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Abstract

Background: The emergence and continued global spread of the current COVID-19 pandemic has highlighted the
need for methods to identify novel or repurposed therapeutic drugs in a fast and effective way. Despite the
availability of methods for the discovery of antiviral drugs, the majority tend to focus on the effects of such drugs
on a given virus, its constituent proteins, or enzymatic activity, often neglecting the consequences on host cells.
This may lead to partial assessment of the efficacy of the tested anti-viral compounds, as potential toxicity
impacting the overall physiology of host cells may mask the effects of both viral infection and drug candidates.
Here we present a method able to assess the general health of host cells based on morphological profiling, for
untargeted phenotypic drug screening against viral infections.

Results: We combine Cell Painting with antibody-based detection of viral infection in a single assay. We designed
an image analysis pipeline for segmentation and classification of virus-infected and non-infected cells, followed by
extraction of morphological properties. We show that this methodology can successfully capture virus-induced
phenotypic signatures of MRC-5 human lung fibroblasts infected with human coronavirus 229E (CoV-229E).
Moreover, we demonstrate that our method can be used in phenotypic drug screening using a panel of nine host-
and virus-targeting antivirals. Treatment with effective antiviral compounds reversed the morphological profile of
the host cells towards a non-infected state.

Conclusions: The phenomics approach presented here, which makes use of a modified Cell Painting protocol by

incorporating an anti-virus antibody stain, can be used for the unbiased morphological profiling of virus infection

on host cells. The method can identify antiviral reference compounds, as well as novel antivirals, demonstrating its
suitability to be implemented as a strategy for antiviral drug repurposing and drug discovery.
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Background RNA viruses are characterized by their fast mutation rate
In the light of the current coronavirus disease 2019  resulting in resilience against antiviral drugs, as well as
(COVID-19) pandemic caused by severe acute respira- heavy reliance on host pathways for replication [1, 2]. In
tory syndrome coronavirus 2 (SARS-CoV-2), the devel-  this context, coronaviruses are an exception to this norm
opment of new therapies against emerging viruses is of  given the existing RNA proofreading machinery within
high priority. Understanding how viruses affect the host  their genome, but nevertheless develop treatment escape
cells is key to identify potential targets for treatment. mutants [3]. Therefore, host targeting—as well as com-
bination—therapies might be advantageous to battle
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Image-based morphological profiling of cells, or phe-
nomics, combines high-content imaging with multipara-
metric analysis of single-cells to study biological and
chemical perturbations [4]. The Cell Painting assay is a
high-content image-based method for morphological
profiling that uses six multiplexed fluorescent dyes im-
aged in five channels. These dyes reveal eight relevant
cellular components that can be used to simultaneously
interrogate numerous biological pathways upon a given
perturbation [5]. The resulting images can be analysed
using traditional image analysis techniques to provide
information-rich profiles of individual cells, as well as
serve as input for machine or deep learning approaches
[6]. This method has been successfully applied to study
compound toxicity, predict cell health indicators, detect
morphological disease signatures and give insights into
the mechanism of action (MoA) of both existing and
novel compounds [7-12].

In contrast to target-based screens, where only a lim-
ited number of features are quantified to select for a
known cellular phenotype, morphological profiling com-
bined with statistical analysis can unravel subtle mor-
phological patterns and provide insights into new
pathways or mechanisms [5]. While morphological pro-
filing is gaining ground in the field of pharmacology and
toxicology, its employment in the field of virology has
been limited [13]. However, with the increased momen-
tum in virology research caused by the spread of the
SARS-CoV-2, morphological profiling is progressively
being implemented as a strategy for the selection and
optimization of drugs, and drug combinations, as poten-
tial antiviral therapies [14—17].

Immunofluorescence-based antiviral screening
methods commonly rely on the use of specific antibodies
for the visualization and quantification of virus-infected
cells. Typically, proteins that are expressed throughout
the replication cycle of the virus, and reliably represent
the infection status, are the proteins of choice to be de-
tected by immunofluorescence. Although different viral
proteins can be expressed at varying abundance
throughout the replication cycle, viral structural and nu-
cleocapsid proteins are often chosen to detect the infec-
tion, for instance the Zika virus envelope protein, the
Ebola virus structural VP40 protein and SARS-CoV-2
Nucleocapsid protein, and have been exploited in
immunofluorescence-based antiviral drug screens [18-
21]. Immunofluorescence-based methods have been
proven successful for identifying drugs that directly
affect cell survival and virus infection, but lack the depth
to provide detailed information about the effect on the
host cell [21, 22]. Here we describe a novel phenomics
approach, combining morphological profiling with
antibody-based detection of virus infection in a single
assay using human coronavirus 229E (CoV-229E)-
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infected MRC-5 primary lung fibroblasts, in the absence
or presence of several known and novel antiviral com-
pounds. We developed an automated image analysis
pipeline for the identification of infected and non-
infected cells, generating hundreds of morphological
measurements to study host-cell biology at a single-cell
level. We used the resulting morphological profiles to
capture a virus-induced phenotypic signature and show
how these profiles can be used to screen for antivirals
that reverse the cellular phenotype from an “infected”
towards a “non-infected” status, and to potentially iden-
tify the MoA of novel antiviral compounds.

Results

Cell Painting features capture effects of viral infection

In order to investigate how viral infection affects the
host cells, the original morphological profiling protocol
known as Cell Painting [5] was modified by replacing
the mitochondrial stain, which is typically done using
MitoTracker, with a virus antibody-based staining. In
the original Cell Painting protocol, MitoTracker Deep
Red is applied on live cells as the first step, which can be
complex to perform in the required biosafety level la-
boratory for virus experimentation. MitoTracker has also
been reported to affect the morphology of some cell
lines when applied as a live stain [23, 24]. Therefore to
be able to accommodate an antibody in an optimal
fluorescence space, to circumvent costly and time-
consuming exhaustive optimizations, and in general to
simplify the protocol, we replaced MitoTracker with an
anti-virus antibody. Incorporation of an antibody against
coronavirus nucleoprotein (NP) allowed for the identifi-
cation of CoV-229E infection at a single-cell level. In
parallel, hundreds of parameters were measured from
the infected cells using five of the Cell Painting dyes.
Specifically, the dyes consisted of Hoechst (DNA), SYTO
14 (nucleoli and cytoplasmic RNA) and fluorophore-
conjugated Phalloidin (F-actin), Concanavalin A (man-
nose residues of glycoproteins, especially Endoplasmic
Reticulum (ER)) and Wheat Germ Agglutinin (sialic acid
and N-acetylglucosamine moieties of glycoproteins, es-
pecially plasma membrane and Golgi) (Fig. la and
Table 1).

Three phenotypic reference compounds that have
been previously reported to produce a distinct morpho-
logical phenotype across multiple biologically diverse cell
types were used to validate the MRC-5 cell line as a suit-
able model and to assess reproducibility of the assay [24,
25]. Etoposide and Fenbendazole induced distinct
changes in cellular morphology of the MRC-5 human
lung fibroblast, characterized by enlarged nucleoli and
large multinucleated cells, respectively. In contrast,
Metoclopramide, which is known to induce enhanced
Golgi staining and fused nucleoli in certain cell types,
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 A modified Cell Painting protocol captures a virus-specific morphological signature. a MRC-5 lung fibroblast cells infected with Human
coronavirus 229€ (CoV-229E), stained using Hoechst, SYTO 14, Concanavalin A, Wheat Germ Agglutinin and Phalloidin, in combination with an
anti-coronavirus nucleoprotein (NP) antibody. Note the presence of non-infected (asterisk) and infected cells. b A representative composite image
of infected cells with F-actin in green, nuclei in blue and anti-coronavirus NP antibody in red. Segmentation and classification of individual cells
visualized with an outline with infected cells in purple and non-infected cells in yellow. ¢ Morphological profiles of non-infected and infected
cells (corresponding to the median profiles of both classes). d Dimensionality reduction using PCA applied to the extracted CellProfiler features
per image, coloured according to their infected or non-infected classification based on NP-specific antibody staining. Percentage of variance
explained is indicated by %. e With an R* = 0.73 and a Q® = 0.72, the PLS-DA prediction model could accurately predict viral infection on cell
painting features as illustrated by the plot for observed vs predicted values, where observed values correspond to classification by NP-specific
antibody. f, g Overview of the importance of each of the feature classes, grouped by module, cell compartment and stain if applicable. Absolute
means of PLS-DA loadings indicate the importance of different feature classes associated with viral infection. Higher PLS coefficients indicate
higher importance of a given feature group in order to separate a given condition (in this case, infected cells) from the controls

(non-infected cells)

did not elicit an observable morphological change in this
cell line (Additional file 1, Figure Sla).

A CellProfiler image analysis pipeline was designed to
distinguish between infected and non-infected cells
using the coronavirus NP-specific antibody signal in the
perinuclear space as a measure (Fig. 1b). Using this pipe-
line, a total of 1441 features corresponding to the five
fluorescent dyes were extracted at single cell level; sub-
sequently, the cells were labelled according to their in-
fection state based on the NP antibody. After pre-
processing, the centred and normalized features were vi-
sualized using a heatmap. Clustering of the features
highlighted the distinct morphological signature between
non-infected and infected cells (Fig. 1c). Principal com-
ponent analysis (PCA) was used to reduce redundancy
and correlation of the features and to facilitate interpret-
ation. PCA analysis revealed a clear separation between
infected and non-infected cells on the first principal
component, based on the Cell Painting dyes only
(Fig. 1d). A gradually increasing separation between

non-infected and infected cells coincided with an equally
increasing NP antibody signal (Fig. 1d).

To explore what features contributed most to the
virus-induced phenotype, we applied partial least-
squares discriminant analysis (PLS-DA) on the Cell
Painting features using the antibody-based classification
results as a label. The PLS-DA model could accurately
predict viral infection with a coefficient of determination
R* = 0.73, and a 3-fold cross-validation resulting in a co-
efficient of prediction Q* = 0.72 (Fig. 1le). Additionally,
we calculated the area under the receiver operating char-
acteristics curve (AUROC), which after cross-validation
resulted in 0.98 over 1 (Additional file 1, Figure S1b),
altogether indicating that the PLS-DA loadings were rep-
resentative for distinguishing infected from non-infected
cells. The PLS-DA loadings were used to indicate im-
portant feature classes associated with the CoV-229E-
induced phenotype. The virus-induced morphology was
characterized by changes in a wide variety of features,
distributed over various cell compartments and stains.

Table 1 Specifications overview for stains and antibodies used in the assay and microscope filters and spectra settings

Label Excitation Emission Source Cat-No  Stock Concentration Target
spectra spectra concentration used
(nm) (nm)
Hoechst 33342 377/50 447/60 Invitrogen H3570 10 mg/mL 10 pg/mL DNA (nucleus)
Pan coronavirus - - Invitrogen 11500123 1 mg/mL 1:1000 Coronavirus viral nucleoprotein
Monoclonal Antibody
(FIPV3-70)
Goat Anti-Mouse IgG 628/40 692/40 Invitrogen 10739374 2 mg/mL 1:500
H&L secondary
antibody
Wheat Germ Agglutinin = 562/40 624/40 Invitrogen W32464 5 mg/mL 15 pg/mL Golgi, plasma membrane (sialic acid
Alexa Fluor™ 555 and N-acetylglucosamine moieties of
Conjugate glycoproteins)
Phalloidin Alexa Fluor™ Invitrogen A12380  40x (200UV) 10 pyb/mL F-actin
568 conjugate
SYTO 14 green 531/40 593/40 Invitrogen S7576 5mM 4 uM Nucleoli, cytoplasmic RNA
Concanavalin A/Alexa  482/35 536/35 Invitrogen C11252 5 mg/mL 80 pg/mL Endoplasmic reticulum (mannose

Fluor 488 conjugate

residues of glycoproteins)




Rietdijk et al. BMC Biology

(2021) 19:156

The most prominent feature groups related to viral in-
fection corresponded to the Concanavalin A and SYTO
14 staining (Fig. 1f, and Additional file 2, Table S1), as
well as Correlation and Neighbors features, indicated by
higher PLS coefficients in respect to the rest of the fea-
ture classes (Fig. 1g, and Additional file 2, Table SI).
Overall, our analysis demonstrated the strength of phe-
nomics profiling to identify morphological changes ex-
clusive of CoV-229E-infected cells.

A novel phenomics approach for the identification of

antiviral compounds

To assess if Cell Painting combined with NP-antibody
staining could be leveraged as a tool to profile or screen
for antiviral drugs, we designed a phenomics approach
including viral infection, compound treatment, cyto-
chemistry protocol, image analysis pipeline and finally
data analysis and visualization (Fig. 2, and Additional
file 1, Figure S1c). This new method is designed to cap-
ture in-depth morphological profiles of the host cells in-
duced by virus infection as well as treatment with
potential antiviral compounds.
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For the first experimental section (Fig. 2(1)), cells are
seeded in multiwell plates and allowed to attach over-
night; this is followed by virus infection. In this particu-
lar case, MRC5 cells were inoculated with CoV-229E
virus for 1 h to maximize viral entry in the host cells
[26, 27]. Subsequently, virus-containing media was re-
moved and compounds were added and incubated for
48 h followed by fixation. Post-treatment with antiviral
compounds was chosen to mimic a clinical context, in
which a patient is treated only after infection is diag-
nosed. Next, MRC-5 cells were stained using our modi-
fied Cell Painting assay including permeabilization and
blocking before a coronavirus NP-specific primary anti-
body was applied. After incubation with the primary
antibody, a cocktail of Cell Painting dyes and the sec-
ondary antibody was added to the cells.

For the second section of the method (Fig. 2(2)), high-
content imaging is used to capture multiple fields of
interest covering the wells. A CellProfiler image analysis
pipeline is built to extract single-cell features from all
the acquired images. The pipeline includes quality con-
trol of the images, pre-processing and feature extraction
and is universal, requiring only minor adjustments for
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Fig 2 Morphological profiling of virus-infected cells. Overview of the phenomics approach. Cells are seeded in multiwell plates, incubated
overnight followed by virus infection. Subsequently, virus-containing media is removed and compounds are added and incubated for 48h
followed by fixation. Then, antibody staining and Cell Painting is performed, followed by high content imaging, image analysis and data analysis
of the extracted phenotypic features (a more detailed description of the method can be found in Additional file 1 Figure S10). lllustrations were
partially created with BioRender.com
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accurate segmentation and determination of thresholds
when applied on different cell lines and viruses. For the
third and final section of the method (Fig. 2(3)), a data
analysis and data visualization pipeline is built, which
more specifically includes data cleansing from corrupted
images, normalization and pre-processing of the fea-
tures, visualization of the data in clustermaps, hierarch-
ical clustering of the morphological profiles and
dimensional reduction using PCA and PLS-DA, as well
as correlation matrices.

An antibody-based method identifies Remdesivir and E-
64d as potent antiviral compounds

To compare our phenomics approach to one of the trad-
itional methods for antiviral drugs screening, we first ex-
plored the antiviral efficacy of a set of 9 compounds
using an NP-specific antibody. The compounds included
two direct-acting drugs targeting viral RNA polymerase
(Remdesivir and Favipiravir) and seven host-targeting
antiviral compounds (E-64d, Camostat, Cathepsin L in-
hibitor and Bafilomycin Al), including three novel in-
house developed broad-spectrum antiviral compounds
TH3289, TH6744 and TH5487 (Fig. 3a) [28, 29]. MRC-5
cells were either not infected or infected with CoV-229E
and were then exposed to the compounds at three differ-
ent concentrations (Fig. 3a). We determined cell survival
by nuclei count and infection rate by the number of
anti-coronavirus NP-positive cells, both in respect to
DMSO (Fig. 3b). To avoid systematic errors due to pos-
itional effects of the samples, two different randomized
layouts for each of the biological replicates were used
(Additional file 1, Figure S2a). We assessed interplate
variability to ensure stable infection rates between repli-
cates by calculating the Pearson’s correlation coefficients
as well as simple linear regression, which on average re-
sulted in Pearson’s r > 0.9 and R* > 0.8, respectively, in-
dicating high reproducibility (Additional file 1, Figure
S2b). In addition, the morphological profiles induced by
the phenotypic reference compounds were highly repro-
ducible between biological replicates, with Etoposide and
Fenbendazole being particularly distant from the DMSO
control, as indicated by PCA analysis (Additional file 1,
Figure S2c). Intraplate variability was assessed by calcu-
lating the standard deviation (SD) for each replicate con-
dition (Additional file 1, Figure S3a, b).

Antiviral activity with no cellular toxicity was observed
upon Remdesivir and E-64d treatment. Treatment with
clinically utilized Remdesivir reduced infection by 75%
at 0.1 pM and 99% at 1 pM and 8 puM concentrations.
At the same time, E-64d treatment resulted in a reduc-
tion in viral infection of 31%, 82% or 92% compared to
DMSO at 1, 10 or 30 puM concentrations, respectively
(Fig. 3b). Neither FDA-approved Favipiravir nor pre-
clinical compounds Camostat or Cathepsin L inhibitor
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reduced the number of infected cells, while Bafilomycin
Al was toxic at all tested concentrations regardless of
the presence of the virus (Additional file 1, Figure S4a).
Exposure to the broadly active host-targeting antiviral
compounds TH3289, TH6744 and TH5487 (Additional
file 1, Figure S4b) showed 62%, 56% and 56% reduction
in the levels of infected cells, upon 10 uM treatments,
respectively (Fig. 3b). The antiviral effect was also con-
firmed by a decrease in the anti-NP antibody signal
(Fig. 3¢, d), which was evidently lost for the compounds
that displayed toxicity. Finally, the virus-induced cyto-
toxicity, which resulted in a 20% reduction in the num-
ber of cells, was not altered by the use of DMSO as
compound vehicle (Additional file 1, Figure S4c).

Identification of antiviral drugs that reverse infected
morphological profiles

In order to demonstrate the use of our approach for
drug screening, we assessed the antiviral activity of the
aforementioned compounds solely by analysing the mor-
phological profiles of the host cells, in the absence of the
NP-antibody. We used unsupervised hierarchical cluster-
ing to map similarities between the morphological pro-
files according to their proximity in feature space
averaging all conditions excluding the highest concentra-
tions of TH3289, TH6744 and TH5487, as well as Bafilo-
mycin Al, which were cytotoxic. Hierarchical clustering
using the Euclidean metric resulted in three main clus-
ters (Fig. 4a). The first cluster included infected cells
treated with non-effective antivirals (Favipiravir, Camo-
stat and Cathepsin L inhibitor). The second cluster con-
tained non-infected conditions (control- and compound-
treated). Finally, the third cluster, which was hierarchic-
ally linked to the non-infected conditions, included in-
fected cells treated with potent antiviral compounds
Remdesivir, E-64d and the in-house developed TH3289,
TH6744 and TH5487, suggesting that these compounds
rescued or reversed the CoV-229E-induced phenotypic
profile (Fig. 4a). The morphological profiles for each of
the non-toxic tested compound concentrations are
shown in Additional file 1, Figure S5. In order to better
visualize the clusterings, we calculated the pairwise Pear-
son’s correlation coefficients among all conditions,
which resulted in a positive correlation between infected
cells treated with Remdesivir and E-64d, with control-
treated cells in the absence of CoV-229E, confirming the
antiviral activity of these compounds (Fig. 4a, Additional
file 1, Figures 6a and 7). The morphological features also
provided information on the effect of the compound on
the cells, as illustrated by the morphological profiles in
the absence of virus (Additional file 1, Figure S5). The
morphological profiles of TH3289, TH6744 and
TH5487, which are structural analogues, clustered
closely together as indicated by the dendrogram (Fig. 4a).
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Similarly, the TMPRSS family protease inhibitor Camo-
stat clustered together with the protease inhibitor E-64d
in the absence of the virus (Fig. 4a).

We calculated the Euclidean distances between the
non-toxic concentrations of the compounds and the
DMSO control in the absence and presence of the virus,
which allowed us to rank the compounds by their activ-
ity (Additional file 1, Figure S6b). The higher the dis-
tance value from the compounds to the DMSO in the
presence of CoV-229E, and the lower the distance to

non-infected controls, the higher their activity, which
confirmed the antiviral effect of Remdesivir and E-64d at
all tested concentrations, as well as for TH3289, TH6744
and TH5487 at 10 pM (Additional file 1, Figure S6b).
PCA was used to study the effects of every single com-
pound and dose in more detail. In accordance with the
hierarchical clustering, Remdesivir- and E-64d-treated
cells grouped together with non-infected control condi-
tions at all tested doses (Fig. 4b, c). Compounds,
TH3289, TH6744 and TH5487 showed a dose-
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Fig. 4 |dentification of phenomics profiles of antiviral drugs efficient against coronavirus. a Unsupervised hierarchical clustering of morphological
profiles of the indicated samples based on their proximity in feature space. Three main groups are shown, infected (+CoV-229E) in the presence
of non-active compounds, i.e. Camostat, Favipiravir and Cathepsin L inhibitor, as well as control DMSO (vehicle); non-infected (-CoV-229E) in the
presence of all compounds; and +CoV-229E in the presence of the compounds that displayed antiviral effect, i.e. Remdesivir, E-64d, TH3289,
TH6477 and TH5487. For this analysis, all compound doses were mean averaged, with the exception of the 30 uM doses for TH3289, TH6744 and
TH5487, and all doses of Bafilomycin A1, which resulted in cytotoxicity. Pearson’s correlation coefficients are indicated for each compound and
calculated in comparison to DMSO in the absence or presence of CoV-229E. The profiles represent the aggregated mean per compound from
two biological replicates and one (for Low dose) or two (for Mid and High doses) technical replicates. b—g PCA analysis of morphological features
upon treatment with Remdesivir, E-64d, TH3289, TH6477, TH5487 and Camostat in non-infected (-CoV-229E) and infected (+CoV-229E) conditions
compared to DMSO control. Each dot in the PCA represents one image by taking the mean of all objects in the image. Each data point
corresponds to the aggregated image mean from one (for Low dose) or two (for Mid and High doses) technical replicates, and two biological
replicates. Percentage of variance explained is indicated by %
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dependent response, where treatment with the Mid (10
uM) dose showed a trend towards the non-infected clus-
ter, Low doses (1 uM) clustered with the infected cells,
and High doses (30 pM) formed separate clusters
(Fig. 4d—f). Treatment with the compounds Camostat,
Favipiravir and Cathepsin L inhibitor, which did not re-
duce the number of infected cells, all clustered with the
infected cells in PCA space (Fig. 4g and Additional file 1,
Figure S8a, b). Bafilomycin Al treatment, which was
toxic to the cells, as well as cytotoxic doses of the TH
compounds, formed clusters separate from both infected
and noninfected controls (Additional file 1, Figure S8c).

Uniform Manifold Approximation and Projection
(UMAP) was performed to obtain an additional
visualization of the distribution of the morphological
features for each tested condition, with the exception of
cytotoxic doses. This resulted in two clusters, each con-
taining either active (Remdesivir, E-64d, TH3289,
TH6744 and TH5487) or inactive compounds (DMSO,
Camostat, Favipiravir and Cathepsin L inhibitor) (Add-
itional file 1, Figure S8d). Representative images for each
of the compounds are shown in Additional file 1, Figure
So.

In summary, these results demonstrate the suitability
of our phenomics approach to identify antiviral drugs by
reverting virus-induced phenotypic signatures and by
providing information on compounds’ effect on the host
cells.

Discussion

Traditional targeted screens for antiviral drugs often
focus on known proteins in the replication cycle of the
virus, neglecting the effects of both the virus and the
compound on the host cell. On the contrary, morpho-
logical cell profiling enables an untargeted approach for
the characterization of cellular responses of infected cells
with a high spatiotemporal resolution, high throughput,
and on a single-cell level. Here, we present a method
utilizing Cell Painting combined with a virus-specific
antibody to profile host cell responses upon virus infec-
tion and demonstrate its potential to serve as a platform
for finding effective antiviral compounds.

By adapting the Cell Painting protocol, we were able
to detect a distinct virus-induced phenotype for MRC-5
cells infected with CoV-229E (Fig. 1c). The induced
phenotype was characterized by changes distributed over
various cell compartments and stains, of which the most
prominent were observed for Concanavalin A and the
SYTO 14. The replication cycle of RNA viruses, includ-
ing coronaviruses, is closely associated with ER and
Golgi networks, ensuring close proximity of replication
factors, viral protein processing and ultimately viable
virus progeny [30]. Given that Concanavalin A specific-
ally binds to mannose-rich residues of glycoproteins,
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which are predominantly present in the ER, the in-
creased intensity of ER signal detected in CoV-229E-
infected cells can be explained by innate sensing of viral
proteins by host ER stress pathways or increased viral
glycoprotein content [31]. It should be noted that Cell
Painting dyes such as Concanavalin A [32] and SYTO 14
are likely to bind to certain viral-induced or viral-
derived targets in the host cell, which could in turn con-
tribute to the generated morphological profiles.

Antibody-based screening methods for antivirals have
been successfully used in the past to identify potential
candidate treatments [33]. We used this method to
benchmark our phenomics approach. According to their
antiviral activity, Remdesivir and E64d, which have been
previously shown to ameliorate coronavirus infections
[34, 35], significantly reduced the percentage of infected
cells. Similarly, but with less efficacy, the broad-
spectrum antiviral compounds TH3289, TH6744 and
TH5487 reduced the number of infected cells, albeit
with accompanying toxicity. On the other hand, under
our tested conditions, we could not reproduce the previ-
ously reported antiviral activities from Favipiravir,
Camostat, Cathepsin L inhibitor or Bafilomycin Al [34—
38]. These results may be explained by cell-dependent
effects; for instance, it has been reported that MRC-5
cells do not express the TMPRSS2 protease, which is the
target of Camostat [39], as well as by the timing, or the
selected doses of treatment, which could be addressed
by optimization of the experimental conditions in future
studies.

Despite the fact that antibody-based screening could
identify antiviral compounds, it did not provide further
information about the host cells beyond viability. Utiliz-
ing our phenomics method we identified antiviral com-
pounds that could reverse the virus-induced
morphological profile towards a healthy state. In particu-
lar, treatment with Remdesivir, E-64d, TH3289, TH6744
and TH5487 induced morphological profiles that were
more similar to non-infected than to infected conditions.
Interestingly, as indicated by unsupervised hierarchical
clustering, the morphological profiles of TH3289,
TH6744 and TH5487, clustered together with drugs that
possess much more antiviral efficacy (Fig. 4a). Accord-
ingly, the antiviral activity of Remdesivir and E-64d and
the three in-house-developed antivirals was reflected by
both their Euclidean distance from the infected controls,
as well as their clustering close to the control non-
infected condition by PCA analysis, which indicates a
potential rescue of the virus-induced phenotype. Of
note, since TH6744, TH3289 and TH5487 are host-
targeting  compounds  targeting  host-pathways,
compound-induced effects are to be expected, which in
turn add complexity to the interpretation of the mor-
phological profiles. Altogether, this points to the fact
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that based solely on the results of the antibody-based
method, the in-house developed compounds would have
likely been discarded as antivirals given their toxicity.
However, according to the results of our phenomics ap-
proach, which offers a much higher level of information
than simple live/dead assays broadly used in the infec-
tious disease research field, these compounds might have
a more potent antiviral efficacy than anticipated, which
opens up the possibility for their further development.

A substantial advantage of using morphological profil-
ing to screen for antiviral drugs is the in-depth analysis
of the host cell status upon infection as well as upon
compound treatment. Thus, despite not being able to re-
capitulate the antiviral activities of all the tested com-
pounds, we have obtained valuable information that can
be used to further understand their biological effect. For
instance, in line with several previous studies showing
that compounds with similar MoA result in similar
phenotypic profiles [4, 40, 41], for novel compounds
such as the ones we tested, the comparison of their mor-
phological profiles against the ones of a reference set
could aid in the identification of their MoA. In fact, the
unsupervised clustering of the morphological profiles
(Fig. 4a), as well as the Pearson’s correlation coefficients
(Additional file 1, Figures S6a and S7), seem to indicate
that, in the presence of the virus, TH3289, TH5487 and
to a lesser extent TH6744 induce a similar signature to
E-64d. TH3289, TH6744 and TH5487 were originally
developed as OGG1 inhibitors; however, it has been
already shown that inhibition of OGG1 does not play a
role in the antiviral activity of these compounds. In
addition, TH6744 could be targeting cellular proteostasis
and chaperone-mediated mechanisms [29]; thus, despite
the need for validation, the similar signature to E-64d of
these compounds (Additional file 1, Figure S6a) could
suggest that, in addition to their reported targets, these
novel antiviral compounds also have protease inhibitory
activity. Despite the very limited number of reference
compounds used in our study, this highlights the use of
our method not only to identify opportunities for drug
repurposing but also for the actual discovery of novel
antiviral compounds.

A challenge of morphological profiling is the large
amount of data generated, which is accentuated when
using single-cell measurements. The analysis strategy of
such rich data is open to interpretation and might re-
quire specific computational and analytical skills. To fa-
cilitate the use of our phenomics approach for
visualization of the data and identification of effective
antiviral compounds, we have made our data analysis
strategy openly available. A comprehensive and detailed
guide and toolset on how to analyse morphological pro-
filing data have been previously published [6, 11].
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Given the increasing implementation of morphological
profiling, the biological interpretation of the morpho-
logical changes induced by a given perturbation is a sub-
ject of active research [4, 11, 42]. Consequently, the
results of this study will benefit from a better under-
standing of the link between phenomics signatures and
the underlying biological mechanism. We have shown
how Cell Painting can be applied to complement
antibody-based screening for antiviral drugs. The low
costs of the chemical stains used in Cell Painting, and
the possibility to multiplex with antibody-based screens,
will provide high-content information with minimal add-
itional costs, as no extra resources are needed in terms
of number of assays and experimental time [43]. Inter-
estingly, our results suggest that Cell Painting alone
could potentially be used as a phenotypic screening
readout to distinguish infected from non-infected cells,
and thus be utilized for antiviral screens without the
need for an additional virus-specific antibody, which
could also have the potential to further reduce screening
costs.

In this work we have taken advantage of CoV-229E be-
cause of its relatively low pathogenicity, thereby allowing
for experimentation in a biosafety laboratory level-2
(BSL2) lab, and because of its extensive use in the un-
derstanding of coronavirus pathogenesis, replication
cycle and host-virus interactions. However, similarly to
our results for CoV-229E infection, Remdesivir and E-
64d have also been reported to effectively prevent SARS-
CoV-2 infection in cultured cells, which indicates that
our method can be used to also identify antiviral drugs
against SARS-CoV-2 [44, 45].

Conclusions

Our novel phenomics method provides an untargeted
readout for the study of virus-induced effects and for the
screening of antiviral drugs, at the single-cell level and
in a single assay. The morphological signatures obtained
using our method can be used to identify the potential
MoA of novel compounds by comparing them to those
of annotated reference drugs, highlighting the use of this
method in drug discovery. Morphological profiling pro-
vides high adaptability and scalability to study different
cell lines and perturbations. Accordingly, we anticipate
that our untargeted approach, with only minor adjust-
ments of the image analysis pipeline, will enable other
applications using diverse (human-derived) cell lines, as
well as different viruses. Overall, we demonstrated that
our phenomics approach can be utilized for the unbiased
study of virus-induced effects on host cells that can be
leveraged for drug repurposing, as well as for the discov-
ery of novel antiviral compounds.
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Methods

Biosafety

All experiments in the presence of infectious virus were
performed under respective biosafety laboratory (BSL)
conditions according to Swedish Work and Health Au-
thorities. Experiments using CoV-229E were performed
at BSL2 at Karolinska Institutet.

Cell culture

MRC-5 cells (from ATCC, Manassas, VA, USA) were
cultured in Minimum Essential Media supplemented
with 10% (v/v) fetal bovine serum (FBS; Thermo Fisher
Scientific, Waltham, MA, USA), 50 U/mL penicillin and
50 pg/mL streptomycin (Thermo Fisher Scientific, Wal-
tham, MA, USA). The cells were maintained at 37 °C
under 5% CO2 and the cell culture was routinely tested
for Mycoplasma using a luminescence-based MycoAlert
kit (Lonza).

Virus production

CoV-229E (VR-740; from ATCC, Manassas, VA, USA)
stocks were amplified in Huh?7 cells. Virus titers were
determined in Huh7 cells by end-point dilution assay
combined with high-throughput immunofluorescence
imaging of viral protein staining as previously described
[29].

Compounds

Remdesivir and Favipiravir were purchased from Carbo-
synth. TH6744, TH3289 and TH5487 were in-house
produced and recently described [28, 29]. Compounds
Camostat (SML0057), E-64d (E8640), Cathepsin L in-
hibitor (SCP0110) and Bafilomycin A (B1793) were pur-
chased from Sigma-Aldrich. Three phenotypic reference
chemicals that are known to produce morphological
phenotypes in a variety of cell lines using the Cell Paint-
ing assay were included: Etoposide (E1383), Fenbenda-
zole (F5396) and Metoclopramide (MO0763) [24, 25].
DMSO (D2438) was used as compound vehicle (all pur-
chased from Sigma Aldrich).

Virus infection and compound treatments

Antiviral compounds and phenotypic reference chemi-
cals were dissolved in DMSO to 10 mM solutions and
dispensed in 96-well source plates at 500X of the final
concentration using the D300e Digital Dispenser (Tecan,
Mainnedorf, Switzerland) and stored at —20 °C until use.
Compound and virus infection conditions were random-
ized within the plates and multiple plate layouts were
used to compensate for systematic effects related to the
well position (Additional file 1, Figure S2a). To further
avoid plate and edge-effects, the outer wells were ex-
cluded from experimentation. Three doses were chosen
for each antiviral compound (final concentration; DMSO
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0.3% v/v). A total of 2500 MRC-5 cells per well were
seeded in black 96 multiwell plates 24 h before infection
(Costar 3603, Corning Life Science, Corning, NY, USA)
in 100 pL culture medium. The plates were kept at room
temperature for 20 min to aid homogeneous spreading
in the wells and incubated overnight at 37 °C at 5% CO2
atmosphere. Cells were infected with a MOI 15 in 50 pL
culture medium for 1 h and at least four wells per plate
were left uninfected as a mock control. Virus-containing
medium was removed, replaced with 80 uL culture
medium and 20 pL compound-containing medium in at
least two technical duplicates, reaching the final com-
pound concentration. Cells were incubated for 48 h.
Cells were fixed in 4% paraformaldehyde (Thermo Fisher
Scientific, Waltham, MA, USA) in PBS (Gibco, USA) for
20 minutes, washed twice with PBS and stored at 4°C
prior to further processing.

Cell Painting and antibody detection

To profile morphological features of virus-infected cells,
an adapted version of the Cell Painting assay was used
[5]. Specific fluorescent probes or fluorophore-
conjugated small molecules were used for the detection
of various cellular components (Table 1). To accommo-
date virus-specific antibody detection in parallel to Cell
Painting, the dye specific to mitochondria (MitoTracker)
from the original cell Painting protocol was replaced
with a coronavirus-nucleoprotein specific antibody.
Compared to the original cell painting assay consisting
of six dyes targeting eight components or cell organelles,
here five dyes and a virus-specific antibody were used to
target virus nucleoprotein in parallel to seven cell organ-
elles and cell components in a single multiplexed stain-
ing assay (Table 1). Representative images of each of the
stains can be found in Fig. 1a. Pan coronavirus monoclo-
nal antibody (FIPV3-70, Invitrogen) was combined with
a secondary antibody using Alexa Fluor 647 fluorophore
(10739374, Invitrogen), chosen for its narrow emission
and excitation spectra to limit interference with the
other channels. To avoid fading of the chemical stains,
in our experience, the secondary antibody is best added
together with the chemical dyes, but can also be applied
sequentially. Concentrations of secondary antibodies
need to be adjusted for a good signal-to-noise ratio in
the multiplexed assay. In Table 1, working concentra-
tions and specifications for the stains and antibodies are
presented.

Fixed cells were washed twice (BioTek, 405 LS washer)
and permeabilized by incubation with 80 uL of 0.1% Tri-
ton X-100 for 20 min at room temperature, followed by
two washes with 1X PBS. Then, 80 pL of 0.2% BSA
(A8022) in PBS was added and incubated for 30 min.
Next, the plates were washed twice with 1X PBS and
50uL primary antibody was added. The primary antibody
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was incubated for 4 h at room temperature after which
the plates were washed three times for 5 min. A staining
solution of Hoechst 33342 (Invitrogen, catno H3570),
SYTO 14 green (Invitrogen, cat.no S7576), Concanavalin
A/Alexa Fluor 488 (Invitrogen, cat.no C11252), Wheat
Germ Agglutinin/Alexa Fluor 555 (Invitrogen, cat.no
W32464) and Phalloidin/Alexa Fluor 568 (Invitrogen,
cat.no A12380) was prepared in PBS in addition to Goat
anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Anti-
body, Alexa Fluor 647 (Invitrogen Catalog # A-21235).
Fifty microlitres of staining mixture was added to each
well and incubated for 30 min, after which the plates
were washed a final three times for 5 min. Plates were
either imaged immediately or sealed and kept at 4 °C to
be imaged later. All washing steps were performed using
a Biotek 405 LS washer; dispensing was done using the
Biotek Multiflo FX, multimode dispenser. Plates were
protected from light as much as possible.

Imaging

Fluorescent images were acquired using an Image
Xpress Micro XLS (Molecular Devices) microscope with
a 20x objective using laser-based autofocus. In total, 9
sites per well were captured using 5 fluorescence chan-
nels (DAPI, Cy5, TexasRed, Cy3 and FITC) (Table 1).
Examples of images from the different channels are
shown in Fig. 1a and Additional file 1, Figures Sla and
S9.

Image analysis pipeline

Image quality control and preprocessing

Images were processed and analysed with the open-
source image analysis software CellProfiler (available at
https://cellprofiler.org/), version 4.0.6 [46]. Prior to ana-
lysis, a quality control (QC) pipeline was run on the raw
images to detect images with artefacts, which may cor-
rupt the data with false values [6]. We computed various
measures to represent a variety of artefacts and used
statistical analysis to detect outliers. Images deviating
more than 5 standard deviations from the median of
FocusScore, MaxIntensity, MeanIntensity, PercentMaxi-
mal, PowerLogLogSlope and StdIntensity were flagged,
inspected and removed if necessary. To remove out-of-
focus images, the PercentMaximal score and PowerLo-
gLogSlope was computed and images with PercentMaxi-
mal values higher than 0.25, or PowerLogLogSlope
values lower than - 2.3 were removed from the dataset.
The QC detected 95 images as outliers, as indicated by
one or multiple of the control measures. To assess the
reproducibility of the assay and detect possible plate and
drift effects across multiple plates, the various quality
measures were visualized and inspected (Additional file 1,
Figure S10).
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In addition, we used cell-level quality control based on
the Hoechst staining to detect bright artefacts and
clumped cells. Bright artefacts in the DAPI channel were
identified using the Identify Primary Object module in
CellProfiler; artefacts and surrounding pixels were
masked to avoid interference with segmentation.

To correct for uneven illumination in the images, the
polynomial illumination correction function was calcu-
lated for each plate and each image channel across all
cycles resulting in one illumination correction image per
channel. The illumination functions were then used in
the analysis pipelines to correct each image by dividing
by the respective illumination correction image.

Segmentation

Segmentation based on the DAPI channel was per-
formed by applying a Gaussian blur followed by Otsu
thresholding to segment the outlines of each nucleus.
The cell objects were segmented using Watershed seg-
mentation using minimum cross-entropy of the cyto-
plasmic RNA stain, using the nuclei as a seed. The
cytoplasm cell compartment was defined as the cell ob-
ject subtracted from the nuclei. Segmentation of the
perinuclear cell compartment was accomplished by the
expansion of 20 pixels in the concanavalin A channel
and subtraction of the nuclei. Minor adjustments of the
parameters are needed to be used between different ex-
perimental setups and on different cell lines.

Feature extraction

After identification of the four cell compartments,
phenotypic characteristics were measured using the
AreaShape, Correlation, Intensity, Granularity, Location,
Neighbors and RadialDistribution modules as provided
by CellProfiler [46]. A total of 1441 features were ex-
tracted from each object which were exported into csv
format for downstream analysis.

Classification

To classify the cells for infection state, we used a virus
NP-specific antibody. The classification module by Cell-
Profiler Analyst was used to find highly indicative fea-
tures associated with infection by manual annotation of
infected and noninfected cells. Accordingly, the mean
intensity of the antibody signal in the perinuclear cell
compartment was selected for classification of MRC-5
cells infected with CoV-229E. The threshold for infec-
tion was defined as the mean plus three standard devia-
tions from the virus NP-specific antibody intensity in
the blank control. The set-off was determined on a
plate-to-plate basis to avoid bias by batch effects and
was checked for accuracy by checking for false positives
in non-infected wells.
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Antiviral dose-response and cytotoxicity

Nuclei count was used to determine the toxicity induced
by compounds alone, as well as compound and virus
combined. Averaged nuclei count per condition were
normalized to the DMSO controls. To capture relevant
cellular phenotypes, cytotoxic compounds resulting in
less than 80% survival were removed from the analysis.
Of note, given that TH6744 was previously shown to
have antiviral activity, and thus to further investigate this
novel compound, the Mid (10 pM) concentration was
included for downstream analysis, despite the viability
levels being at 63%. Antiviral efficacy was calculated as
the percentage of virus-positive cells per well and was
normalized to DMSO+virus control which was set to
100%.

Statistics

All experiments were performed in two separate bio-
logical replicates, each consisting of duplicate conditions.
Where indicated, plots represent mean + SD of the bio-
logical replicates. Statistical analysis was done using
GraphPad Prism version 9.0 (GraphPad Software Inc).
Two-way-ANOVA was performed for all the datasets
that required comparison among multiple data points
within a given experimental condition. Dunnet was ap-
plied for the correction of multiple comparisons, and the
family-wise alpha threshold and confidence level were
0.05 (95% confidence interval).

Feature analysis

In order to facilitate the broad use of our phenomics ap-
proach, an image analysis pipeline is provided with this
work, which is tailored to the application here presented,
and once executed will provide the necessary input for
subsequent analysis. Downstream analysis of the feature
data was performed using Python 3. Prior analysis, the
data was cleaned from images with artefacts as identified
by the QC pipeline described above. Next, the feature
values were mean centred and normalized to unit vari-
ance using the fit.transform method of StandardScaler of
scikit-learn module (version 0.22.1). Normalization was
done across all plates. Invariant features, features with
extreme variation (>15 standard deviations) and features
with missing data were removed. The features relating
to the virus antibody were removed prior analysis of
virus-induced morphological profiles.

To compare morphological profiles, the features were
presented as cluster maps. Feature normalization en-
sured that each feature (clustermap column) had a mean
of 0 and variance of 1. The normalized features were ag-
gregated to a mean profile per compound. Unsupervised
hierarchical clustering on the morphological profiles was
computed using the Euclidean metric, and the clustering
algorithm using Ward’s method and visualized using the
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seaborn data visualization library (version 0.11.0). Pear-
son’s correlation coefficients were pairwise calculated
using Panda’s python library function with default
settings.

Visualization of the high dimensional data was done
using the principal component analysis (PCA) on the
centred and normalized features and Uniform Manifold
Approximation and Projection (UMAP) using sklearn
(version 0.22.1). UMAP visualization was done using 30
neighbours. The image-level feature data was mean aver-
aged to simplify visualization.

Partial least-squares discriminant analysis (PLS-DA)
was used to model the virus infection and select features
associated with viral infection. Q* and R* values were
calculated for the PLS-DA model, which were estimated
by three-fold cross-validation. The absolute mean of
PLS-DA loadings were calculated and were grouped by
Cell Profiler module (AreaShape, Correlation, Intensity,
Granularity, Location, Neighbors, RadialDistribution),
cell compartment (nuclei, perinuclear space, cytoplasm,
cell) and stain (Hoechst, Concanavalin A, SYTO 14,
WGA and Phalloidin).

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512915-021-01086-1.

Additional file 1: Fig. S1. Representative images of phenotypic
reference compounds, calculated AUROC and phenomics approach
overview. a Representative images of the phenotypic reference
compounds Fenbendazole (Fen), Etoposide (Eto) and Metoclopramide
(Met) to which MRC-5 cells were exposed for 48h at 5 uM, and stained
with the indicated Cell Painting dyes or fluorophore conjugates. b Calcu-
lated area under the receiver operating characteristics curve (AUROC) =
0.98, which indicates that the PLS-DA loadings are representative for dis-
tinguishing infected from non-infected cells. ¢ Detailed overview of the
phenomics approach here described. Fig. $2. Randomized layouts and
reproducibility assessment. a Two different randomized layouts were used
for each biological replicate. Compounds are indicated by the colour
scheme, concentrations are indicated by L (Low), M (Mid) or H (High), ab-
sence or presence of the virus is indicated by -/+ CoV-229E. b Correlation
calculation between the two replicate/layouts assessed by Pearson correl-
ation, with a 95% confidence interval, as well as simple linear regression
(R). ¢ PCA of the morphological profiles induced by the phenotypic ref-
erence compounds for both biological replicate 1 (circle) and 2 (triangle).
Fig. S3. Intraplate variation. a and b. Mean proportion of infected cells
per condition and replicate, with calculated standard deviation SD indi-
cated next to each corresponding dose when applicable. The proportion
of infected cells in DMSO conditions was 91.4% +/- 6.9 SD for two bio-
logical replicates. Fig. S4. Survival of cells exposed to antiviral com-
pounds and structures for the in-house synthesized compounds. a Nuclei
count was used to assess the survival of MRC-5 cells exposed to the indi-
cated compounds for 48h. Two-way ANOVA was performed to assess the
statistical significance of each condition (*p<0.02, **p<0.002, **p<
0.0002). b Chemical structures for the in-house synthesized compounds
TH3289, TH5487 and TH6744. c Average nuclei count per image for
DMSO or media conditions, in the presence or absence of CoV-229E. The
use of DMSO as vehicle for the compounds did not result in alteration of
the cytotoxicity effect of the virus, which resulted in 20% cytotoxicity.
Data points are mean values + SD from two biological duplicates and
multiple technical replicates. Fig. S5. Morphological profiles and Pear-
son’s correlation coefficients. Individual morphological profiles presented
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as heatmaps of every tested compound at non-toxic concentrations, ac-
companied to the Pearson’s correlation coefficients for each condition in
respect to DMSO in the presence or absence of CoV-229E. Fig. S6. Pair-
wise Pearson’s correlations and Euclidean distances calculated for each
morphological profile. a Pairwise Pearson’s correlations coefficients for
the mean averaged morphological profiles of each tested compound at
non-toxic concentrations. The profiles of infected cells treated with
Remdesivir and E-64d positively correlate with DMSO in the absence of

in respect to DMSO conditions in the presence or absence of CoV-229E.
The higher Euclidean distance of Remdesivir, E-64d, TH3289, TH6744 and
TH5487, at the indicated concentrations, reflect antiviral activity. Fig. S7.
Pairwise Pearson’s correlations coefficients for the morphological profiles
of each tested compound at non-toxic concentrations. Fig. S8. PCA of
the morphological features of each indicated compound. a - ¢ PCA of
morphological features upon treatment with Favipiravir, Cathepsin L in-
hibitor and Bafilomycin A1 in infected (+CoV-229E) conditions compared

by taking the mean of all objects in the image. Percentage of variance

explained is indicated by %. d UMAP analysis results in two clusters each
containing either active or inactive antiviral compounds. Fig. $9. Repre-
sentative images of the modified Cell Painting assay, including the virus-

sures for all plates in the experiment. Images deviating more than five
standard deviations from the median of FocusScore, MaxIntensity, Mean-
Intensity, PercentMaximal, PowerLoglLogSlope and Stdintensity were
flagged as outliers and removed from the analysis.

Additional file 2: Table S1. PCA loadings of the first Principal
component indicating feature importance (Fig. 1d). The top 20 positively
correlated, as well as 20 most negatively correlated features including
their loadings on the first principal component.

Additional file 3:. Data. Numerical data corresponding to Fig. 3b,

Fig. S4a and Additional file 1 Fig. S4c.

the virus. b Euclidean distances calculated for each morphological profile

to DMSO control (-CoV-229E). Each dot in the PCA represents one image

NP antibody, for the indicated treatments. Fig. $10. Quality control mea-

Fig. 3¢, Additional file 1, Fig. S2b, Additional file 1 Fig. S3, Additional file 1
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