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Abstract

Background: The biophysics of an organism span multiple scales from subcellular to organismal and include
processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of
intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and
across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial,
ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not
explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications.
However, spatial models describing biological systems with spatial information are mathematically complex and
computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for
simpler methods able to model the spatial features of biological systems.

Results: In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE
models of population dynamics in biological systems, and vice versa. We provide examples of generating
spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models,
the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral
production and rates of extracellular viral diffusion and decay. We show how ODE model parameters can implicitly
represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity
to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a
multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to
employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate
objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility
of spatial, stochastic models.

Conclusion: We developed and demonstrate a method for generating spatiotemporal, multicellular models from
non-spatial population dynamics models of multicellular systems. We envision employing our method to generate
new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular
basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.
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Background
The function and form of biological systems involve bio-
physical mechanisms across all scales, from the subcellular
to the organismal [1]. Processes and properties observed
at a particular scale emerge from, and affect, complex pro-
cesses at a finer scale, such as the emergent polarization
and translocation of a cell from complex subcellular reac-
tion kinetics when exposed to a chemotactic stimulus [2].
Such hierarchical organization can be established to relate
the roles of individual biochemical components in signal-
ing and cytoskeletal networks at the subcellular level to
the emergence of tissue-level force generation, cell migra-
tion and tissue function, and shape changes [3]. Between
these two scales lies the cell, which has been argued to
provide a natural level of abstraction for modeling devel-
opment [4]. The role played by individual cells and their
interactions is apparent in development and disease, in-
cluding tip cells in collective cell migration [5], diversity in
production of virions during viral infection [6], and cancer
initiation by stem cells [7].
Each cell occupies a volume in space, the biochemical

processes in which are well known to experience effects of
spatial mechanisms like volume exclusion of macromole-
cules, the cytoskeleton, and organelles, resulting in macro-
molecular crowding that causes highly non-mass-action
reaction rates [8] and anomalous diffusion [9]. Recent
computational models have sought to describe the spatio-
temporal effects on the kinetics of elementary reactions
[10], as well as to relate discrete and continuous mathem-
atical descriptions of spatially resolved subcellular reaction
kinetics [11]. Likewise, models of spatiotemporal multicel-
lular systems in development and disease have shown the
significance of spatial mechanisms like diffusive transport
and the shape and position of individual cells in angiogen-
esis [12], polycystic kidney disease [13], and spheroid fu-
sion [14]. Simulations of viral infection have demonstrated
the non-negligible effects of the well-mixed assumptions
commonly employed when modeling viral infection and
immune response using population dynamics, like the
neglect of the initial distribution of infected cells in sus-
ceptible tissue [15].
The ability to derive cell-based, spatiotemporal models

from ordinary differential equation (ODE) models would
enhance the utility of both types of models. Cell-based,
spatiotemporal models can explicitly describe cellular
and spatial mechanisms neglected by ODE models that
affect the emergent dynamics and properties of multicel-
lular systems, such as the influence of dynamic aggregate
shape on diffusion-limited growth dynamics [16] and in-
dividual infected cells on the progression of viral infec-
tion [17]. Likewise, ODE models can inform cell-based,
spatiotemporal models with efficient parameter fitting to
experimental data, and can appropriately describe dy-
namics at coarser scales and distant locales with respect

to a particular multicellular domain of interest (e.g., the
population dynamics of a lymph node when explicitly
modeling local viral infection). One such example is the
approach of Murray and Goyal to derive discrete sto-
chastic dynamics from continuous dynamical descrip-
tions using the Poisson distribution in their multiscale
modeling work on hepatitis B virus infection [18]. Like-
wise Figueredo et al. compared derived representations
for mechanisms associated with early-stage cancer using
non-spatial agent-based, ODE and stochastic differential
equation modeling approaches and demonstrated the
feasibility of generating equivalent mechanistic models
[19]. However, to our knowledge, no well-defined gen-
eral formalism describes systematic translation of models
to the cellular scale from coarser scales at which spatially
homogeneous, population dynamics models using ODEs
appropriately describe a biological system. In the very
least, the lack of consistent translation of model terms
and parameters between spatial and non-spatial models
severely inhibits the potential to apply the vast amount
of available information and resources in non-spatial
modeling, such as those available in BioModels [20], to
spatial contexts, and to share validated, reproducible
spatial models [21].
In this work, we develop a method for generating

spatial, cell-based models from homogeneous, ODE-
based models of biological systems to address critically
important questions such as

1. Is the behavior of an ensemble of N cells with mean
parameter x in mechanism y the same as N times
the behavior of a single cell with the same
mechanism and mean parameter?

2. Is the behavior of a biological system in which a
species realistically diffuses qualitatively different
from one in which the species diffuses infinitely fast?

As such, we develop our method under the premise
that a spatial, cell-based model applied to an ensemble
of cells reproduces the ODE model from which it was
generated in the limit of well-mixed conditions. We de-
scribe the general formalism of our method with regard
to continuous modeling of cell populations and soluble
signals, and spatiotemporal, multicellular, and cell-based
mechanisms (e.g., diffusion, contact-mediated interac-
tions, discrete cell type transition probabilities). We
apply our method to generate spatial, cell-based models
from two non-spatial models of viral infection and host-
pathogen interaction based on our recent work in viral
infection and immune response modeling [17] to show
critically important aspects of spatially homogeneous vs.
heterogeneous models, and to demonstrate how the novel
ability through our method to generate explicit models of
implicit mechanisms in a homogeneous model can be
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used to generate new hypotheses about a biological sys-
tem. We call our method cellularization, which is to mean
that cellularizing a homogeneous model generates an ex-
plicit representation of cellular-level mechanisms impli-
citly represented by the homogeneous model.

Results
Spread of viral pathogens during infection is well known
to be an inherently spatial process, though the spatio-
temporal details of viral spread have not been well stud-
ied [22]. Recent computational modeling and simulation
have shown the critical importance of considering spatial
spread of infection when studying immune response
mechanisms like autocrine and paracrine interferon sig-
naling [23], while recent single-cell transcriptomics has
shown the significance of cellular heterogeneity in the
innate immune response to influenza A virus [24]. In
this section, we demonstrate the cellularization of ODE
models of viral infection and immune response accord-
ing to the formalism defined in “Conclusion.”
In this work, we developed a method for generating

spatial, multicellular models of biological systems from
non-spatial models, and vice versa, which we call cellulari-
zation. We demonstrate using our method by cellularizing
non-spatial models of viral infection and host-pathogen
interaction. Using these cellularized models, we quantita-
tively showed how spatial mechanisms implicitly repre-
sented in non-spatial models can exhibit significant effects
on emergent dynamics when explicitly modeled. Varia-
tions in related non-spatial model parameters emerged
from moderate cases of varying spatial mechanisms like
rate of diffusive mass transport of virus, while extreme
cases generated emergent dynamics inconsistently with
those described by the non-spatial model. We describe the
responsible mechanisms for extreme disagreement be-
tween homogeneous and cellular models, specifically con-
cerning the limitations of describing discrete biological
objects and processes using continuous descriptions.
Methods and deployment of their analogous spatial

models in simulation. We present ODE and spatial
model simulation results while investigating emergent
effects related to spatial, cell-based, and stochastic as-
pects introduced by the spatial models. Both cellularized
ODE models were generated ad hoc for the purposes of
this work according to published models of viral infec-
tion and immune response [25, 26], the parameters of
which were selected only for conveniences of demon-
strating their spatial analogues. As such, the simulation
results in this work per se should not be regarded as
relevant to modeling a particular virus or patient sce-
nario. Rather, simulation results should be surveyed
within the scope of this work while considering the pos-
sible applications of cellularization to existing models of
a particular virus or patient scenario.

Two-dimensional infectivity
The first cellularized ODE model in this work consists
of the interactions of a population of cells and an extra-
cellular virus using mass action. The virus infects unin-
fected cells U with an infection rate β, which causes
uninfected cells to join an infected cell population I1. In-
fected cells become virus-releasing cells I2 at a rate k, at
which point they release unitless virus V at a rate p,
modeling an eclipse phase. Virus-releasing cells die and
join a dead cell population A at a rate d, modeling virally
induced cell death. The virus decays at a rate c,

dU
dt

¼ −βUV

dI1
dt

¼ βUV−kI1
dI2
dt

¼ kI1−dI2
dA
dt

¼ dI2
dV
dt

¼ pI2−cV

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð1Þ

To build a spatial model of local infection using the con-
figuration described in “Implementation details,” Eq. 1 can
be rescaled to a simulated tissue patch and considered as
global measurements of the spatial domain. Knowing the
total number of epithelial cells in both the ODE and spatial
models, the global scaling factor η can be calculated from
Eq. 12 and applied to generate a form that describes the
quantities in Eq. 1 but at the size of the spatial domain,

du
dt

¼ −
β
η
uv

di1
dt

¼ β
η
uv−ki1

di2
dt

¼ ki1−di2
da
dt

¼ di2
dv
dt

¼ pi2−cv

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð2Þ

as in “Conclusion.”
In this work, we developed a method for generating

spatial, multicellular models of biological systems from
non-spatial models, and vice versa, which we call cellulari-
zation. We demonstrate using our method by cellularizing
non-spatial models of viral infection and host-pathogen
interaction. Using these cellularized models, we quantita-
tively showed how spatial mechanisms implicitly repre-
sented in non-spatial models can exhibit significant effects
on emergent dynamics when explicitly modeled. Varia-
tions in related non-spatial model parameters emerged
from moderate cases of varying spatial mechanisms like
rate of diffusive mass transport of virus, while extreme
cases generated emergent dynamics inconsistently with
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those described by the non-spatial model. We describe the
responsible mechanisms for extreme disagreement be-
tween homogeneous and cellular models, specifically con-
cerning the limitations of describing discrete biological
objects and processes using continuous descriptions.
Methods, here u measures the same quantity as U, i1

measures the same quantity as I1, and so on, but at the
scale of the spatial domain. The ODE model describes
the processes of virus-mediated infection an uninfected

cell (Û→bI1 ), an infected cell becoming a virus-releasing

cell ( bI1→bI2 ), and a virus-releasing cell dying due to the

effects of the virus ( bI2→Â ). Spatial analogues of these
processes can be formulated using Eq. 29 for a diffusive
extracellular virus field ~v of the form from Eq. 22,

Pr τ s; t þ Δtð Þ ¼ bI1jτ s; tð Þ ¼ Û
� �

¼ 1−e−
β
θv sð ÞΔt

Pr τ s; t þ Δtð Þ ¼ bI2jτ s; tð Þ ¼ bI1� �
¼ 1−e−kΔt

Pr τ s; t þ Δtð Þ ¼ Âjτ s; tð Þ ¼ bI2� �
¼ 1−e−dΔt

∂t~v ¼ DV∂
2
i ~v−c~vþ ~w

~w x; tð Þ ¼
p

V σ x; tð Þ; tð Þ�� �� τ σ x; tð Þ; tð Þ ¼ bI2
0 otherwise

8<:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð3Þ

Cellular measurements of extracellular virus v are cal-
culated from ~v according to Eq. 19. Unless otherwise
specified, all simulations were performed with the par-
ameter values in Tables 1 and 3. Simulations were ini-
tialized with fractions of initially infected cells in the
range 1% [28] to 10% [29], the distributions of which
were random in the spatial model, and with a single ini-
tially infected cell, which was placed at the center of the
epithelial sheet in the spatial model [17].
The distribution of infected and virus-releasing cells dem-

onstrated notable spatial features early in simulation, and
especially for fewer initially infected cells (Fig. 1). Groups of
infected and virus-releasing epithelial cells typically formed
near sites of initial infection, which generated prominent
gradients in the distribution of extracellular virus. However,
some sites of significant infection were also observed early
where cells were not initially infected (e.g., Fig. 1, 0.01 initial

infection fraction, 3 days in simulation time), which pro-
duced notable gradients in the extracellular virus field.
These sites of infection coalesced into infection throughout
the simulated tissue patch, the earliest infected cells of
which often, but not always, corresponded to outgrowth of
dead cells, and produced elevated levels of extracellular
virus throughout the spatial domain. Without any antiviral
strategy, nearly all cells died by 2 weeks of simulation time
for all initial infection fractions.
To test the validity of cellularization and the effects of

spatial mechanisms introduced to the ODE model, scalar
measurements of spatial model results were made of all
cell type populations and the extracellular virus and
compared to results from the scaled ODE model (Eq. 2).
By inspection, the spatial model and employed model
parameters generated spatiotemporal dynamics consist-
ently with the original ODE model (Fig. 2). Among the
100 simulation replicas of the spatial model for each ini-
tial infection fraction, an initial infection fraction of 0.01
generated results with the most significant differences
compared to those from the scaled ODE model (worst
and best QRF 55% and 84%, infected cells and virus-
releasing cells, respectively; worst and best NMAE 30%
and 4%, dead cells and susceptible cells, respectively). In
the case of an initial infection fraction of 0.01, some
simulation replicas produced infection dynamics with a
delay, where all measures of progression of infection oc-
curred at the same magnitude and with the same dy-
namical features, but slightly later than predicted by the
ODE model, creating a rightward skew in replica results.
Differences between models decreased with increase ini-
tial infection fraction, where 0.1 initial infection fraction
produced the best agreement (worst and three best QRF
70% and 100%, susceptible cells and the three variables
dead cells, virus-releasing cells and virus, respectively;
worst and best NMAE 20% and 1%, susceptible cells and
dead cells, respectively), and 0.05 produced more, but
still seemingly acceptable by inspection, differences
(worst and best QRF 64% and 100%, susceptible cells
and dead cells, respectively; worst and best NMAE 22%
and 1%, susceptible cells and dead cells, respectively).
Spatial effects were even more prominent for simulation

replicas with one initially infected cell (Fig. 3). Spread of

Table 1 Model parameters used in simulations of infection unless otherwise specified

Parameter Value Reference / justification

Infection rate β 7.18 × 10−13 s−1 Selected for complete infection by around 5 days

Eclipse phase parameter k 1.85 × 10−5 s−1 Selected for an eclipse phase of 15 h

Death rate d 2.78 × 10−6 s−1 Selected for complete cell death by around 21 days

Virus diffusion parameter DV 0.1 μm2 s−1 Selected to be 10× greater than value from [17] 1

Virus decay rate c 1.09 × 10−4 s−1 Selected for a diffusion length of approximately three cells

Virus production rate p 5.79 × 10−4 cell−1 s−1 Selected for complete infection by around 5 days
1 Estimates a range of [3 × 10−6 μm2/s, 3 μm2/s] based on Stokes-Einstein and steady-shear viscosity for SARS-CoV-2 in lung mucus
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infection exhibited outward spread from the initial site of
infection, but with virus-releasing cells far from the initial
site of infection even by 3 days of simulation time (Fig.
3A). Such spread of infection at seemingly random loca-
tions was especially noticeable by 7 days of simulation,
where the distributions of dead cells were comparably dis-
tributed as those for an initial infection fraction of 0.1,
though the degree of death occurred later in simulation.
The observed delay due to lower initial infection was in-
creasingly notable for simulation replicas with one initially
infected cell, where peak viral load occurred for some
simulation replicas on the order of days later than when
predicted by the ODE model (Fig. 3B). For some simula-
tion replicas with one initially infected cell, progression of
infection did not occur at all. Replicas for one initially in-
fected cell produced significantly more variability in re-
sults, which produced some better QRF measurements
compared to initial infection fractions from 0.01 to 0.1
(worst and best QRF 80% and 92%, susceptible cells and
virus, respectively), but significantly worse NMAE mea-
surements (worst and best NMAE 68% and 20%, infected
cells and dead cells, respectively).

Effects of diffusivity
Cellularization of ODE models like Eq. 2 presents the abil-
ity to interrogate the effects of mass transport that are im-
plicitly represented in a homogeneous model. To test the
effects of extracellular diffusion of infection dynamics, the
virus diffusion coefficient was swept for all aforementioned
initial infection conditions with logarithmic variations over
a range of a reduction by a factor of 1000, to an increase by
a factor of 10, from the value in Table 1 (Fig. 4). Decreases
in virus diffusivity generally led to reductions in the rate of
infection of the tissue patch and greater departure from the
dynamics described by the ODE model. As in results shown
in Fig. 3, no infection occurred for some replicas with one
initially infected cell and all diffusion coefficients less than
1.0 μm2/s. In cases with the minimum considered virus dif-
fusion coefficient (i.e., 0.0001 μm2/s), the number of suscep-
tible cells tended towards a non-zero final value, and
variations with very small virus diffusion coefficients and
smaller initial infection fractions generated replicas in
strong disagreement with the ODE model (e.g., for
0.0005 μm2/s and one initially infected cell, worst QRF 2%,
susceptible cells). For initial infection fractions of 0.05 and

Fig. 1 Spatial model results of viral infection in a two-dimensional, epithelial sheet. Results shown for 1% (top), 5% (middle), and 10% (bottom)
initially infected cells at 0, 3, 4, 5, 7, and 14 days in simulation time. Epithelial cells shown as blue when susceptible, green when infected, red
when virus-releasing, and black when dead. Lower-right color bar shows levels in the virus field, from blue (0) to red (0.2)
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0.1, the spatial and ODE models agreed for virus diffusion
coefficients as low as 0.01 μm2/s, whereas the same was true
for an initial infection fraction of 0.01 and virus diffusion
coefficient as low as 0.05 μm2/s. With increasing initial in-
fection fraction and virus diffusion coefficient, replicas
tended towards the ODE model (e.g., for virus diffusion co-
efficient of 1 μm2/s and all initial infection fractions of at
least 0.01, QRF was 1 for all variables and worst NMAE
was 7% for susceptible cells and 0.01 initial infection
fraction).
We tested whether decreases in virus diffusion coeffi-

cient in the spatial model correspond to decreases in in-
fection rate (i.e., the parameter β) by fitting the ODE
model to spatial model results while varying the infection
rate. Fitting was performed using results from all simula-
tion replicas per parameter set and initial conditions when
infection occurred. The error during fitting was calculated
as the squared difference between the fitted ODE model
results and spatial model results for all cell type popula-
tions and the viral load at all time points. We calculated
an efficiency of infectivity as the ratio of the infectivity as
fitted to the spatial model results to the infectivity of the

original ODE model. We also calculated a score of fit to
characterize the overall similarity of the fitted ODE model
and spatial model results as the mean NMAE of all vari-
ables of the fitted ODE model. Reduced infection rates
were found that reproduced spatial model results using
the ODE model for all cell type populations and viral load
(Fig. 5) for many virus diffusion coefficients, with a range
of efficiency of infectivity between 6.6% (single initially in-
fected cell, virus diffusion coefficient of 0.0001 μm2/s,
score of fit of 0.262) and 99.2% (initial infection fraction of
0.05, virus diffusion coefficient of 1.0 μm2/s, score of fit of
0.026). The ODE model better reproduced spatial model
results with reduced infection rates for greater virus diffu-
sion coefficients and initial infection fractions (e.g., for fit-
ted ODE model to 0.01 μm2/s virus diffusion coefficient
and 0.05 initial infection fraction, worst and three best
QRF: 90% and 100%, infected cells and the three variables
virus-releasing cells, dead cells and virus, respectively;
worst and best NMAE: 25% and 0.9%, susceptible cells
and dead cells, respectively). Some virus diffusion coeffi-
cients generated dynamics that were not consistent with
the ODE model and reduced infection rates, such as virus
diffusion coefficients less than 0.005 μm2/s for an initial
infection fraction of 0.01, and less than 0.001 μm2/s for
initial infection fractions of 0.05 and 0.1 (e.g., for fitted
ODE model to 0.0001 μm2/s virus diffusion coefficient
and 0.1 initial infection fraction, worst QRF of 27% for
virus-releasing cells). Otherwise, the ODE model could be
well-fitted to spatial model results with decreasing virus
diffusion coefficient by reducing the ODE model infection
rate (e.g., all QRF measurements of fitted ODE models
were at least 94% for all virus diffusion coefficients of at
least 0.1 μm2/s).

Immune response modeling
The second cellularized ODE model in this work adds a
compartmental model of immune cell proliferation and
recruitment to the ODE model of viral infection in
“Two-dimensional infectivity,” which presents a number
of spatially resolved mechanisms well suited for studying
using cellularization. In this model, we neglect most of
the intricacies of autocrine and paracrine signaling in-
volved in the innate and adaptive immune responses
that, though critical to an effective immune response
in vivo and candidates for applications of cellularization
in model-based research, need not be explicitly modeled
for the purposes of this demonstration (for an example
of detailed modeling of the immune response using
ODEs, see [25]). Infected and virus-releasing cells release
a local cytokine C at a rate pC, which decays at a rate cC.
The local cytokine transports to cytokine in a lymph
node compartment CL at a rate kC, which decays at a
rate ccl. The lymph node cytokine induces proliferation
of an immune cell population in the lymph node

Fig. 2 Scalar results from 100 replicas of the spatial model of viral
infection. Results shown for 1% (left), 5% (center), and 10% (right)
initially infected cells. Medians shown as black lines. 0th to 100th
quantiles shaded as blue, 10th to 90th as orange, and 25th to 75th
as light blue. ODE model results shown as red dashed lines
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compartment EL at a rate pel, which also undergoes satu-
rated proliferation and transports to a local immune cell
population E at a rate ke. Each local immune cell kills
virus-releasing cells at a rate dei2 [25], and the local im-
mune cell population decays at a rate dE,

dU
dt

¼ −βUV

dI1
dt

¼ βUV−kI1
dI2
dt

¼ kI1− d þ dei2Eð ÞI2
dA
dt

¼ d þ dei2Eð ÞI2
dV
dt

¼ pI2−cV

dC
dt

¼ pC I1 þ I2ð Þ−cCC−kCC
dCL

dt
¼ kCC−cclCL

dE
dt

¼ keEL−dEE

dEL

dt
¼ pelCL þ relCLEL

Kel

Kel þ EL
−keEL

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

Continuing the construction of a spatial model of a
local patch of infection as described in “Two-

dimensional infectivity,” Eq. 4 can be scaled in the same
manner as performed on Eq. 1 using the total number of
epithelial cells in the spatial and ODE models,

du
dt

¼ −
β
η
uv

di1
dt

¼ β
η
uv−ki1

di2
dt

¼ ki1− d þ dei2

η
e

� �
i2

da
dt

¼ d þ dei2

η
e

� �
i2

dv
dt

¼ pi2−cv

dc
dt

¼ pC i1 þ i2ð Þ−cCc−kCc
dcL
dt

¼ kCc−cclcL
de
dt

¼ keeL−dEe

deL
dt

¼ pelcL þ relcLeL
Kel

ηKel þ eL
−keeL

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

Note that rescaling the cytokine and immune cell
population in the lymph node compartment is optional
and could instead remain at the scale of the original

Fig. 3 Spatial and ODE model results of viral infection in a two-dimensional, epithelial sheet with one initially infected cell. A Spatial model
results of one simulation replica at 0, 3, 4, 5, 7, and 14 days in simulation time. Epithelial cells and extracellular virus shown as in Fig. 1. B Scalar
results from 100 replicas of the spatial model. Medians shown as black lines. 0th to 100th quantiles shaded as blue, 10th to 90th as orange, and
25th to 75th as light blue. ODE model results shown as red dashed lines
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ODE model (e.g., eL = ηEL throughout). In the spatial
model, local cytokine and each local immune cell are
spatially modeled, whereas the lymph node cytokine and
immune cell population remain as ODEs. Contact-
mediated killing, which involves a number of spatially
resolved properties (e.g., position) and dynamics (e.g.,
motility) that are implicitly represented in the ODE
model, is cellularized for each virus-releasing cell using

Eq. 34 for Ê− type (i.e., local immune cell type) cell total
contact area AE, total number of epithelial cells Ne, and

total contact area between a cell s and Ê cells Aσ, s. As
such, Eq. 4 can then be written according to the afore-
mentioned multiscale structure,

Pr τ s; t þ Δtð Þ ¼ bI1jτ s; tð Þ ¼ Û
� �

¼ 1−e−
β
θv s;tð ÞΔt

Pr τ s; t þ Δtð Þ ¼ bI2jτ s; tð Þ ¼ bI1� �
¼ 1−e−kΔt

Pr τ s; t þ Δtð Þ ¼ Âjτ s; tð Þ ¼ bI2� �
¼ 1−e

− dþdei2Ne
ηAE

As;E

� �
Δt

∂t~v ¼ DV ∂
2
i ~v−c~vþ ~wV

∂t~c ¼ DC∂
2
i ~c− cC þ kCð Þ~cþ ~wC

~wV x; tð Þ ¼
p

V σ x; tð Þ; tð Þ�� �� τ σ x; tð Þ; tð Þ ¼ bI2
0 otherwise

8<:
~wC x; tð Þ ¼

pC
V σ x; tð Þ; tð Þ�� �� τ σ x; tð Þ; tð Þ∈ bI1; bI2n o

0 otherwise

8<:
Pr add k Ê−type cells
� � ¼ 1−e−keeLΔt

X
0≤n≤ k

keeLΔtð Þn
n!

Pr remove sjτ s; tð Þ ¼ Ê
� � ¼ 1−e−dEΔt

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

; ð6Þ

Fig. 4 Infection model results while varying spatial model parameters. A Number of susceptible cells from 100 replicas of the spatial model of
viral infection while varying initial infection fraction and virus diffusion coefficient. Medians shown as black lines. 0th to 100th quantiles shaded as
blue, 10th to 90th as orange, and 25th to 75th as light blue. ODE model results shown as red dashed lines. ODE model results with best-fit
infectivity shown as magenta dotted lines. B Efficiency of infectivity (top), measured as the ratio of fitted to original ODE model infectivity, and
score of fit (bottom), measured as the mean of the NMAE for all variables of the fitted ODE model, for all spatial model parameter variations.
Results for efficiency of infectivity are shaded from lowest value (red) to highest value (green), and for score of fit from zero (green) to one (red)
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where the rate equations for eL and cL are the same as
in Eq. 5. All other equations are described in “Two-di-
mensional infectivity.” Cellularization of an ODE model
like Eq. 4 also necessitates an explicit description of
where and how incoming and outgoing cells enter and
exit a local spatial domain, the details of which are
neglected in a homogeneous model. For the cellulariza-
tion in this work, we designated the spatial domain
boundary above the epithelial sheet was assigned as the
inflow boundary for local immune cells. Outgoing cells
were immediately removed from the spatial domain and
replaced with medium. Unless otherwise specified, all
simulations were performed with the parameter values
in Tables 1, 2 and 3.
The immune response prevented complete spread of

infection throughout the spatial domain in all 100 simu-
lation replicas of 0.01, 0.05, and 0.1 initial infection frac-
tion, and decreasingly so with increasing initial infection
fraction (Fig. 6). After 2 days of simulation time, infected
and virus-releasing cells were more prominently distrib-
uted throughout the spatial domain compared to local
immune cells. However, a strong immune response re-
cruited sufficient immune cells to nearly cover the entire
epithelial sheet by days 7, 6, and 5 for initial infection
fractions 0.01, 0.05, and 0.1, respectively, resulting in sig-
nificant killing of virus-releasing cells and prevention of
further infection. By 2 weeks of simulation time for all
initial conditions and simulation replicas, virus and cyto-
kine levels were near zero, most immune cells had left
the spatial domain and the epithelial sheet consisted of

susceptible cells with significant distributions of dead
cells. Initial infection fractions of 0.01, 0.05, and 0.1 re-
sulted in final fractions of dead cells of around 0.5,
0.625, and 0.75, respectively.
As with the model of viral infection described in

“Two-dimensional infectivity,” the spatial model of viral
infection and immune response generated spatiotempo-
ral dynamics consistently with the original ODE model
using the employed model parameters (Fig. 7). Simula-
tion replicas of the spatial model produced nearly the
same number of susceptible cells at the end of simula-
tion as the ODE model for 0.01 initial infection fraction,
while replicas of the spatial model produced slightly
fewer final susceptible cells and more final dead cells
than the ODE model for initial infection fractions of
0.05 and 0.1. For an initial infection fraction of 0.01,
peak viral load, local cytokine, and lymph node cytokine
in replicas using the spatial model occurred slightly later
than for the ODE model (worst and best QRF 30% and
88%, lymph node cytokine and susceptible cells, respect-
ively; worst and best NMAE 40% and 5%, virus-releasing
cells and susceptible cells, respectively), while these met-
rics were approximately the same between the spatial
and ODE models for initial infection fractions of 0.05
and 0.1 (for 0.05 initial infection fraction, worst and best
QRF 25% and 70%, dead cells and infected cells, respect-
ively; worst and best NMAE 30% and 10%, virus-
releasing cells and dead cells, respectively; for 0.1 initial
infection fraction, worst and best QRF 16% and 70%,
dead cells and infected cells, respectively; worst and two

Fig. 5 Viral load from 100 replicas of the spatial model of viral infection while varying initial infection fraction and virus diffusion coefficient.
Medians shown as black lines. 0th to 100th quantiles shaded as blue, 10th to 90th as orange, and 25th to 75th as light blue. ODE model results
shown as red dashed lines. ODE model results with best-fit infectivity shown as magenta dotted lines
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best NMAE 32% and 10%, virus-releasing cells and the
two variables dead cells and local immune cells, respect-
ively). The number of infected, virus-releasing, and
lymph immune cells significantly varied for replicas of
the spatial model and an initial fraction of 0.01, while for
initial infection fractions of 0.05 and 0.1 the maximum
number of infected, virus-releasing, and lymph immune
cells were slightly greater than those of the ODE model.
However, spatial model replicas produced slightly fewer
local immune cells than the ODE model before peak
viral load and then tended towards the same values as
the ODE model thereafter.
In some simulation replicas of the spatial model, viral

load suddenly increased to appreciable values even days
after viral load decreased below a value of 1, and then

decreased again to negligible values. Inspection of simu-
lation data showed that latent extracellular virus infected
susceptible cells after the initial progression of infection
in some replicas of the spatial model. We observed this
event, which cannot occur using the ODE model, in pre-
vious work modeling viral infection and called it “recur-
sion” [17].
To demonstrate the utility of cellularization to gener-

ate explicit spatial models of underlying biophysical
mechanisms and use them to formulate biological hy-
potheses, we tested the effects of spatial mechanisms in-
troduced during development of the spatial analogue to
the ODE model of infection and immune response. Spe-
cifically, we performed a parameter sweep of the sam-
pling fraction by which immune cells are seeded and the

Table 2 Model parameters used in simulations of infection and immune response unless otherwise specified

Parameter Value Reference / justification

Immune killing rate dei2 1.16 × 10−11 cell−1

s−1
Selected for comparable killing rate by viral death

Cytokine production rate pC 1.16 × 10−4 cell−1

s−1
Selected for maximum total cytokine on the order of 1 k in typical simulations

Cytokine decay rate cC 2.31 × 10−5 s−1 Selected for a diffusion length of approximately eight cells

Cytokine transport rate kC 5.79 × 10−6 site s−1 Selected for appreciable delay in inflammatory signaling

Lymph node cytokine decay rate ccl 5.79 × 10−6 s−1 Selected for cytokine clearance by two weeks

Immune cell transport rate ke 1.16 × 10−5 s−1 Selected for appreciable delay in immune cell recruitment

Immune cell decay rate dE 1.16 × 10−5 s−1 Selected for immune cell clearance by two weeks

Cytokine-induced immune cell production rate
pel

1.16 × 10−9 cell s−1 Selected for marginal induction of immune cell production

Cytokine-activated immune cell production
rate rel

5.79 × 10−8 s−1 Selected for significant rate-limited production of immune cell production

Immune cell production midpoint Kel 500 cells Selected for maximum total immune cells on the order of 3 k in typical
simulations

Number of local epithelial cells Ne 1600 cells Calculated from spatial model specification

Total contact surface area AE 25 site surfaces Assumed based on epithelial sheet geometry

Cytokine diffusion parameter DC 0.16 μm2 s−1 [17]

Sampling fraction 0.1% Selected for mostly random immune cell seeding

Chemotaxis multiplier λc 10,000 Typical CPM value for reasonable chemotaxis

Immune cell-medium contact coefficient 20 Selected for preferential attachment of immune cells not with each other

All other contact coefficients 25 Selected for preferential attachment of immune cells not with each other

Table 3 Parameter values used in all simulations

Parameter Value Reference / justification

Simulation step Δt 5 min./step Selected for approx. 14 days of sim. time in 4 k sim. steps

Lattice site width 2 μm/site Selected according to cell diameter

Volume multiplier λv 9 [17]

Volume constraint vc 25 sites Selected according to typical epithelial size and lattice site width

Intrinsic random motility H �
10 [27]

Global scaling coefficient η 1.6 × 10−4 Calculated from Eq. 12 according to model specifications

Local scaling coefficient θ 4 × 10−9 site−1 Calculated from Eq. 17 according to model specification
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chemotaxis parameter that describes how sensitively
they chemotax along gradients of local cytokine for an
initial infection fraction of 0.1. We varied the sampling
fraction from 2.5 × 10−5 (i.e., equivalent to seeding in
random locations) to 1.0 (i.e., at the maximum value of
local cytokine in all available sites), and the chemotaxis
parameter from 104 (i.e., virtually no chemotaxis) to 106

(i.e., just below permitting annihilation of cells by exces-
sive chemotactic forces) using a logarithmic scale. We
measured the normalized root mean squared error
(NRMSE) of results from each of 100 simulation replicas
as forecasting results from the ODE model. NRMSE cal-
culations were made for results in intervals of ten

simulation steps (i.e., 50 min) for each parameter set, the
summation of which we used to quantify how well the
spatial model represented the constituent components
of the ODE model using each parameter set.
As determined by the final number of susceptible cells

in simulation replicas, we found that the most effective
immune response strategy was one of random seeding
and strong chemotaxis, and the least effective strategy
was one of cytokine-mediated seeding and marginal
chemotaxis (Fig. 8). Seeding cells at the currently avail-
able maximum (i.e., a sampling fraction of 1) produced
the least effective immune response to prevent infection
for a given chemotaxis parameter, as was marginal

Fig. 6 Spatial model results of viral infection and immune response in a quasi-two-dimensional, epithelial sheet. Results shown for 1% (top), 5%
(middle), and 10% (bottom) initially infected cells at 0, 2, 3, 4, 7, and 14 days in simulation time. Epithelial cells shown as in Fig. 1. Immune cells
shown as dark red. Lower-right color bar shows levels in the virus and cytokine fields, from blue (0) to red (0.05)
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chemotaxis for a given sampling fraction. Likewise, seed-
ing immune cells mostly at random produced a better
strategy for mitigating spread of infection as did stronger
chemotactic sensitivity for a given sampling fraction. Im-
mune response was most effective for sampling fractions
up to 0.1% and was more effective with increasing sam-
pling fraction and decreasing chemotaxis parameter.
A significant source of differences between the spatial

and ODE models was differences in the timing of peak
viral load during progression of infection (Fig. 9). For
greater sampling fractions and lesser chemotaxis param-
eters, peak viral load was greater and occurred later in
replicas using the spatial model. These differences pro-
duced viral load curves for simulation replicas of the
spatial model with the same dynamical features as the
ODE model (maximum value around 2 to 3 days,
followed by logarithmic decay to zero), and even (nearly)
identical results before peak viral load, but with contin-
ued progression of infection up to a day longer (e.g.,
sampling fraction of 1.0 and chemotaxis parameter of
104, worst and best QRF 12% and 60%, dead cells and in-
fected cells, respectively; worst and best NMAE 53% and
17%, susceptible cells and local immune cells, respect-
ively) before decline and elimination of infection. For
mostly random seeding and strong chemotaxis (e.g.,
sampling fraction of 2.5 × 10−5 and chemotaxis

parameter of 106), the only notable differences between
spatial and ODE model results occurred long after peak
viral load and for all parameter sets, where single infec-
tion events produced strong fluctuations in otherwise
negligible viral load values. The overall best-fit param-
eter set was a sampling fraction of 0.01% and chemotaxis
parameter of 106 (worst and best QRF 24.5% and 82%,
lymph immune cells and infected cells, respectively;
worst and best NMAE 24% and 5%, virus-releasing cells
and dead cells, respectively).
Lastly, we tested the best-fit parameters for aforemen-

tioned parameter sweep for the scenario of one initially
infected cell. Previously observed stochasticity of system
dynamics and outcomes for one initially infected cells in
“Two-dimensional infectivity” were also observed when
using the best-fit parameters (Fig. 10). In the case of also
simulating an immune response, the final distribution of
local immune cells varied significantly among 100 simu-
lation replicas. In simulation replicas that experienced
more infection, few immune cells were found near the
site of initial infection, whereas in replicas that experi-
enced less infection, more immune cells were found
nearer to the site of initial infection.
Two simulation replicas experienced no significant in-

fection, and those replicas that did experienced infection
at significantly varying degrees of severity (Fig. 11).

Fig. 7 Scalar results from 100 replicas of the spatial model of viral infection and immune response. Results shown for 1% (left), 5% (center), and
10% (right) initially infected cells. Medians shown as black lines. 0th to 100th quantiles shaded as blue, 10th to 90th as orange, and 25th to 75th
as light blue. ODE model results shown as red dashed lines
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Fig. 8 Susceptible cells from 100 replicas of the spatial model of viral infection while varying immune cell sampling fraction and chemotaxis
parameter. Medians shown as black lines. 0th to 100th quantiles shaded as blue, 10th to 90th as orange, and 25th to 75th as light blue. ODE
model results shown as red dashed lines. Star marks best. Triangle marks worst. Circles with green to red shading show best to worst total
error, respectively

Fig. 9 Viral load from 100 replicas of the spatial model of viral infection while varying immune cell sampling fraction and chemotaxis parameter.
Medians shown as black lines. 0th to 100th quantiles shaded as blue, 10th to 90th as orange, and 25th to 75th as light blue. ODE model results
shown as red dashed lines. Star marks best. Triangle marks worst. Circles with green to red shading show best to worst total error, respectively
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Among replicas with more than one infected cell during
simulation time, the final number of susceptible cells
was in the range of 772 to 1045 cells, with mean and
standard deviation of 880 and 98.7 cells, respectively.
Compared to a final number of susceptible cells of 722.7

according to the ODE model, the spatial model pro-
duced results that disagree with the ODE model in the
range of about 7 to 45% less infection for replicas that
experienced infection (worst and best QRF 29% and
82%, susceptible cells and virus-releasing cells,

Fig. 10 Spatial model results from two simulation replicas of viral infection and immune response in a quasi-two-dimensional, epithelial sheet
with best-fit immune response parameters and one initially infected cell. Results shown at 0, 3, 4, 5, 7 and 14 days in simulation time. Epithelial
and immune cells shown as in Fig. 6

Fig. 11 Scalar results from 100 replicas of the spatial model of viral infection and immune response with best-fit immune response parameters
and one initially infected cell. Medians shown as black lines. 0th to 100th quantiles shaded as blue, 10th to 90th as orange, and 25th to 75th as
light blue. ODE model results shown as red dashed lines
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respectively; worst and best NMAE 91% and 16%, local
immune cells and susceptible cells, respectively). Mea-
surements of viral load and local and lymph cytokine
were comparable to the ODE model in magnitude,
though the replicas that experienced less severe infection
also experienced later peak viral loads and cytokine, with
corresponding effects on immune cell recruitment.

Discussion
We demonstrated that spatial mechanisms like mass
transport are implicitly represented in non-spatial model
parameters like virus infection rate. Referring to Eq. 1,
the model term (−βUV) describes the rate at which sus-
ceptible cells become infected by exposure to virus with-
out regard for which susceptible cell is infected, or for
which virion does the infecting, or for how the virion ar-
rived at the cell. The ODE model uniformly exposes
each cell to each virion and employs the model infectiv-
ity parameter β to describe all other mechanisms associ-
ated with infection besides the presence of susceptible
cells and virions, including transport of virions from
virus-releasing cells to susceptible cells. When varying
the diffusion coefficient of virus, we found that we could
map reductions in virus diffusion to reductions in the
ODE model infectivity, which produced ODE model re-
sults that were indistinguishable from spatial model me-
dian results for all but the most extreme parameter sets
(i.e., very low diffusion and few initially infected cells,
Figs. 4 and 5). Referring to our named outcomes in
“Conclusion.”
In this work, we developed a method for generating

spatial, multicellular models of biological systems from
non-spatial models, and vice versa, which we call cellu-
larization. We demonstrate using our method by cellu-
larizing non-spatial models of viral infection and host-
pathogen interaction. Using these cellularized models,
we quantitatively showed how spatial mechanisms impli-
citly represented in non-spatial models can exhibit sig-
nificant effects on emergent dynamics when explicitly
modeled. Variations in related non-spatial model param-
eters emerged from moderate cases of varying spatial
mechanisms like rate of diffusive mass transport of virus,
while extreme cases generated emergent dynamics in-
consistently with those described by the non-spatial
model. We describe the responsible mechanisms for ex-
treme disagreement between homogeneous and cellular
models, specifically concerning the limitations of de-
scribing discrete biological objects and processes using
continuous descriptions.
Methods, we found that sufficiently high virus diffu-

sion results in an Ensemble average, sufficiently low
virus diffusion results in incompatibility, and between
these two extrema results in localization. This aspect of
a non-spatial model is particularly important when

considering how to interpret in vitro results and trans-
late information gained from in vitro scenarios to pre-
dictions of in vivo outcomes. For example, diffusive
transport of extracellular virions during viral infection
depends on the medium through which virions migrate,
which varies in vitro by culture medium and in vivo by
location. Results in “Effects of diffusivity” can be
regarded in this context as characterizing the effects of
the environment on progression of infection while hold-
ing all other mechanisms constant, of which we showed
to significantly affect both the rate and severity. Such
observations then elucidate a means by which we can in-
terrogate when coarse-grained approaches fail to reliably
predict physical data by examining the underlying spa-
tiotemporal mechanisms. As demonstrated in this work,
our method of cellularization enables such activities re-
lated to both synthesis and validation of non-spatial
models. Furthermore, the model parameters for the dif-
fusion coefficient of cytokines and virus in immune re-
sponse simulations were of comparable magnitude,
though cytokines are often reported to be an order of
magnitude greater than that of virus. While the purpose
of this work is not to generate accurate predictions of a
particular virus and cytokine in a particular location, it is
interesting to note that the reduction in magnitude of
diffusion of small molecules alone has been observed in
human cervical mucus, where larger viruses diffuse un-
hindered [30, 31].
We also demonstrated how a generated spatial

analogue of a non-spatial ODE model using cellulariza-
tion can further elucidate the features of the underlying
mechanisms that a non-spatial model only implicitly
represents. The parameter sweep of spatial model pa-
rameters in “Immune response modeling” showed the
possible strategy of the immune response to eliminate
viral infection. Specifically, immune cells more effectively
induce apoptosis in infected cells via contact-mediated
interactions when they arrive at a mostly random loca-
tion near a local site of infection and then strongly che-
motax along soluble immune signals. Probably, arriving
where immune signals are the strongest results in im-
mune cells that cannot effectively prevent the advancing
front of an infection, due to the nature of diffusive trans-
port. Rather, it may be more effective to arrive near, but
just outside, a lesion. This suggests that resident cells of
a site of infection may further activate chemotactic sen-
sitivity in the immune cells described by an ODE model
like ours that models viral infection and immune re-
sponse (e.g., CD8+ T cells). Such observations well de-
scribe recruitment and search strategies within the
context of current understanding of effector T cells [32].
Namely, that effector T cell search strategies for infected
cells balance a trade-off of exploration and exploitation
(i.e., of random and directional migration), and that T
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cells presumably encounter antigen-presenting cells
much more often in inflamed tissue than in lymph
nodes, which changes their search strategy from
exploration-dominant to exploitation-dominant. Cellu-
larization of detailed ODE models of the immune re-
sponse [25] could generate detailed multiscale, spatial,
cell-based models, which would otherwise be especially
difficult to construct de novo, that include these details
for the quantitative study of the immune response with
spatial information and cellular precision.
Some simulation replicas of viral infection generated

no infection of tissue even without an immune response
for various model parameters and initial conditions. This
observation is particularly important with regard to both
the biological features represented in the non-spatial and
spatial models, as well as the meaning of spatial model,
of viral infection. It is certainly a reasonable and relevant
question to ask whether a single infected cell can cause
infection in tissue, and to what extent. For such a ques-
tion, the ODE model always predicts infection, due to its
continuous treatment of discrete objects and processes
(e.g., a half of a virion can generate a quarter of an in-
fected cell in the ODE model), while the spatial analogue
allows for premature death and ineffective viral expos-
ure. In this regard, the spatial analogue better describes
the total story of infection. This is not to say that either
is a sufficiently insightful or predictive model of viral in-
fection per se, or that failure to infect is unique to the
generated spatial model in general [17, 33]. Rather, we
argue that the spatial analogue provides a better descrip-
tion of the biophysical mechanisms responsible for viral
infection according to the ODE model. The feasibility of
employing such a spatial analogue on useful modeling
applications could be questioned due to the greater
computational cost of multicellular simulations, though
such a limitation is technological. To this end, our cellu-
larization method improves the feasibility of using
spatial, multicellular models by readily permitting the
employment of model parameters fitted to in vivo and/
or in vitro data using analogous non-spatial models,
which are computationally inexpensive.
More importantly, deciding on the context of the

spatial domain of a spatial analogue with respect to the
entire biological system is a particularly challenging
modeling problem. For example, the spatial analogues
developed in this work employed periodic boundary
conditions on the boundaries orthogonal to the epithe-
lial sheet. This arrangement implies that the spatial
analogue describes one instance of a periodic system,
the collection of which the ODE model describes. This
paradigm breaks down when considering highly localized
cases like one initially infected cell, as demonstrated by
multiple simulation replicas of the spatial analogue pro-
ducing significantly different outcomes (i.e., widespread

infection or no infection). In such a case, we could ob-
serve no infection in one replica and then argue that in-
fection occurred in some other replica, at the expense of
revising the premise of the model altogether (i.e., the
system described by the ODE model is not periodic). As
inconvenient as such a scenario may be, it demonstrates
that cellularization better equips the modeler to interro-
gate the underlying mechanisms responsible for the
emergent dynamics of a biological system by providing a
means by which explicit cell-based and/or spatial models
can be consistently generated from non-spatial models.
In the case of viral infection, cellularization enables the
utilization of both well-fitted ODE models of in vivo
data and in vitro evidence of viral transport and discrete
viral internalization by inquiring about the cellular,
multicellular, and spatiotemporal mechanisms that can
consistently explain observations at multiple scales. This
approach is particularly powerful because it enables
mechanistic modeling directly within the context of
emergent dynamics and on the basis of individual cells,
the latter of which is neglected in common, homoge-
nized spatial modeling approaches like reaction-diffusion
and traveling-wave models. Whether the mathematical
formalism of cellularization can be transformed into a
compatible structure with such modeling approaches is
currently unclear, though the ability to translate models
between those approaches and cell-based approaches
clearly be valuable to biological modeling.

Future work
In the immune response model, the spatial model pro-
duced greater lymph immune cells and fewer local im-
mune cells than the ODE model. These differences may
be due in part to that the seeding algorithm always con-
siders increments in the number of cells under consider-
ation for seeding beginning at zero. The significance of
this apparent bias is currently unclear, as is any exact
mitigation strategy, though it may be possible to refine
the seeding algorithm by adding stochasticity to the con-
sidered number of seeded cells per algorithmic iteration.
There are many mathematical terms employed by

non-spatial models of biological systems to which the
general forms described in this work (e.g., Eqs. 21, 26
and 30) cannot be readily applied to generate linear sto-
chastic transition rules during cellularization (e.g.,
Michaelis-Menten). Deriving spatial analogues of ODE
model terms not only provides broader utility by allow-
ing the development of an analogous spatial model, but
also a stronger understanding of the mechanism(s) rep-
resented by the ODE model term. Likewise, proving the
nonexistence of a spatial analogue calls into question
what exactly an ODE model term means. In such a case
for an ODE model term that describes a cellular inter-
action, questions arise as to what a cellular model means
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if it cannot be written on a cellular basis. This is not to
propose that the validity of an ODE model depends on
its mathematical compatibility with cellularization. Ra-
ther, we propose that an ODE model term that is incom-
patible with cellularization represents multiple
mechanisms, each of which can be described by an ODE
model term that supports cellularization. The justifica-
tion for this proposition is obvious from a biological per-
spective, in that any subsystem of an organism defined
at a scale higher than the cellular scale can be resolved
to a cellular basis, which is the basis of spatial models
according to our cellularization method. A clear separ-
ation of mechanisms provides further insights into the
dynamics of a biological system relevant to both bio-
medical sciences (e.g., when developing drug therapies)
and basic biology (e.g., when quantitating biological
complexity), as well as a more descriptive and robust
mathematical model.
We can also turn this paradigm—of regarding ODE

models within the context of generating a spatial
analogue—towards spatial models of multicellular systems
while considering their non-spatial analogue. Further-
more, operations defined in our cellularization method on
spatial models may generate novel non-spatial model
terms that are not obvious from a homogenized approach.
This approach may also be useful for introducing better
descriptions of such spatial effects as those observed in
“Effects of diffusivity” to non-spatial models, or for esti-
mating non-spatial model parameters from in vivo im-
aging data in clinical applications. To this end,
cellularization provides the ability to generate non-spatial
models to describe various “compartments” of a biological
system (e.g., upper and lower respiratory tract compart-
ments), where the non-spatial model well describes the
underlying biocomplexity of a compartment according to
its local specificity. We envision broad application of cellu-
larization to do detailed spatiotemporal modeling of a par-
ticular biological module and then propagate information
to, from, and across coarser scales. Indeed, previous work
has cast such a vision concerning the hierarchical
organization and function of the liver [34]. Cellularization
provides a clear and consistent approach to develop such
multiscale modeling frameworks of whole organisms with
regard to the scale of the cell.

Conclusion
In this work, we developed a method for generating
spatial, multicellular models of biological systems from
non-spatial models, and vice versa, which we call cellu-
larization. We demonstrate using our method by cellu-
larizing non-spatial models of viral infection and host-
pathogen interaction. Using these cellularized models,
we quantitatively showed how spatial mechanisms impli-
citly represented in non-spatial models can exhibit

significant effects on emergent dynamics when explicitly
modeled. Variations in related non-spatial model param-
eters emerged from moderate cases of varying spatial
mechanisms like rate of diffusive mass transport of virus,
while extreme cases generated emergent dynamics in-
consistently with those described by the non-spatial
model. We describe the responsible mechanisms for ex-
treme disagreement between homogeneous and cellular
models, specifically concerning the limitations of de-
scribing discrete biological objects and processes using
continuous descriptions.

Methods
In this section, we describe our method for converting
model objects and processes between non-spatial ODE
models and spatial, cell-based models of multicellular
systems. We consider paired models of the same under-
lying biological/biochemical system, where an ODE
model consists of only scalar-valued variables related by
rate laws that depend only on the variables and a set of
scalar parameters, and hence is intrinsically non-spatial.
The spatial model could include scalar variables, con-
tinuously variable spatial quantities (i.e., fields) and
discrete agents with individual states, which typically
have spatial locations (which could change in type) and
which can come into existence (e.g., birth) and disappear
(e.g., death). The relationships among agents and vari-
ables are more diverse in spatial models, including the
rate equations of the non-spatial case, as well as stochas-
tic transition rules, partial-differential equations describ-
ing the effect of spatial variation on rates, and more
complex boundary and initial condition considerations.
Initial conditions require consistent specification of ini-
tial values of variables only among paired models, with a
limited number of possible boundary conditions in the
spatial model. Rate laws with explicit time delays and
integro-differential forms are extensions of the basic
forms treated in this work, though many of the issues
we consider apply. Likewise, non-spatial agent-based
models form an intermediate class, which we do not
consider in detail here, though many of the same consid-
erations apply.
We define a spatial model as analogous to a non-

spatial ODE model if the ODE model describes the dy-
namics of the spatial model in the limit of well-mixed
conditions. As such, we refer to a spatial model gener-
ated from an ODE model as the spatial analogue of the
ODE model. In this work, we consider cells, diffusive
species, and the interactions between them. We assume
that both an ODE model and its analogous spatial model
describe the same underlying real-world dynamics of a
biological system, but that only the spatial model expli-
citly describes spatial dynamics. We assume that the
ODE model assumed well-mixed conditions such that all
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ODE model variables, parameters, and equations repre-
sent spatially homogeneous properties of, and interac-
tions between, underlying objects. Likewise, we assume
that the spatial domain in which the objects and pro-
cesses are described by an analogous spatial model rep-
resents a constituent spatial element of the biological
system described by the ODE model. Under these as-
sumptions, the following outcomes are possible when
comparing results from a pair of ODE and spatial
models:

� Homogeneity. The models agree for the same
parameters and the system is spatially homogeneous.

� Ensemble average. The models agree for the same
parameters and the system is spatially
heterogeneous.

� Localization. The models agree for different
parameters and the system is spatially
heterogeneous.

� Incompatibility. The models never agree.

We define two metrics to quantify the degree of simi-
larity between the ODE model time series and the en-
semble of cellularized model time series for any scalar
quantity predicted by both models. The first metric, the
normalized mean absolute error (NMAE), is the time
average of the absolute value of the difference between
the ODE model prediction at each time and the median
over all cellularized model replica predictions at that
time point. This metric would be zero if the ODE and
median cellularized model time series agreed exactly
(identical values at each time) and increases in an intui-
tive way with visual distance between the two curves.
The second metric, the quantile range fraction (QRF), is
the fraction of the time during which the value predicted
by the ODE model at a given time falls within a given
range of quantiles for the ensemble of cellularized model
prediction. We use the range of 10th to 90th quantiles
in our QRF. The QRF quantifies the degree to which the
ODE model time series falls within the distribution of
time series for the ensemble of cellularized model rep-
licas. The second metric is less sensitive to specific
values of the quantity examined than the NMAE.
While in general nothing prohibits us from defining

multiple spatial domains that represent various interest-
ing elements of the biological system, we assume the
simplest case in this work when deriving analogous
mathematical forms—that a spatial domain is a repre-
sentative volume element of the entire biological system
described by an ODE model. We describe our formalism
as beginning with an existing ODE model and deriving
an analogous spatial model. However, our formalism
works in the opposite direction, allowing us to derive an
ODE model from an existing spatial model.

Spatiotemporal scaling using well-mixed conditions
Well-mixed conditions allow us to relate measurements
of quantities at different scales, where measurements at
every scale everywhere exactly and uniformly scale. For a
measurement Z of a quantity (e.g., number of cells of a
particular type, total amount of a species in a volume) at
one scale and z measuring the quantity of the same ob-
ject but at another scale, let μ be a coefficient relating
the two scales such that

z ¼ μZ: ð7Þ
The same is true for the behavior of objects according

to well-mixed conditions, where changing the scale at
which an object operates does not qualitatively affect the
dynamics of the object described by the ODE model. As
such, for a rate equation of the form,

dZ
dt

¼ F Y ;Zð Þ; ð8Þ

dynamics for a measurement z at some other scale and
y = μY take the form,

dz
dt

Y ;Z; μð Þ ¼ μF
y
μ
;
z
μ

� �
: ð9Þ

Scaling of ODE model quantities under well-mixed
conditions is assumed to be true for quantities of mass
and number (e.g., the population of cells of a particular
type) at every scale. Depending on the scale of a multi-
scale spatial model, well-mixed conditions allow us to
cast a quantity Z from an ODE model as acting globally
(i.e., as spatially homogeneous) or locally (i.e., as spatially
heterogeneous) in a spatial model, depending on the
spatial qualities imposed upon Z. For example, diffusive
species with very high or very low diffusivity may be cast
as acting globally or locally, respectively, at the scale of
individual cells. Henceforth, for a measurement Z of the
quantity of an object at the scale of an ODE model, let z
be a global (i.e., non-spatial) measurement of the quan-
tity of the same object at the scale of a spatial model,
and let ~z be an infinitesimal, point-like measurement of
the same object.
To employ Eq. 9 to describe the dynamics of a quan-

tity z at the scale of a spatial domain according to an
ODE model requires the relating of a static measure-
ment Mo of some scalar quantity at the scale of the
ODE model to a global, static measurement Ms of a sca-
lar quantity at the scale of its analogous spatial model
such that, using Eq. 7, for a global scaling coefficient η
and time t,

η : Mo↦Ms∀t: ð10Þ
For example, an ODE model describing a volume kUo

k and an analogous spatial model describing a volume k
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Usk presents a form of Eq. 10 with a scaling coefficient
ηvol = η,

Usk k ¼ ηvol Uok k: ð11Þ
Likewise, an ODE model describing some fixed num-

ber T o of a set of cell types and analogous spatial model
describing a fixed number T s of a set of the same cell
types presents a form of Eq. 10 with a scaling coefficient
ηcount = η,

T s ¼ ηcountT o: ð12Þ
In the case of Eq. 11, application of Eq. 9 to generate

global measurements at the scale of a spatial model
would presuppose that, under well-mixed conditions, a
quantity Z is the same per volume. Likewise for Eq. 12,
well-mixed conditions would impose that a quantity Z is
the same per cell.
For the case of counting numbers of a cell type in a

discrete cell population, let σ be the identifier of a cell
and let τ(σ) be the type of σ. Let an ODE model of the
quantity of a cell type N̂ be written as N. Using this con-
vention, the discrete analogue of N naturally follows by
counting the number of cells of type N̂ ,

N ¼ s : τ sð Þ ¼ N̂
	 
�� ��: ð13Þ

Likewise, for local measurements of some global, sca-
lar measurement Z at some scale, consider a local,
point-like measurement ~z ¼ ~zðx; tÞ of Z in a space U⊂
ℝn , where x∈U . For diffusive ~z , let ~z be governed by a
reaction-diffusion equation of the general form,

∂t~z ¼ ∂i DZ∂i~zð Þ þ ~v~z þ ~w: ð14Þ
Considering the case of homogeneous ~z (i.e., under

well-mixed conditions), Z and ~z can be related with a
local scaling coefficient θ using Eq. 7,

lim
DZ→∞

~z ¼ θZ; ð15Þ

and in general, for global quantity z at the scale of a
spatial domain (i.e., z = ηZ),

z ¼
Z

U
~z xð ÞdV : ð16Þ

Then, when considering Eq. 16 for a homogeneous ~z,

θ ¼ η
Uk k : ð17Þ

When deriving a spatial model from ODEs, the follow-
ing relationships are assumed to hold under well-mixed
conditions for ODE model measurement Z, spatial glo-
bal measurement z, and local, point-like measurement ~z,
according to Eqs. 11 and 17

Z ¼ 1
η
z ¼ 1

θ
lim

DZ→∞
~z:: ð18Þ

Using Eq. 18, quantities described by an ODE model
at some scale can then be employed in a spatial model
at some smaller scale as either globally acting objects
(according to the ODE model, using Eq. 9) or a locally
acting object (according to Eq. 14 for diffusive species,
and to subsequent derivations for cells).
To define a point-like measurement of a quantity asso-

ciated with a particular cell, well-mixed conditions are
also applied to the domain of a cell. Let σ(x, t) be a cell
identifier that describes the location of individual cells in
the spatial domain (e.g., for cell s, σ(x, t) = s at every
point x occupied by cell s at time t), and let V ðs; tÞ ¼ fx
∈U : σðx; tÞ ¼ sg be the domain of cell s at time t in the
spatial domain U⊂ℝn . A point-like measurement zðs; tÞ
of a spatially heterogeneous quantity ~z associated with a
cell s at time t under well-mixed conditions is then

V s; tð Þ�� ��z s; tð Þ ¼
Z

V s;tð Þ
~z x; tð ÞdV : ð19Þ

Note that for point-like cellular objects,

lim
V s;tð Þk k→0

z s; tð Þ ¼ ~z x; tð Þ∀x∈V s; tð Þ: ð20Þ

Cellularization of signals
Consider a rate equation for chemical species F and G
and number N of a cell type N̂ ,

dF
dt

¼ v F ;Gð Þ þ w F ;Gð ÞN : ð21Þ

Here v and w are generic functions with arguments F
and G for demonstrative purposes, but are otherwise ar-
bitrarily selected (i.e., they could be any set of chemical
species or some other object of the system). Using Eq.

18, let ~f be the heterogeneous analogue of F according
to Eq. 14 with diffusivity DF. In general, v can be applied
in any spatially particular way (e.g., only as a flux on a
boundary) on the condition that the volume integral of
its spatial analogue is equal to ηv at every time t. We
consider here the case when v is uniformly applied in
the spatial domain,

∂t~f x; tð Þ ¼ ∂i DF∂i~f x; tð Þ
� �

þ θv
~f x; tð Þ

θ
;
~g x; tð Þ

θ

 !
þ ~w x; tð Þ: ð22Þ

Here v is rewritten as a substitution of ~v~z in Eq. 14

using Eq. 9. In the case of heterogeneous ~f , ~w can be re-
lated to wN in Eq. 21 by integrating over all cell volumes
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of type N̂ ,

w F tð Þ;G tð Þð ÞN tð Þ ¼
X

s∈ s0 :τ s0 ;tð Þ¼N̂f g

Z
V s;tð Þ

~w x; tð ÞdV :

ð23Þ
We can write an expression for ~w at each point as a

function of ~f and ~g such that Eq. 23 is true under well-
mixed conditions by employing Eq. 19,

~w x; tð Þ ¼
1

V σ x; tð Þ; tð Þ�� ��w f σ x; tð Þ; tð Þ
θ

;
g σ x; tð Þ; tð Þ

θ

� �
τ σ x; tð Þ; tð Þ ¼ N̂

0 otherwise

8<:
ð24Þ

Note that w in Eq. 19 and ~w in Eq. 24 are general in
the sense that multiple terms could be defined with re-
spect to multiple cell types. In such a case, each type-
specific term would have a corresponding ~w according
to the general form in Eq. 23.

Hybridization of population dynamics
We derive discrete, stochastic events from ODE rate
equations by considering the ODE rate equations as
mean-field approximations of discrete, stochastic events.
The total number of occurrences of a discrete, stochastic
event K is assumed to be a random variable drawn from
a Poisson distribution, which allows us to relate expres-
sions from ODE and discrete, stochastic models. We use
the cumulative distribution function PkðrΔtÞ for deter-
mining the probability that a discrete event with mean
rate r occurs more than k times over a simulation step
of period Δt,

Pk rΔtð Þ ¼ Pr K > kð Þ ¼ 1−e−rΔt
X

0≤n≤ k

rΔtð Þn
n!

: ð25Þ

For a discrete event that can occur exactly once in a
simulation step (e.g., killing of one cell), we use P0 ,
which determines the probability of an event having oc-
curred at least once (rather than exactly once).
Consider ODE model population dynamics of the

number of cell types M̂ and N̂ of the form,

dN
dt

¼ f −gN−uN

dM
dt

¼ uN

8><>: ð26Þ

Three events are described in the rate equation for N.
First, the term f describes the net inflow of N̂ -type cells.
Second, the term −gN describes the net outflow of N̂

-type cells. Third, the term −uN describes the transition

of a cell from a N̂ -type cell to a M̂-type cell (e.g., from a
living cell to a dead cell), which we denote as N̂→M̂ .

Discrete, stochastic analogues are derived in this order
using a mean-field approximation of the Poisson
distribution.
The net inflow of N̂ -type cells is written using the cu-

mulative distribution function of the Poisson distribution
for the occurrence of k cells of type N̂ being added to
the spatial domain,

Pr add k N̂−type cells
� � ¼ Pk fΔtð Þ: ð27Þ

Eq. 27 is implemented using the following algorithm.
Beginning with k = 0, draw a uniformly distributed ran-
dom number X in [0, 1]. If X is greater than Eq. 27 for k,
then add k cells of type N̂ . Otherwise, increment k by
one and repeat. Functionally, this imposes that, while
counting upwards from k = 0, if no more than k cells are
added, then k cells are added.
The net outflow of N̂ -type cells is considered for each

N̂ -type cell independently at each simulation step as an
event that can occur no more than once. For cell s,

Pr remove sjτ sð Þ ¼ N̂
� � ¼ P0 gΔtð Þ: ð28Þ

Note that a form like Eq. 28 can also be generated for
describing the probability of mitosis in the case where
the term −gN in Eq. 26 were instead +gN.
The discrete transition event of a cell of type N̂ to type

M̂ over a period Δt is considered for each N̂ -type cell of
identification s and type τ(s, t) at time t as an event that
can occur no more than once,

Pr τ s; t þ Δtð Þ ¼ M̂jτ s; tð Þ ¼ N̂
� � ¼ P0 uΔtð Þ: ð29Þ

Hybridization of contact-mediated population
interactions
Contact-mediated interactions are critical to many de-
velopmental (e.g., stem cell proliferation) and physio-
logical (e.g., antigen presentation) processes. In addition
to the interactions described in “Hybridization of popu-
lation dynamics,” suppose that u in Eq. 26 describes a
rate of N̂→M̂ mediated by contact interactions between

N̂ - and Ô-type cells and, for a > 0 and cell types M̂ , N̂ ,

and Ô, Eq. 26 has the form,

dM
dt

¼ aNOþ f

dN
dt

¼ −aNOþ g

8><>: ð30Þ

Spatial models of contact-mediated population interac-
tions are derived by considering well-mixed conditions
in the strictest sense. If M̂- and N̂ -type cells constitute a
cellular body and present a certain surface area available
for contact interfaces, then the surface area of contact
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interfaces between N̂ - and Ô -type cells in well-mixed

conditions is proportional to the number of N̂ - and Ô

-type cells N and O, respectively.

As such, let AP be the total available contact surface
area of all P̂-type cells of fixed number, let P =M +N be
a quantity of a set of M̂ and N̂ cells, let AN be the total
available contact surface area of a N̂ -type cell, and let

AN, O be the contact area of a N̂−Ô interface. Under
well-mixed conditions,

AN ;O ¼ OAO

AP
AN : ð31Þ

Eq. 31 can be rewritten for O, in which case Eq. 30
can be rewritten on a cellular basis for cell s with total

interfacial contact area with Ô-type cells As, O (i.e., AN,

O→As, O on a cellular basis). M̂→N̂ mediated by N̂−Ô
contact interfaces is then considered for each cell of
identification s and type N̂ as an event that can occur no
more than once,

Pr τ s; t þ Δtð Þ ¼ M̂jτ s; tð Þ ¼ N̂
� �
¼ P0 γ sð ÞΔtð Þ; ð32Þ

where

γ sð Þ ¼ aAP

AN

As;O

AO
: ð33Þ

Eq. 33 scales a from the general ODE form in Eq. 30
to the ratio of two ratios, namely the ratio of the contact

area of a cell with Ô-type cells to the total contact area

of a Ô-type cell, to the ratio of the total contact area of a
N̂ -type cell to the total contact area of all P̂ -type cells.
Note that in the case of geometrically identical P̂ -type
cells (i.e., M̂- and N̂ -type cells have the same total con-
tact surface area), Eq. 33 can be rewritten to scale a to
the total number of P̂-type cells,

γ sð Þ ¼ aP
As;o

Ao
↔AP ¼ PAN ð34Þ

Hybridization of recruitment
Eq. 26 describes the inflow of cells with a rate f and out-
flow of cells with a rate g per cell. Here we describe
handling inflow of cells, which can be generally de-
scribed, and neglect describing any general method for
outflow, which is particular to problem setup and cellu-
lar dynamics method (e.g., whether cells are simply re-
moved wherever they are when outflow occurs, or they
first migrate towards a boundary). To describe the

inflow of cells in a spatial model, it is necessary to define
a boundary through which each incoming cell enters the
spatial domain, and the location on that boundary where
each incoming cell appears. For an inflow rate f into a
spatial domain U, we refer to a corresponding boundary
W f ⊆∂U on which cells appear as an inflow boundary.
Likewise, we refer to placing a new cell on an inflow
boundary as seeding. A cell can be seeded at a site on an
inflow boundary that is not occupied by another cell.
We refer to such sites as being available and denote the
set of available sites on an inflow boundary for an inflow
rate f as ∂W f ;0,

∂W f ;0 tð Þ ¼ x∈∂W f : σ x; tð Þ ¼ 0
	 


: ð35Þ

In general, we define an available site selection func-
tion Sðζ; tÞ that selects an available site for seeding a cell
of type ζ at time t. It should be noted that an available
site selection function does not describe the probability
of seeding a cell (e.g., Eq. 27), but rather maps the set of
available sites on inflow boundaries to a coordinate
where seeding a cell occurs for a given cell type and
time. It should also be noted that an available site selec-
tion function is defined to take the argument of a cell
type, rather than an inflow rate, since one could define a
total inflow rate as consisting of multiple inflow rates on
multiple inflow boundaries (e.g., two thirds of incoming
cells enter on one boundary, and one third of incoming
cells enter on another boundary). Imposing no add-
itional spatial information on seeding an incoming cell
results from designating all boundaries of the spatial do-
main as inflow boundaries, and then randomly selecting
an available site with a uniform distribution. Likewise
designating a subset of the boundaries of a spatial do-
main as inflow boundaries necessarily imposes additional
spatial information onto the spatial analogue of an ODE
model by introducing spatial heterogeneity to the
boundaries of the spatial domain.
An available site selection function of particular inter-

est (though not critical to the total method presented
here) that we propose concerns the influence of local
heterogeneity of signals in a spatial domain that induce
directional migration (e.g., chemotaxis, haptotaxis) in in-
coming cells. Suppose that a locally heterogeneous field
c(x, t) attracts an incoming cell of type ζ that is to be
seeded somewhere in a set of available sites ∂W g;0ðtÞ on
an inflow boundary according to a rate g. Rather than
impose additional spatial information outside of a spatial
domain, we can instead presuppose that c near ∂W g;0ðtÞ
influences an otherwise random seeding location where
an incoming cell of type ζ arrives. In this case, consider
a randomly selected subset of available sites ωg;0ðtÞ⊆
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∂W g;0ðtÞ , where kωg;0ðtÞk ¼ wgk∂W g;0ðtÞk for a sam-
pling fraction wg ∈ (0, 1] and each selected site y ∈ ωg, 0(t)
is selected with a uniform probability (i.e., without im-
posing any additional spatial information, as mentioned
in the preceding text). We impose the effects of a locally
heterogeneous attractant c of cell type ζ at time t by
seeding an incoming cell of type ζ at the location where
c is greatest among the randomly selected subset of
available sites,

S ζ; tð Þ∈ argmax
y∈ωg;0 tð Þ

c y; tð Þ: ð36Þ

It naturally follows that replacing argmax(∙) with arg-
min(∙) imposes a repellant c. Note that additional selec-
tions must be made when this particular available site
selection function yields multiple values (e.g., we ran-
domly choose a site when c is everywhere zero). Also
note that wg = 1 imposes that an incoming cell is seeded
exactly at the location with the maximum value of c in
all available sites ∂W g;0ðtÞ , while wg→ 0 imposes that
an incoming cell is seeded at a random location.

Mixing mixed conditions
Nothing prohibits us from supposing that only some of
the cells of a population act locally, while the remaining
cells of the population act globally, in the sense that only
the locally acting cells are represented in a spatial do-
main, while the effects of the entire population are
present in the spatial domain. We can, for example, say
that of 2N cells of type N̂ , only N cells are present in a
spatial domain, the interactions of which are modeled
locally, while the other N cells are not present in the
spatial domain, and their interactions occur everywhere
homogeneously (in fact, the well-mixed conditions
employed by ODE models necessitate that this is true).
The same is true concerning signal fields, in that a
homogeneous field can either be explicitly represented
in the spatial domain, or represented as a scalar value
equal to the volume integral of an equivalent homoge-
neous field. This distinction is important for at least two
reasons.
First, from a computational standpoint, explicitly inte-

grating the diffusion equation in time becomes increas-
ingly computationally expensive as the diffusion
coefficient (e.g., DF in Eq. 22) of a soluble signal in-
creases (because of numerical stability). Likewise, as the
diffusion coefficient of a soluble signal increases, the
field acts more homogeneously. Other factors permitting
(e.g., diffusion length), one can mitigate the computa-
tional cost of integrating fast-acting soluble signals in
time by representing them as scalar-valued functions
(according to their ODE form) that act everywhere uni-
formly in a spatial domain.

Secondly, employing a cellular dynamics method that
includes volume exclusion of cells introduces the possi-
bility that no available sites exist on an inflow boundary
when attempting to perform seeding. We refer to such
cases as overcrowding. While overcrowding may eluci-
date problematic ODE model forms and/or parameters,
we do not necessarily discard an ODE model or param-
eter set when overcrowding occurs (though it could in-
form further ODE model development), neither do we
necessarily ignore a seeding event. Rather, we generally
describe the inflow of cells as consisting of two stages.
In the event of seeding a cell of a type ζ, we first add a
cell to a population of nearby cells of type ζ. Nearby cells
are not spatially represented, but instead act everywhere
homogeneously (i.e., as if they were global) in the spatial
domain according to ODE model forms. Before perform-
ing all spatial interactions of a simulation step, we at-
tempt to seed each nearby cell. Each nearby cell that is
successfully seeded is then removed from the population
of nearby cells, and the remaining population of nearby
cells act homogeneously in the spatial domain for the
simulation step.

Implementation details
The remaining aspects of cellularizing an ODE model
depend on the choice in cellular dynamics method to ex-
plicitly describe the spatial dynamics that are implicitly
represented in an ODE model. Such a choice largely de-
pends on the scale and resolution of the spatial domain,
whether on the order of microns, centimeters, or other-
wise, which dictates the appropriateness of a particular
cellular dynamics method. Various cellular dynamics
methods have their own mathematical and computa-
tional details that affect the behavior of model cells and
their emergent behaviors and properties [35].
To demonstrate cellularization of ODE models in this

work, we employed the cellular Potts model (CPM, or
Glazier-Graner-Hogeweg model) to model cellular dy-
namics in analogous spatial models. The CPM repre-
sents individual cells and a general medium as
deformable, volume-excluding spatial objects in a lattice
that defines a spatial domain [27], and is implemented in
multicellular modeling and simulation software like
CompuCell3D [36], Morpheus [37], and Chaste [38].
Cell motility in the CPM is modeled as the stochastic ex-
changing of lattice sites at intercellular and cell-medium
interfaces. In the CPM, a pair of neighboring lattice sites
x∈U and x

0
∈U are randomly selected and the case is

considered where the identification at x′ attempts to
copy itself to x, called a copy attempt and denoted σ(x,
t)→ σ(x′, t). A copy attempt occurs with a probability
according to a system effective energy H that models
various cellular properties and behaviors (e.g., volume
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constraints, adhesion, chemotaxis). For each copy at-
tempt, the change in system effective energy ΔH due to
σ(x, t)→ σ(x′, t) is calculated. Copy attempts that de-
crease the system effective energy are always accepted,
and copy attempts that increase the system effective en-
ergy occur according to a Boltzmann acceptance func-
tion of the change in system effective energy,

Pr σ x; tð Þ→σ x
0
; t

� �� �
¼ e− max 0;ΔH

H �f g: ð37Þ

Here H �
is the intrinsic random motility that affects

the stochasticity of copy attempts.
In this work, we employed a system effective energy

modeling a volume constraint for each cell, adhesion at
all interfaces, and chemotaxis,

H tð Þ ¼
X
s

λv τ s; tð Þð Þ v s; tð Þ−vc τ s; tð Þð Þð Þ2

þ
X
x∈U

X
x0∈N xð Þ

1−δσ x;tð Þ;σ x0 ;tð Þ
� �

J τ σ x; tð Þ; tð Þ; τ σ x
0
; t

� �
; t

� �� �

þ
X
x∈U

X
c

λc τ σ x; tð Þ; tð Þð Þc x; tð Þ
1þ cCM σ x; tð Þ; tð Þ

ð38Þ
The first summation models a volume constraint for

each cell with current volume v(s, t) for cell of identifica-
tion s and type-dependent volume multiplier λv and vol-
ume constraint vc. The second summation models
adhesion, where δ is the Kronecker-delta, N ðxÞ is the
neighborhood of a site x in the lattice, and J maps the
types occupying the neighboring site pair (x, x′) to a con-
tact coefficient. The third summation models logarith-
mic chemotaxis due to all simulated fields c with type-
dependent chemotaxis multiplier λc and measurement
cCM of c at the center of mass of a cell occupying a lat-
tice site.
In “Results,” we demonstrate cellularization of two

ODE models of viral infection in epithelial cells using
the spatial configuration employed in [17]. The first of
the two models represents infection in an epithelial
sheet, and the second ODE model adds recruitment of
immune cells by inflammatory signaling to the first. As
such, epithelial cells are arranged in a uniform, planar
configuration and fixed in a regular lattice. For simula-
tions without recruitment of immune cells, the spatial
domain is two-dimensional. For simulations with re-
cruitment of immune cells, motile immune cells are
placed in a second, two-dimensional layer above the epi-
thelial sheet. Boundary conditions were periodic for
boundaries parallel to the plane of the sheet, and Neu-
mann for boundaries perpendicular to the plane of the
sheet. The planar dimension and lattice size of all simu-
lations is 400 μm and 200 lattice sizes, respectively (lat-
tice site width of 2 μm/site, Table 3). We applied a
uniform volume multiplier of 9 and volume constraint

of 25 lattice sites (λv and vc in Eq. 38, respectively) to all
cells and placed all epithelial cells in a square shape of 5
× 5 × 1 sites. Simulations were performed for 2 weeks to
1 month of simulation time, depending on the ODE
model and parameter values, with a simulation step of 5
min. All ODE models considered a total number of epi-
thelial cells NODE equal to 10 million, from which the
global cellularization scaling coefficient η was calculated
by the number of epithelial cells in the spatial domain as
ηNODE= 1600 cells, and the local cellularization scaling
coefficient θ was calculated as NODEvcθ= 1 by imposing
the cell volume defined in the spatial model on the epi-
thelial cells described in the ODE models. To test the ef-
fects of stochasticity, 100 simulation replicas were
executed for each spatial model and set of initial condi-
tions and parameters. All simulation measurements were
made at intervals of 50 min (ten simulation steps). All
simulations were performed in CompuCell3D.
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