We used
immunohistochemistry against GAD (pupae: GADr;
adults: GADs) to follow the development of the AL LNs.
From at least P30%, the antennal lobes are innervated by
GAD immunoreactive fibers, while a distinct glomerular
pattern in the GAD immunostaining is first visible in
adult stage A7 (Fig. 9). The number of GAD immunore-
active somata rises during metamorphosis. At pupal
stages P30% and P40%, about 65 (P30%: mean = 64.00,
SD = 5.72; NALs = 7; P40%: mean = 65.75, SD = 1.71,
NALs = 4) immunoreactive cells locate in the lateral clus-
ter of each antennal lobe. At pupal stage P50%, the clus-
ters consist of about 70 cells each but display a high
variation (mean = 70.40, SD = 49.30, NALs = 5). At P70%
about 130 cells (mean = 130.83, SD = 4.96, NALs = 6)
and at P90% about 155 cells (mean = 154.5, SD = 11.79,
NALs = 4) are found in each lateral cluster. The number
then rises to about 165 cells in 7-day-old adult beetles
(A7; mean = 164.3, SD = 23.46, NALs = 10).

Phallodin
3xP3-eGFP
Phallodin
3xP3-eGFP

A EF-1-B
A0

SynapsinSynapsinSynapsinSynapsin

A‘

Phallodin
3xP3-eGFP
Phallodin
3xP3-eGFP 20 µm

BEF-1-B
A0 dsRNAOrco

B‘

PhallodinPhallodin

C Orco-Gal4
A7

SynapsinSynapsin

C‘

PhallodinPhallodin

DOrco-Gal4
A7 RNAiOrco

SynapsinSynapsin

D‘

Fig. 7 Antennal lobe (AL) glomeruli after larval RNAiOrco. Representative single optical slices of the AL of freshly eclosed (A0) beetles of the EF-1-B
line (A, A’, B, B’) and 7-day-old beetles (A7) of the Orco-GAL4 line (C, C’, D, D’) after dsRNAOrco injection in late larvae with comparison to
wildtype beetles visualized by phalloidin (A–D; green) and synapsin (A’–D’; magenta). A, B In freshly eclosed beetles, the AL glomeruli are clearly
visible in the phalloidin and synapsin staining under both conditions. c, d At A7 glomeruli are clearly visible in both stainings in untreated
beetles, while glomeruli in knockdown beetles are hardly visible in the phalloidin staining, and only vague glomeruli are visible in the synapsin
staining. Scale bars 20 μm
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Injection of EdU at P0% with dissection at A0 and EdU
injection at different metamorphic stages (P20%, P50%,
P70%, P80%) with subsequent dissection after 24 h did not
result in labeled neurons within the AL, while in the same
specimen labeled cells and thus presumably newborn neu-
rons are found in the mushroom bodies and optic lobes
(data not shown).

Glomeruli of the gnathal olfactory center (GOC)
In the red flour beetle, palpal olfactory input is not
processed within the AL as in D. melanogaster but in
the LGs and the GOC [5]. The GOC is already present
as glomerularly organized neuropil in the first larval
stage (L1) (Fig. 10A). The glomeruli vanish during the
last larval stage (Fig. 10B) and are no longer distinguish-
able in the early pupae (P10%; Fig. 10C). At pupal stage
P30%, a non-glomerular GOC is clearly distinguishable
in the phalloidin staining (Fig. 10D). At about mid-
metamorphosis (P50%), incipient glomerulization be-
comes visible in the phalloidin staining (Fig. 10E). About
30 h later, at stage P70% (Fig. 10F), the glomerulization
becomes more clearly visible in the f-actin staining (Fig.

10F). Glomerulization is clearly visible another 35 h later
at P95% (Fig. 10G).

Apis mellifera AL LNs
In adult honeybees, all AST-A immunoreactive neurons
are co-labeled with an anti-GABA antiserum. They are a
subpopulation of the inhibitory GABA local neuron net-
work in the ALs [71]. We used immunohistochemical la-
beling of AST-A expressing neurons to follow the
development of the AL LN subpopulation.
In pupal stage P1 (P10%), first, stained fibers are visible

in the AL (Additional file 7: Figure S5 A). First somata be-
come visible at stage P2 (P20%; Additional file 7: Figure S5
B, C), and their number rises after glomeruli formation.
Incipient glomeruli formation becomes first visible in the
AST-A staining at P4 (P40%; Additional file 7: Figure S5
D). At P50%, glomerulization is obvious (Additional file 7:
Figure S5 E). Innervation of the olfactory glomeruli then
increases throughout metamorphosis (Additional file 7:
Figure S5 F, G) and eventually reaches the adult pattern
(Additional file 7: Figure S5 H).

Orco-Gal4
A7 RNAiSham

A A‘

A‘‘

Orco
DsRed
Orco
DsRed

Orco-Gal4
A7 RNAiOrco

B B‘

B‘‘

Orco
DsRed
Orco
DsRed

Fig. 8 Olfactory sensory neurons and Orco immunoreactivity in the antennae after larval RNAi induction. Representative maximum
projections of 50 μm cryo-section of antennae of seven days old beetles (A7) in the Orco-GAL4 line after dsRNASham (A-A’’) and dsRNAOrco

(B-B’’) injection in late larvae. The reporter signal of the transgenic line is depicted in green, while the Orco immunostaining is depicted
in magenta. Scale bars 20 μm
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Discussion
The anatomy of the adult olfactory system of the red
flour beetle T. castaneum is well described [5]. To date,
information about the metamorphic development and
the origin of the structures of the olfactory system in T.
castaneum is not and in beetles generally rarely available
[39, 72]. In the current developmental study, we asked at
which stage of metamorphosis the structures of the ol-
factory system form and aimed to reveal the origins of
OSNs and LNs. To accomplish this, we used a combin-
ation of immunohistochemical staining, reporter expres-
sion in the CSN-labeling EF-1-B-DsRed [73], and the
OSN-labeling partial Orco-GAL4xUAS-DsRed [5] line,

as well as neurogenesis detection with EdU [10] and sys-
temic RNAi against Orco. An overview of the develop-
mental events including an interspecies comparison is
given in Fig. 11.

Development of the antennae and their sensory neurons
Starting at the periphery, we find a segmented larval an-
tenna consisting of scape, pedicel, and a reduced flagel-
lum (Fig. 1), as already described earlier [19, 20].
Analysis of the reporter signal in the transgenic lines
showed that the distal large trichoid sensillum functions
in chemosensation. This result fits previous studies that
supposed a function in contact chemoreception [19].

A P30% B P40%

C P50% D P70%

E P90% F A7

Fig. 9 GAD immunostaining in the developing AL. Representative single optical slices of the antennal lobes stained against GAD (pupae: GADr;
adults: GADs) at different time points during metamorphosis (P30%, P50%, P70%, P90%) and adult stage A7. Scale bars 20 μm
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Trichoid sensilla, in general, might also act in mechano-
reception and/or airborne chemoreception [74, 75]. As
the distal large trichoid sensillum was not only labeled
in the CSN-labeling EF-1-B DsRed line but also the
OSN-labeling Orco-Gal4xUAS-DsRed line, we further
suggest an olfactory function (Fig. 3A). This corresponds
to the fact that also the adult antennae possess olfactory
trichoid sensilla [5]. However, the main olfactory func-
tion of the larval antennae is provided via the placoid
sensillum (Fig. 3A). It is considered a fusion of several
basiconic sensilla [20], which again corresponds with the
olfactory function of the basiconic sensilla on the bee-
tle’s adult antenna [5].
The gross structure of the larval antennae, with three

distinguishable segments, is also described in the red
flour beetle’s close relative T. molitor [21] and other bee-
tles [22–24]. It is similar to the structure of the larval
antennae of M. sexta [25, 26], whereas flies possess func-
tionally but not serially homolog appendages (dorsal or-
gans) [27, 28]. Interestingly, lepidopterans and dipterans
are phylogenetic sister groups [76]. Therefore, the pres-
ence of an elaborate larval antenna seems to be the more
ancestral form. The current scientific picture sees the
adult antennae of holometabolous insects as separate
structures that develop from imaginal discs [29–31, 77–
80], while the antennae of hemimetabolous insects de-
velop gradually through larval molts until the adult stage
[80, 81]. However, this derives from only a few species
in essentially two orders: Diptera [29, 30, 79] and Lepi-
doptera [31, 77, 78, 82–89]. Both belong to the same

phylogenetic branch, which is the sister branch to that
including the Coleoptera [76].
In general, the development of adult structures from im-

aginal discs or cells in holometabolous insects is highly de-
rived. In the more ancestral state, it is discussed that cells
of the larval appendages are used to build their adult
equivalents [34]. In the red flour beetle, this ancestral state
is found during the development of the adult legs, which
are built from reused polymorphic larval cells, while the
legs of D. melanogaster are built from imaginal discs and
those of M. sexta employing a mixture of reused larval
cells and imaginal cells [35]. Consequently, it is concluded
that the red flour beetle also lacks antennal imaginal discs
from which the antenna may arise [36]. Our results indeed
support the conclusion that the adult antennae of T. cas-
taneum are not formed de novo from imaginal cells/discs
but by reuse of polymorphic larval cells. We observed that
during the last larval instar, the CSNs retract from the
larval antennae and relocate into the head capsule, ra-
ther than dissolve as described in D. melanogaster
[90, 91]. In the prepupal stage, they are then found in
the tip of the freshly formed adult antennae (Fig. 4)—
by this point still within the larval head cuticle (Add-
itional file 1: Figure S1).
At pupal stage P0%, CSNs (Fig. 2) including OSNs

(Fig. 3) are already located in the three distal segments
of the flagellum, as they are in the adult beetle [5]. This
finding is a major difference to results in D. melanoga-
ster, where OSNs are not found in the antennae of fresh
pupae but first at about 15% of metamorphosis [90]. The

PhalloidinPhalloidin
Phalloidin 
3xP3-eGFP

Phalloidin 
3xP3-eGFP

Phalloidin 
3xP3-eGFP

Phalloidin 
3xP3-eGFP

L1A LL (late)B P10%C P30%D

P50%E P70%F P95%
G

A0H

Phalloidin 
3xP3-eGFP

Phalloidin 
3xP3-eGFP

Fig. 10 Glomeruli formation within the gnathal olfactory center. Representative optical slices of the GOC at different developmental stages (L1 -
first larval instar, LL - last larval instar, P - pupal stages, A0 - freshly eclosed), visualized by A, B phalloidin in the SB line and C–H phalloidin plus
3xP3-eGFP in the EF-1-B-DsRed line. Scale bars 10 μm
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OSN number then obviously rises until pupal stage
P50%, when the gross distribution is akin to the adult
one. We found that, in all pupal stages, the antennal
nerves are present and already or still at P0% axonal ter-
minals of the OSNs are found in the AL and remain de-
tectable in all further pupal stages. This again contrasts

results in D. melanogaster, where OSNs first reach and
enter the AL at about P20% [90, 92], which is also found
in M. sexta [93, 94], while they reach the AL at about
P10% in A. mellifera [95].
This persistence of the OSN axons in the ALs, as well

as in the GOC and LGs (Additional file 2: Figure S2)
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leads us to the assumption that those neurons might
serve as guidance for the newly born sensory neurons.

Formation of the olfactory glomeruli
Direct comparison of the f-actin staining via phalloidin
and the immunostaining against synapsin showed that
during most metamorphic stages, the AL glomeruli were
more readily visible in the f-actin staining. For the ana-
lysis of the GOCs development, we therefore only used
phalloidin staining of f-actin.
In general, f-actin seems to be heavily aggregated in

olfactory glomeruli [96]. The same study showed that
while f-actin in vertebrates is mostly located on the
postsynaptic site, this is not true for insects. Examples
from M. sexta and A. mellifera clearly show that the
OSNs are labeled by phalloidin. They further showed
that projection neurons do not contribute to the
phalloidin staining within the glomeruli. Besides, f-
actin serves a key role in neuronal growth and regula-
tion of synaptic vesicle dynamics [97, 98]. Transfer-
ring these findings to the beetle, we conclude that the
OSNs are in the first place responsible for the forma-
tion of glomeruli. This conclusion is supported by re-
sults from M. sexta, where de-antennation, and
therefore lack of OSNs, prevents the formation of the
olfactory glomeruli [42]. Further, results from ants
clearly show that, without OSNs, the ALs are heavily
reduced [43–45].
Unlike M. sexta [99] and A. mellifera [38], but similar

to D. melanogaster [100], the larvae of T. castaneum
possess glomerular organized ALs (Fig. 6A). Like the
ALs, also the GOC in larvae is glomerularly organized
(Fig. 10A). The larval ALs glomeruli dissolve before pu-
pation, and as in other insects, e.g., M. sexta [101–104],
A. mellifera [95, 105], or D. melanogaster [106, 107], the
adult AL glomeruli form in the middle of metamor-
phosis (Fig. 11). Similarly, the adult glomeruli in the
GOC form during metamorphosis (Fig. 10).
The glomeruli of the ALs and GOC become first

visible in the f-actin staining at 40% of metamor-
phosis. Considering the functions of f-actin in neur-
onal growth and regulating synaptic vesicle dynamics
[97, 98], at this time, the cytoskeleton of the synaptic
structures within the ALs is likely formed. Since the
AL glomeruli are first visible in the synapsin staining
at P50%, it seems convincing, that only then, synaptic
vesicles are recruited, and the first functional synapses
are formed.
In M. sexta, the process of glomeruli formation was

shown to be triggered by a rising 20E titer in the
hemolymph [108]. This rise is also present in pupae of
T. castaneum. In the beetle, a sharp titer increase occurs
between P40% and P50% [109]. With roughly 70, the
number of glomeruli found at P50% resembles the

number found in freshly eclosed beetles [70], increasing
to about 90 glomeruli in 7-day-old beetles [5]. Therefore,
a basic set of AL glomeruli seems to be genetically
encoded and built during metamorphosis. However,
after adult eclosion, modifications seemingly occur.
We find Orco expression in the OSNs during all meta-

morphic stages, which is similar to results in the lepi-
dopteran Spodoptera litura (cotton leafworm) [110] and
the hymenopteran Ooceraea biroi (clonal raider ant)
[43]. In contrast, in the dipteran D. melanogaster, Orco
vanishes before pupation and becomes first detectable
again after the formation of the AL glomeruli at about
P80% [7] (Fig. 11). This led to the conclusion that Orco,
and therefore functional olfactory receptors, are not ne-
cessary for the formation of AL glomeruli [7, 46, 47]. In
ants, the lack of Orco leads to heavily reduced glomeruli
numbers in the AL and total numbers of OSNs [44, 45].
Therefore, the authors conclude that the reduced ALs
are an effect of the missing OSNs rather than a direct ef-
fect of Orco lacking, which is also supported by a more
recent study [43].
To learn about the role of Orco during the meta-

morphic development in the red flour beetle, we used
RNAi interference (RNAi). This results in a nearly
complete knockdown of Orco, which results in a massive
reduction of Orco-dependent odor responses [10]. Con-
trasting a knock-out, which is generally present from
embryogenesis onwards, the RNAi-mediated knock-
down, induced by dsRNA injection [5, 10, 111], has the
advantage to be induced at any time. For example, as we
did, just before pupation in late larvae. We find that at
A0, glomerulization is still clearly visible in knockdown
beetles (Fig. 7A), while a heavily reduced glomerulization
could be observed at A7 (Fig. 7C). Notably, at both ages,
the OSNs still locate normally in the antennae (Fig. 8A;
Additional file 6: Figure S4 A). Therefore, we suggest
that Orco is not necessary for the initial formation of ol-
factory glomeruli and their maturation during metamor-
phosis. However, OR/Orco driven olfactory activity
seems to be necessary during the differentiation and
adaption of the olfactory system after adult eclosion.

Origin and metamorphosis of the AL local neurons (LNs)
The vast majority of the AL LNs are GABAergic [13,
37, 60, 69] but also express various neuropeptides,
which may also provide an estimate for LN numbers
[13, 66, 67, 71, 112, 113].
In the red flour beetle, we identified GABAergic neu-

rons by immunohistochemical staining of GAD. Labeled
LNs locate in a cluster lateral to the AL, which is com-
parable to the “antero-dorsal DC cluster” (CL7) de-
scribed in Tenebrio molitor [39]. In the first half of
metamorphosis, the number of labeled neurons is
relatively stable. It is first, after glomeruli formation, at
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mid-metamorphosis, that their number rises. We used
neurogenesis detection via the EdU technique [10] to re-
veal the origin of the rising LN numbers and did not
find evidence for newly born neurons. Thus, we
conclude that all AL LNs in the red flour beetle are of
larval or embryonic origin and gain transmitter identity
during metamorphosis. Further, the majority of LNs
being recruited coinciding with glomeruli formation
might be a common feature, as also most LNs of M.
sexta ALs seem to be recruited just after the onset of
glomeruli formation [112–114].
Similar to GABA immunostaining in T. molitor [39],

we could first observe a glomerular pattern in the GAD
staining in adult T. castaneum. Nevertheless, immunore-
active fibers were already visible within the AL volume
at stage P30% (Fig. 9A), which corresponds to results
from M. sexta, where GABAergic fibers are present in
the AL at P20% [115]. In M. sexta, AST-A immunoreac-
tive fibers occur at stage P10% [112]—just when the LNs
start innervating the AL [93]. Similarly, in the honey-
bee’s ALs, AST-A immunoreactive fibers are found at
stage P10% (Additional file 7: Figure S5 A). In M. sexta
both, GABA and AST-A fibers enter the forming glom-
eruli at P35% [112, 115]. The same is true for AST-A
immunoreactive fibers in the honey bee, which enter the
forming glomeruli around P40% (Additional file 7: Fig-
ure S5 D). Thus, the LN fibers entering the ALs before
glomeruli formation seem to be a common feature.

Conclusions
In our study, we provide evidence that the adult anten-
nae of the red flour beetle are built from reused poly-
morphic larval cells, that the CSNs of the beetle’s larval
antennae are reused in the adult antennae, and that the
larval antennal lobe gets transformed into its adult ver-
sion. OSN axons are present in the ALs during the
whole process. Further, we find that Orco is seemingly
not necessary during the initial formation of the AL
glomeruli, while the activity of Orco expressing OSNs
seems to be required during differentiation after adult
eclosion. Comparing our results from the beetle to other
model insects, it seems that some features, such as the
timepoint of adult glomeruli formation or ingrowth of
the AL LNs, are common among insects, while others,
e.g., development of sensory appendages or the role of
Orco seem to differ. These differences among species
should be a reminder to be careful on using generaliza-
tions derived from results in a specific insect.

Methods
Animals
Experiments were performed using red flour beetles (Tri-
bolium castaneum, HERBST 1797; Insecta, Coleoptera) of
the wild-type strain “San Bernadino” [116], the transgenic

EF1-B-DsRed line (elongation factor1-alpha regulatory
region-DsRedExpress; kindly provided by Michalis Averof,
Institut de Génomique Fonctionnelle de Lyon, France) [5,
73], or the partial Orco-Gal4 line [5].
The beetles were bred under constant darkness at

about 30°C (wildtype) or 28°C (transgenes) and 40–50%
relative humidity on organic whole grain wheat flour
supplemented with 5% dried yeast powder and 0.05%
Fumagilin-B (Medivet Pharmaceuticals Ltd., High River,
Alberta, Canada) to prevent sporozoan infections [117].
Pupae of the San Bernadino wildtype were staged

using external markers, like eye development and
sclerotization of elytra and appendages using a refined
version (Additional file 8: Figure S6) of a previously pub-
lished staging scheme [118, 119]. Due to missing eye
color, transgenic beetles were collected at P0% and
reared to the desired ages according to a conversion
table based upon data collected by time-lapse recordings
of total metamorphosis at 28°C.
For the Orco-knockdown experiments, injected indi-

viduals were separated as pupae into 5-ml glass vials
containing about a 2-g substrate and reared to the de-
sired age.
For the bee experiments, we used the western honey-

bees (Apis mellifera). Honeybee breeding combs (kindly
provided by Stefan Berg and Ralph Buechler, Bienenin-
stitut Kirchhain, Landesbetrieb Landwirtschaft Hessen,
Kirchhain, Germany; and Wolfgang Roessler; University
of Wuerzburg, Wuerzburg, Germany) were kept under
constant darkness at about 34°C, and individual pupae
were removed from their comb and staged against a pre-
viously published scheme [105].

EdU injections
5-Ethynyl-2′-desoxuridine (EdU) injections followed a
previously published protocol [10]. Cold anesthetized
larvae and pupae of different ages were placed in a
chilled metal block. Injection of a 100-μM EdU-solution
was performed using glass micropipettes made from
thin-walled glass capillaries (TW150-4, World Precision
Instruments, Sarasota, FL, USA; micropipette puller:
Sutter Model P-30, Sutter Instrument, Novato, CA,
USA) attached to a pressure ejection system (PDES-02T;
npi electronics, Tamm, Germany) until individuals were
slightly inflated. After injection, the beetles were trans-
ferred into a para-film sealed Petri dish and incubated at
28°C.

Immunohistochemistry and EdU detection
EdU detections, as well as immunohistochemistry,
followed previously published protocols (T. castaneum
[10, 70]; A. mellifera [120]).
For histochemical analysis, dissected ganglia were fixed

in either 4% paraformaldehyde or 4% formaldehyde. Due

Trebels et al. BMC Biology          (2021) 19:155 Page 12 of 18



to their larger size, after fixation, honeybee brains were
embedded into a gelatin/albumin medium which was
hardened overnight in 4 or 8% formaldehyde in PBS at
4°C. Afterward, blocks were cut into 40-μm sections
using a vibratome (VT1000S, Leica Biosystems, Nus-
sloch, Germany).
Blocking was performed either in 5% normal goat

serum (NGS; Jackson ImmunoResearch, Westgrove, PA,
USA) or normal donkey serum (NDS; Jackson Immu-
noResearch) based on the primary antisera (for concen-
trations and details see Table 1).
Wholemounts of ganglia were mounted either aqueous

in the Mowiol [121] or after dehydration in an ascending
ethanol series and clearing with methyl salicylate (Merck
KGaA, Darmstadt, Germany) in Permount mounting
medium (Fisher Scientific, Pittsburgh, PA) between two
coverslips using reinforcing rings as spacers to prevent
squeezing. Vibratome sections were dehydrated in an as-
cending ethanol series and cleared in xylol, before being

mounted in Entellan (Merck) between a microscope
slide and a coverslip.

Western blotting
To demonstrate the specificity of the used anti-GAD
antibodies in T. castaneum, western blot analysis was
performed as previously described [113]. Twenty brains
were dissected and homogenized in 20 μl reducing sam-
ple buffer and boiled for 5 min. A 10 μl of the sample
was loaded and run on a discontinuous 10% SDS poly-
acrylamide gel and blotted onto Optitran BA-S 83 nitro-
cellulose membranes (Carl Roth GmbH & Co. KG,
Karlsruhe, Germany). After blocking, the membrane was
incubated with the GAD antisera (1:10,000) overnight at
4°C, washed, and incubated with HRP conjugated anti-
sheep/rabbit secondary antibody (1:1,000; see Table 1)
for 2 h at room temperature. Finally, the blot was incu-
bated with chemiluminescent substrate (SuperSignal™
West Pico, Thermo Fischer Scientific, Rockford, IL,

Table 1 Overview of used antibodies and markers
Name Abbreviation Host

species
Dilution Vendor/donor (catalogue #, batch #, RRID/CAS #) References Specificity

5-Ethynyl-2′-desoxuridine EdU 100 μM Thermo Fischer Scientific, Rockford, IL, USA
(A10044; 1259424; 61135-33-9)

[122, 123]

Alexa Fluor 488-coupled
phalloidin

Phalloidin 1:200 Thermo Fischer Scientific, Rockford, IL, USA
(A12379; n/a; n/a)

[124]

Alexa Fluor 488 Azide 488-azide 1 μM Thermo Fischer Scientific, Rockford, IL, USA
(A10260; 1320994; n/a)

Cy2-coupled donkey anti-sheep DAS-Cy2 Donkey 1:300 Jackson ImmunoResearch; Westgrove, PA, USA
(713-225-147, n/a, AB_2340735)

Cy3-coupled goat anti-chicken GACh-Cy3 Goat 1:300 Jackson ImmunoResearch; Westgrove, PA, USA
(103-165-155, 93117 / 139580, AB_2337386)

Cy3-coupled goat anti-rabbit GAR-Cy3 Goat 1:300 Jackson ImmunoResearch; Westgrove, PA, USA
(111-165-144, n/a, AB_2338006)

Cy5-coupled donkey anti-mouse DAS-Cy5 Donkey 1:300 Jackson ImmunoResearch; Westgrove, PA, USA
(715-005-150,132236, RB_2340758)

Cy5-coupled goat anti-mouse GAM-Cy5 Goat 1:300 Jackson ImmunoResearch; Westgrove, PA, USA
(115-175-146, n/a, AB_2338713)

Cy5-Sulfo Azide Cy5-azide 1 μM Jena Bioscience, Jena, Germany
(CLK-AZ118-1; Kli009-030; n/a)

Diploptera punctata
Allatostatin I

Dip-AST Rabbit 1:20,000 H.J. Agricola (Friedrich Schiller University, Jena, Germany)
(n/a, n/a, AB_2314318)

[125] Ame: [71]

Drosophila melanogaster
Synapsin I (SYNORF1)

Synapsin Mouse 1:50 E. Bucher, University of Würzburg, Germany
(n/a, n/a, AB_2313617)

[126] Ame: [127]
Tcas: [113]

HRP-coupled donkey anti-sheep DAS-HRP Donkey 1:1,000 Jackson ImmunoResearch; Westgrove, PA, USA
(713-035-147, 69205, AB_2340710)

HRP-coupled goat anti-rabbit GAR-HRP Goat 1:1,000 Jackson ImmunoResearch; Westgrove, PA, USA
(111-035-003, 130223, AB_2313567)

Moth-R2, Orco antiserum Moth-R2 Rabbit 1:5,000 J. Krieger, University Halle-Wittenberg, Germany
(n/a; n/a; n/a)

[5] Tcas: [5]

Rattus norvegicus glutamate
decarboxylase (rabbit)

GADr Rabbit 1:1,000 Sigma-Aldrich; now Merck KGaA, Darmstadt, Germany
(G5163; 113M4772; AB_477019)

Tcas: This study by
Western blot

Rattus norvegicus glutamate
decarboxylase (sheep)

GADs Sheep 1:5,000 W. Oertel, Laboratory of Clinical Science, Mansfield, MA,
USA
(n/a; n/a; AB_2314497)

[128] Tcas: This study by
Western blot

Red fluorescent protein RFP Chicken 1:3,000 Rockland Immunochemicals INC, Limerick, PA, USA
(600-901-379, 26274, AB_10704808)
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USA) and either exposed to Amersham Hyperfilm ECL
(GE Healthcare Europe GmbH, Freiburg, Germany) and
digitized with a flatbed scanner (9900F Mark II, Canon
Inc, Tokyo, Japan) or imaged using a CCD image system
(Image Station 440CF, Kodak Digital Science, Rochester,
NY, USA). A single band at about 55 kDa was recog-
nized for the sheep antibody, as well as for the rabbit
antibody matching to the predicted size of Tcas-GAD
(UniProt ID: D6WRJ1) of about 58 kDa (Additional file
9: Figure S7).

Orco-knockdown
Tcas-orco-5′ (1067 bp) dsRNA (RNAiOrco) and Cmor-
MIP2 dsRNA (RNAiSham) were synthesized from PCR
templates following a previously published protocol [5],
using the HiScribe T7 High Yield RNA Synthesis Kit
(New England Biolabs, Ipswich, MA, ISA). Both dsRNAs
(about 0.3 to 0.5 μg/μl in injection buffer) were injected
with the same setup as used for EdU injection into last-
stage larvae (LL) until individuals were slightly stretched.
The Orco knockdown was verified by immunohisto-
chemistry against Orco (Moth-R2, kindly provided by J.
Krieger, University of Hohenheim, Germany) on cryo-
sections of antennae (Additional file 6: Figure S4) as pre-
viously published [5, 10].

Image acquisition and analysis
Fluorescent preparations were imaged using a confocal
laser scanning microscope (TCS SP2 or TCS SP5, Leica
Microsystems, Wetzlar, Germany) and analyzed with
Amira 6.5 graphics software (FEI SAS a part of Thermo
Fisher Scientific, Mérignac Cedex, France). In Amira, AL
glomeruli numbers were acquired through manual 3D
reconstruction and LN cell bodies were manually
counted using the “landmark” tool.
Images of larvae and pupae were acquired in Progress

Capture Pro 2.10 (Jenoptik, Jena, Germany) using a CCD
camera (Progress C4 or C12plus, Jenoptik) attached to a
(fluorescence) stereomicroscope (Stereo Lumar.V12,
Carl Zeiss Microscopy, Jena Germany; Wild M3,
Herbrugg, CH).
Further image processing (global level adjustments,

contrast, and brightness optimization) was performed in
Photoshop CC (Adobe Systems, San Jose, CA, USA),
while final figure arrangements were made in Illustrator
CC (Adobe Systems).
For basic statistics (arithmetic mean and standard de-

viation) on the number of immunoreactive local neu-
rons, we used Excel 2019 (Microsoft Corporation,
Redmond, WA, USA).

Time-lapse series
Time-lapse series images were acquired as stated
above for larvae and pupae, but in a temperature-

controlled environment at about 30°C. Afterward,
images were further processed (cropping, global level
adjustments; contrast, and brightness optimization)
in Photoshop CC. Graphical annotations were pre-
pared in Illustrator CC and final video assembly, and
annotations were performed using Premiere CC
(Adobe Systems).
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The online version contains supplementary material available at https://doi.
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Additional file 1: Figure S1. Localization of the adult appendages and
sensory neurons in the head capsule of the prepupa. (A-A') Stereo
microscopic image in ventral view of a prepupa with the opened larval
head capsule, showing the location of the adult appendages within the
prepupal head capsule, as well as the location of the CSNs in the adult
antennae. (B) Schematic drawing of the location of the adult head within
the prepupal head capsule in dorsal view. (C, D) Confocal image of the
DsRed reporter signal (magenta) of the EF-1-B-line (C) and Orco-
Gal4xUAS-DsRed-line (D), showing the position of the CSNs / OSNs cell
cluster in the intact head capsule of prepupae. Scale bars 50 μm.

Additional file 2: Figure S2. OSNs in primary processing centers at
P0%. Representative optical slices showing the DsRed reporter signal
(magenta) of the Orco-GAL4 line, indicating OSNs, counterstained with
phalloidin (green) to visualize the general neuroarchitecture. Scale bars
10 μm.

Additional file 3: Video S1. Timelapse of OSN development (whole
head capsule). Visualized by the fluorescent reporter in the Orco-Gal4 x
UAS-DsRed line covering approximately the first 30 hours of
metamorphosis.

Additional file 4: Video S2. Timelapse of antennal OSN development
(single antenna). Visualized by the fluorescent reporter in the Orco-Gal4 x
UAS-DsRed line covering approximately the first 30 hours of
metamorphosis.

Additional file 5: Figure S3. Orco in the antennae before glomeruli
formation. Confocal maximum projection of 50μm slice a P10% antenna
showing OSNs labeled by immunohistochemistry using the crossreactive
Moth-R2 antiserum. Scale bars 50μm.

Additional file 6: Figure S4. Immunohistochemical Orco knock-down
verification. Representative maximum projections of 50 μm cry-sections
of the antennae of freshly eclosed (A0) beetles of the CSN-labeling EF-1-
B-DsRed line after (A) RNAiOrco and (B) RNAiSham injection. (A – A’’, B – B’’)
The DsRed reporter signal is depicted in green, while Orco immunostain-
ing is depicted in magenta. This channel also includes the autofluores-
cence of the antennal cuticle. In both treatment groups, the gross CSN
distribution is very similar, while Orco cannot be detected in the RNAiOrco

group (A). Scale bars 20 μm.

Additional file 7: Figure S5. Development of AST-A immunoreactivity
in the AL of Apis mellifera. Representative optical slices of AST-A immuno-
reactivity in the AL of A. mellifera workers at different developmental
stages. (A) In the AL of P10% pupae, AST-A fibers are restricted to the lat-
eral portion of the AL. (B, C) At P20% AST-A fibers penetrate the AL. (D)
At P40% immunoreactive fibers locate in most of the forming glomeruli.
(E-H) From P50% AST-A immunoreactivity shows clearly distinguishable
glomeruli, which grow until adult eclosion. Scale bars 40μm.

Additional file 8: Figure S6. Staging of wild-type beetles during meta-
morphosis. The comparison of time-lapse recordings of nine pupae led
to an averaged time for the metamorphosis of 126 h (5,25 d) at 30°C with
a deviation of 5,3 h. The development of the eyes [118, 119], as well as
the sclerotization of mandibles, elytra, and legs, served as external
markers, in a time-dependent context. The fresh eclosed pupae are
brighter and glossy with a maximum of three rows of ommatidia. After
about 20% (25 h after pupa formation (APF)), about six rows of omma-
tidia are visible and form a kidney-shaped eye. At 30% (40 h APF) the
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formation of the seventh row is in progress and the distance between
the ommatidia shrinks. At about 50% all ommatidia are visible and out-
growth to the sides of the antennal pocket, thus the eyes look
horseshoe-shaped. After 68% (86 h APF; SD 2,6 h) the outlines of omma-
tidia are resolved and the eye appears homogeneous. Besides the eye, at
76% (96 h APF, SD 3,6 h) the majority of mandibles are amber followed
by the coloration of the elytra at 85% (106 h APF, SD 2,9 h) and
sclerotization of the legs and antennae at 91% (114 h APF, SD 3.3). Finally,
the imago eclosed after 126 h (SD 5.3 h).

Additional file 9: Figure S7. Specificity of the used antisera against
GAD. Western blot analysis on Tribolium castaneum brain tissue shows a
single band of about 55 kDa for both antibodies which corresponds to
the predicted size of Tcas-GAD (UniProt ID: D6WRJ1) of about 58 kDa.
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