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Abstract

Background: Characterization of the molecular mechanisms underlying hair follicle development is of paramount
importance in the genetic improvement of wool-related traits in sheep and skin-related traits in humans. The
Merino is the most important breed of fine-wooled sheep in the world. In this study, we systematically investigated
the complexity of sheep hair follicle development by integrating transcriptome and methylome datasets from
Merino sheep skin.

Results: We analysed 72 sequence datasets, including DNA methylome and the whole transcriptome of four gene
types, i.e. protein-coding genes (PCGs), lncRNAs, circRNAs, and miRNAs, across four embryonic days (E65, E85, E105,
and E135) and two postnatal days (P7 and P30) from the skin tissue of 18 Merino sheep. We revealed distinct
expression profiles of these four gene types across six hair follicle developmental stages, and demonstrated their
complex interactions with DNA methylation. PCGs with stage-specific expression or regulated by stage-specific
lncRNAs, circRNAs, and miRNAs were significantly enriched in epithelial differentiation and hair follicle
morphogenesis. Regulatory network and gene co-expression analyses identified key transcripts controlling hair
follicle development. We further predicted transcriptional factors (e.g. KLF4, LEF1, HOXC13, RBPJ, VDR, RARA, and
STAT3) with stage-specific involvement in hair follicle morphogenesis. Through integrating these stage-specific
genomic features with results from genome-wide association studies (GWAS) of five wool-related traits in 7135
Merino sheep, we detected developmental stages and genes that were relevant with wool-related traits in sheep.
For instance, genes that were specifically upregulated at E105 were significantly associated with most of wool-
related traits. A phenome-wide association study (PheWAS) demonstrated that candidate genes of wool-related
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traits (e.g. SPHK1, GHR, PPP1R27, CSRP2, EEF1A2, and PTPN1) in sheep were also significantly associated with
dermatological, metabolic, and immune traits in humans.

Conclusions: Our study provides novel insights into the molecular basis of hair follicle morphogenesis and will
serve as a foundation to improve breeding for wool traits in sheep. It also indicates the importance of studying
gene expression in the normal development of organs in understanding the genetic architecture of economically
important traits in livestock. The datasets generated here are useful resources for functionally annotating the sheep
genome, and for elucidating early skin development in mammals, including humans.

Keywords: Developmental stage, DNA methylation, Genome-wide association study, Hair follicle morphogenesis,
Sheep, Transcriptome

Background
In mammals, hair follicles are crucial for temperature
regulation, physical protection, sweat and sebum disper-
sion, sensory and tactile functions, and social interac-
tions [1, 2]. The hair follicle morphogenesis in sheep is
often divided into five stages, including induction (em-
bryonic day 65, E65), organogenesis (E85, primary and
secondary follicles related), differentiation (E105 ~ E135,
especially for secondary follicles), maturation (postnatal
day 7, P7), and postnatal hair cycle stages (P30) [3, 4].
The number of dermal papilla cells and the size of hair
placode are associated with the diameter, crimp, and
density of wool fibres [3], which are of high economic
value in sheep industry. In addition, the normal develop-
ment of hair follicle highly interacts with the immune
system, such as the immune capacity of hair follicle [5–
7]. The protection of hair follicles and their stem cells
against the autoimmune system is fundamental to guar-
antee the normal development of hair follicles [3, 8].
Similar to head hair follicles in humans, the occurrence
and growth of hair follicles in sheep are independent
from neighbouring follicles. The sweat glands and wool
follicles as unique features of adult sheep trunk skin re-
semble those in human axillary skin [9]. Therefore, the
characterization of molecular mechanisms underlying
the hair follicle morphogenesis in sheep will help under-
stand the genetic basis of wool-related traits and can
serve as a valuable model for skin-relevant diseases in
humans.
The normal morphogenesis and development of hair

follicle is the culmination of spatiotemporal expression
of genes under the control of genetic and epigenetic ele-
ments, such as long non-coding RNA (lncRNA), micro-
RNAs (miRNAs), circular RNAs (circRNAs), and DNA
methylation [10, 11]. Although several studies have in-
vestigated the development of skin in sheep previously,
they were limited in terms of developmental stages and
gene types. For instance, Nie et al. [4] explored the glo-
bal changes of lncRNAs and mRNAs at two develop-
mental stages during the induction of primary wool
follicles in Carpet sheep. Zhao et al. [12] investigated the

involvement of lncRNA-miRNA-mRNA interaction net-
works in the hair follicle induction across three develop-
mental stages in Aohan sheep.
The majority of genetic variants discovered in

genome-wide association studies (GWAS) are non-
coding [13]. Better characterization of the regulatory ele-
ments in the livestock genome, such as through the ef-
forts of the ongoing Functional Annotation of Animal
Genomes (FAANG) and the Farm animal Genotype-
Tissue Expression (FarmGTEx) projects [14–16], is
therefore essential for biologically interpreting the
GWAS loci of complex traits of economic value. Fur-
thermore, integrating functional annotations that are
specific to tissues and developmental stages with GWAS
results can help reveal the causal tissues, developmental
stages, and genes for complex traits and diseases [17–
19].
In this study (Additional file 1: Fig. S1), to comprehen-

sively characterize the molecular mechanisms underpin-
ning hair follicle development in sheep, we sequenced
DNA methylation and the whole transcriptome of four
gene types, including protein-coding genes (PCGs), miR-
NAs, circRNAs, and lncRNAs, across six important hair
follicle developmental stages (i.e. E65, E85, E105, E135,
P7, and P30) in the skin tissue of 18 Merino sheep. In
total, we newly generated 72 sequence datasets, which
enabled us to identify the key genes, transcriptional fac-
tors (TFs), signalling pathways, and interaction networks
regulating hair follicle morphogenesis across develop-
mental stages. We then integrated these multi-molecular
features specific to each developmental stage with
GWAS signals of five wool-related traits and one growth
trait to understand the genetic and biological basis of
such traits in sheep. These traits included mean fibre
diameter (MFD), coefficient of variation of the fibre
diameter (CVFD), crimp number (CN), mean staple
length (MSL), greasy fleece weight (GFW), and live
weight (LW) in 7135 Merino sheep. The resources and
findings generated here will provide an opportunity to
better annotate the sheep genome by predicting novel
non-coding genes and inferring the function of
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unannotated genes via co-expression networks, as well
as to enhance the genetic improvement of wool traits in
sheep.

Results
Histological changes of hair follicles across
developmental stages
We performed the haematoxylin-eosin (H&E) staining
for horizontal and longitudinal sections of skin to ob-
serve the histological changes of hair follicles across six
developmental stages (i.e. E65, E85, E105, E135, P7, and
P30) (Fig. 1a, b). The hair placode (Pc) and dermal con-
densate (DC) started to form at E65, indicating the in-
duction of hair follicles. At E85, the number of primary
follicles (PFs) increased and the secondary follicles (SFs)
started to form. At E105, the SFs started to differentiate,
and the number of secondary-derived follicles increased
at E135. At P7, hair follicles matured with a complete
structure, and hair shafts emerged through the epider-
mis. At P30, hair follicles entered into the anagen phase,
during which the root of the hair divides rapidly, adding
to the hair shaft. The numbers of PF and SF, the SF/PF
ratios (an indicator of wool fineness), and the body
weights and lengths through all these six stages are
shown in Fig. 1c. In general, the numbers of PF and SF
peaked at E85 and E105, respectively, and as expected,
body weights (BW) and body lengths (BL) increased
across developmental stages.

Identification of stage-specific transcripts and DNA
methylation regions during hair follicle development
In total, we generated 72 distinct RNA sequencing data-
sets for PCGs, lncRNAs, circRNAs, and miRNAs across
six developmental stages in 18 animals, producing
3,998,197,856 clean reads with an average mapping rate
of 90.46%. We also generated 18 methylated DNA im-
munoprecipitation sequencing (MeDlP-Seq) datasets,
yielding 1,028,125,898 clean reads with an average map-
ping rate of 97.19%. The mapping details of all the 72
datasets are described in Additional file 2: Table S1.
We quantified and normalized the expression levels of

four gene types across samples, including 19,229 PCGs,
10,193 lncRNAs (1540 existing and 8653 novel), 151
known miRNAs (98.7% existing in the miRBase database
(Release 22.1) [20]), and 41,369 novel circRNAs (Add-
itional file 3: Table S2). We identified a total of
1,730,765 methylation peaks in the 18 samples, and the
number of peaks across major genomic features (e.g. 5′
UTR, exon and 3′UTR) in each sample is summarized
in Additional file 4: Table S3.
The principal component analysis (PCA) of all 18 sam-

ples based on the five molecular profiles consistently re-
vealed that the developmental stage was the major factor
distinguishing samples (Fig. 2a, Additional file 5: Fig.
S2). Distributions of the expression levels of four gene
types and DNA methylation levels across developmental
stages are shown in Fig. 2b. Overall, the majority of

Fig. 1 Morphological observation of hair follicles across six developmental stages in sheep. a, b Haematoxylin-eosin (H&E) staining of skin for
horizontal (magnification: × 40) and longitudinal (× 10) sections at embryonic day 65 (E65), E85, E105, E135, and postnatal day 7 (P7) and P30,
respectively. The induction of hair follicles is initiated around E65 and characterized by crowded epidermal keratinocytes, hair placode (Pc) (red
dashed lines) and dermal condensate (DC) (blue dashed lines). At E85, the number of primary follicles (PFs) increases significantly, and secondary
follicles (SFs) start to form. At E105, PFs are regularly arranged, and the surrounding SFs, sebaceous gland (SG), outer root sheath (ORS), and inner
root sheath (IRS) layers are clearly visible. At E135, the secondary-derived follicles branching from SFs appear. At P7, hair follicles mature with
complete structure. The dermal papilla (DP), ORS, and IRS structures are clearly visible, and hair shafts emerge through the epidermis. At P30, the
hair follicles enter into the mature anagen phase. DF, dermal fibroblast; EHG, elongated hair germ; TAC, transit amplifying cells; BSCP, bulge stem
cell precursors. c Numbers of PF and SF, SF/PF ratio, body weight and length (average of three replicates; mean ± SD) of Merino sheep during
hair follicles development
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PCGs, lncRNAs, and miRNAs were ubiquitously
expressed across all six stages, while circRNAs showed
clear stage-specific expression. We found that all cir-
cRNAs were derived from 6477 parental genes, with the
majority of (27,233 out of 41,369) them from coding
DNA sequences (CDS) (Additional file 6: Fig. S3a). Of
these parental genes, 4550 produced more than one cir-
cRNAs (Additional file 6: Fig. S3b), suggesting that cir-
cRNAs are abundant during skin development.
Furthermore, we explored the stage specificity of PCGs,
lncRNAs, circRNAs, miRNAs, and methylated regions
(MRs) during hair follicle morphogenesis. The greatest
number of stage-specific transcripts was detected at E65
(the induction of hair follicle) and at P30 (the anagen of
hair follicle) (Additional file 7: Fig. S4), which was in line
with the development of hair follicles (Fig. 1a–c).

Dynamic expression patterns of PCGs during the hair
follicle morphogenesis
The gene set enrichment analysis (GSEA) of stage-
specific PCGs revealed significantly (FDR < 0.05)
enriched Gene Ontology (GO) terms, which were dis-
tinct across developmental stages (Fig. 3a, b, Additional
file 8: Table S4). For instance, the PCGs upregulated at
E65, E85, E105, E135, P7, and P30 were significantly
enriched in chromosome assembly, neurological system,
muscle development, regulation of keratinocyte differen-
tiation, keratinocyte differentiation, and lipid metabol-
ism, respectively. The upregulated PCGs at E135-P30
were also significantly enriched in various immune pro-
cesses such as lymphocyte polarity establishment and T
cell-mediated cytotoxicity (Fig. 3a). The downregulated
PCGs at E105 were significantly enriched in muscle de-
velopment and sensory perception of stimuli, while the

downregulated PCGs at E135-P30 were significantly
enriched in the keratinocyte and epidermal cell differen-
tiation, skin development, and immune processes (Fig.
3b).
To investigate whether PCGs with stage-specific ex-

pression were collectively regulated by certain TFs, we
performed a motif enrichment analysis on the promoters
(1500 bp up- and 500 bp downstream of transcription
start sites, TSS) of upregulated and downregulated
stage-specific PCGs separately. We detected 29 and 27
significant motifs (FDR < 0.05) for upregulated and
downregulated PCGs, respectively, mainly including the
KLF (n = 33), EGR (n = 32), and SOX (n = 17) motif
families (Additional file 9: Table S5). We found that the
enrichment of motifs and the expression of their target
TFs were stage-specific, indicating that these TFs might
play vital roles during embryo and hair follicle develop-
ment (Fig. 3c, d). For instance, PLAG1, EGR1, EGR3,
GATA6, and TFAP2C are essential for embryonic organ
formation [21–23], while KLF4, LEF1, HOXC13, RBPJ,
VDR, RARA, and STAT3 are crucial for hair follicle dif-
ferentiation and development [24–30]. We further found
that NFKB1, NFKB2, and IRF1, which participate in the
immune function and inflammation [31], were signifi-
cant at E105 and E135.
We grouped all stage-specific PCGs into six clusters

with different expression trends across stages, and also
found that these clusters exhibited distinct biological
functions and motif enrichment patterns (Fig. 3e). For
instance, PCGs in Cluster1, whose expression levels
gradually increased across developmental stages, were
significantly (P < 0.01) enriched in epidermal cell differ-
entiation and lipid metabolism. The promoters of these
PCGs were also significantly enriched for early growth-

Fig. 2 General characteristics of molecular features in sheep skin tissue across developmental stages. a Principal component analysis (PCA) of all
18 samples based on the expression levels of four gene types and DNA methylation. PCG, protein-coding gene. b The distribution of gene
expression and DNA methylation across number of stages. FPKM, fragments per kilobase of exon model per million mapped fragments; SRPBM,
spliced reads per billion mapping; CPM, counts per million; FE, fold enrichment

Zhao et al. BMC Biology          (2021) 19:197 Page 4 of 18



specific TF motifs, such as EGR3 [32] and KLF4 [33]. In
contrast to Cluster1, we observed that expression levels
of PCGs in Cluster2 gradually decreased across develop-
mental stages. These genes were significantly enriched in
internal organogenesis, and their promoters were signifi-
cantly enriched for organogenesis-related TFs (e.g.
ZEB1) [34] and notch signalling pathway-related TFs
(e.g. RBPJ) [27]. The PCGs in Cluster5 showed the high-
est expression levels at E105 and were significantly (P <
0.01) enriched in the immune response. Their promoters
were significantly enriched for motifs of STAT4, which
plays a key role in the immune system [35]. The expres-
sion patterns of enriched TFs were consistent with the
enrichment of their motifs across developmental stages
(Fig. 3e), providing more evidence that these TFs paly
crucial regulatory roles in gene expression during nor-
mal skin development.

Stage-specific regulatory mechanisms of non-coding
RNAs and DNA methylation
To investigate the roles of circRNAs in the gene regula-
tion during hair follicle development, we performed a
GO enrichment analysis for parental genes of stage-
specific circRNAs. The parental genes of upregulated
circRNAs participated in embryo development at E65,
skin and cellular development at E85, system develop-
ment and epithelial cell proliferation at E105, skin devel-
opment at E135, metabolic process at P7, and immune
response at P30 (Fig. 4a). The parental genes of down-
regulated circRNAs were significantly (P < 0.01)
enriched in skin development at E65, protein catabolism
at E85, immune response at E105, and central nervous
system (CNS) at E135 to P30 (Additional file 10: Fig.
S5). We further divided the stage-specific circRNAs into
six clusters according to their expression trends across

Fig. 3. Dynamic expression patterns of protein-coding genes (PCGs) during hair follicle development. a Heatmaps (left) shows the expression
level (log2(FPKM+ 1)) of top 10 upregulated stage-specific PCGs across developmental stages; heatmaps (right) shows the normalized consensus
scores of significantly (FDR < 0.05) enriched Gene Ontology (GO) terms for all upregulated genes at each stage by the gene set enrichment
analysis (GSEA). FPKM, fragments per kilobase of exon model per million mapped fragments. b Similar to a, but for the downregulated stage-
specific PCGs. c, d Motifs of transcriptional factors (TFs) are significantly enriched in promoters of upregulated and downregulated stage-specific
PCGs, respectively. e K-means clusters of all stage-specific PCGs. Genes in bold are those involved in the skin and epithelium development.
Corresponding biological themes and the top enriched TF motifs are shown next to each cluster
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the developmental stages (Fig. 4b). The expression levels
of 224 circRNAs in Cluster1 increased across develop-
mental stages, whose parental genes were significantly
enriched in internal organogenesis. Conversely, cluster2
comprised of 789 circRNAs with developmentally de-
creased expression levels, whose parental genes were sig-
nificantly enriched in neurogenesis. Meanwhile, the 289
circRNAs in cluster 5 demonstrated the highest expres-
sion levels at E135, whose parental genes were signifi-
cantly enriched in skin development, such as
circRNA.39413 (GRHL2) (Fig. 4b).
Furthermore, we explored the biological functions of

genes that were regulated by lncRNAs and miRNAs
across developmental stages. For instance, targets of
both upregulated and downregulated lncRNAs were sig-
nificantly enriched in immune and metabolic processes

(Additional file 11: Fig. S6a, b). The targets of upregu-
lated stage-specific miRNAs were significantly enriched
in homeostasis-related at E65, internal organogenesis at
E85, cellular developmental process at E105, and hor-
mone secretion-related at P30 (Additional file 11: Fig.
S6c). The targets of downregulated stage-specific miR-
NAs were significantly enriched in the hormone secre-
tion at E85, metabolic process at P30, and notch
signalling pathway at the rest of stages (Additional file
11: Fig. S6d). Overall, these results indicated that non-
coding RNAs play important roles in skin development
by distinctly regulating the expression of their target
genes across developmental stages.
The functional enrichment analysis revealed that genes

with the stage-specific promoter MRs were significantly
enriched in epithelial cell differentiation at E65 and P7,

Fig. 4 Stage-specific regulatory mechanisms of circRNAs and DNA methylation. a Heatmap shows the expression (log2(SRPBM+ 1)) of
upregulated stage-specific circRNAs across developmental stages, and the bubble plot shows the top three enriched gene ontology (GO) terms
for parental genes of the upregulated circRNAs across stages. b K-means clustering of all stage-specific circRNAs. Corresponding biological
processes are shown next to each cluster. c Heatmap shows the DNA methylation signals (log2(FE + 1)) of stage-specific methylated regions
(MRs) in promoters (1500 bp upstream and 500 bp downstream of transcriptional start sites, TSSs). FE, fold enrichment. The bubble plot shows the
top five enriched gene ontology (GO) terms for genes with stage-specific MRs in promoter. d Distribution of DNA methylation levels around TSSs
across all six skin developmental stages. e The methylation level of BRMS1 promoter decreases, whereas its expression level increases across
developmental stages
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and in immune processes at E85 (Fig. 4c). In general, we
observed that the upstream DNA methylation levels of
TSSs were lower at the later stages than the earlier ones
(Fig. 4d). We took BRMS1 as an example in Fig. 4c,
which participates in the epidermal growth factor recep-
tor (EGFR) and NF-κB signalling pathways [36]. The
promoter methylation level of BRMS1 decreased, while
its expression level increased across developmental
stages.

Regulatory networks of PCGs and non-coding RNAs
We predicted the target genes for each miRNA and
lncRNA, and further investigated whether the stage-
specific PCGs at each developmental stage were highly
enriched for targets of certain miRNAs and lncRNAs. If
this was the case, then the enriched miRNAs and
lncRNAs might be implicated in skin development. The
detailed summary statistics are listed in Additional file
12: Table S6. For instance, TCONS_00394738, TCONS_
00439958, and TCONS_00097544 were the top
lncRNAs, whose targets were significantly (FDR < 0.05)
enriched for PCGs with specific expression at E85. The
targets of these three lncRNAs were significantly (FDR <
0.05) engaged in immune response and the Notch sig-
nalling pathway (Fig. 5a). The targets of the top three
significant (FDR < 0.05) miRNAs at E65, Oar-miR-150,
oar-miR-200c, and oar-miR-152, were significantly (FDR
< 0.05) enriched in epithelial development, immune re-
sponse, and the Notch signalling pathway (Fig. 5b).

We further performed a competing endogenous RNA
(ceRNA) analysis to detect the regulatory effects of cir-
cRNAs or lncRNAs on the expression of PCGs by medi-
ating miRNAs during hair follicle morphogenesis. A
detailed summary of the negative correlation (Pearson
correlation coefficient (PCC) < − 0.7) of miRNA-target
pairs is in Additional file 13: Table S7, while the positive
correlation (PCC > 0.7) of ceRNA pairs (lncRNA-PCG
and circRNA-PCG) which were targeted by a common
miRNA (the hypergeometric test, P < 0.05) is in Add-
itional file 14: Table S8. We displayed the top 200
circRNA-miRNA-mRNA and the top 200 lncRNA-
miRNA-mRNA interactions in Fig. 6a. The GO func-
tional enrichment analysis revealed that genes in this
ceRNA network were significantly enriched in skin de-
velopment, keratinocyte proliferation, epidermal devel-
opment (Fig. 6b). We proposed 12 most promising
circRNAs and lncRNAs that acted as ceRNAs to affect
the expression of stage-specific PCGs by sponging miR-
NAs during hair follicle morphogenesis (Fig. 6c). For in-
stance, FGF7 exhibited the specific expression at E65
(Fig. 3e), which participates in skin development, kera-
tinocyte proliferation, and cell proliferation. The expres-
sion of FGF7 was regulated by circRNA.18823,
circRNA.688, and TCONS_00428946 through mediating
oar-miR-200b and oar-miR-200c (Fig. 6c). Similarly, the
expression of GRHL2 was regulated by TCONS_
000493860 through mediating oar-miR-1197-3p, oar-
miR-432, and oar-miR-494-3p. GRHL2 was specifically
expressed at E85 and regulates epidermal cell

Fig. 5 The regulatory networks of target genes of non-coding RNAs. a The regulatory networks of targets of three lncRNAs, i.e. TCONS_00394738,
TCONS_00439958, and TCONS_00097544. b The regulatory networks of targets of three miRNAs, i.e. oar-miR-150, oar-miR-200c, and oar-miR-152.
The colours of the edges are the directions (pink for upregulated; green for downregulated) of lncRNAs and miRNAs regulating target genes. The
sizes of the circles correspond to the interaction degrees
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differentiation and skin development [37] (Fig. 6c, Fig.
3e). Altogether, these results shed light on the complex
interaction networks of PCGs and non-coding RNAs,
which regulate hair follicle differentiation and growth.

Gene co-expression network analysis
We performed an unsigned weighted gene co-expression
network analysis (WGCNA) among PCG, lncRNA, cir-
cRNA, and miRNA to identify co-expression modules
related to hair follicle morphogenesis. In total, we de-
tected 15 co-expression modules with the four gene
types (Fig. 7a). The expression patterns of five modules
were significantly (FDR < 0.5) stage-specific (Fig. 7b).
The GO functional enrichment analyses revealed that
these stage-specific modules were significantly enriched
in immune response, cell cycle phase, and metabolic
process (Fig. 7c, Additional file 15: Fig. S7a). In addition,
we found that many genes without functional annotation
were co-expressed with functionally annotated genes
(Additional file 15: Fig. S7 b, c). For instance, there were
1135 genes (347 PCGs, 635 lncRNAs, 153 circRNAs)
with no functional information co-expressed with other
annotated genes in a module (coloured brown), which
were significantly enriched in the immunity system.
These results indicated that our newly generated

datasets can serve as a useful resource for functionally
annotating genes in sheep.
We detected six TFs, whose motifs were significantly

enriched in these five stage-specific modules (Fig. 7c).
These TFs also showed stage-specific expression and
participate in embryonic development. For instance,
TFDP1 and E2F4 participate in the TGF-β signalling
pathway [38] and showed stage-specific expression at
E65 and P7 (Fig. 7c). IRF1 serves as an activator of genes
involved in the innate and acquired immune responses.
It also enhanced the expression of interferon-kappa (IF-
κ) [39] and showed stage-specific expression at E105
(Fig. 7c).

Integrative analysis of stage-specific molecular features
with GWAS signals of wool and growth traits
To determine whether the developmental gene expres-
sion and regulation patterns allow us to better interpret
the genetic variants associated with complex traits, we
integrated the stage-specific molecular features detected
above with GWAS signals of five wool traits and live
weight in Merino sheep (Additional file 16: Table S9)
[40]. As shown in Fig. 8a, b, genes with stage-specific ex-
pression were significantly (FDR < 0.1) enriched for
GWAS signals of all these traits. For instance, genes with

Fig. 6 Competing endogenous RNA (ceRNA) network. a The top 200 circRNA-miRNA-mRNA and top 200 lncRNA-miRNA-mRNA interactions. The
edges are the Pearson correlation coefficient (PCC) between genes. The sizes of the circles correspond to the connection degrees. b Top10
enriched Gene Ontology (GO) terms (biological processes, BP) in ceRNAs comparing to the genome background. The P values are computed by
the hypergeometric test. c Sankey diagram of important candidate ceRNA pairs. Each rectangle represents a gene; degree of connection of each
gene is directly proportional to rectangle size
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specific upregulation at E105 were significantly (FDR <
0.1) enriched in GWAS signals of five traits, including
MFD, CVFD, CN, MSL, and LW (Fig. 8a). In addition,
targets of miRNAs and circRNAs, which showed specific
upregulation at E135 and P7, were significantly (FDR <
0.1) enriched for GWAS signals of CVFD. Targets of
lncRNAs and miRNAs with P30 specific upregulation
were significantly (FDR < 0.1) enriched in GFW (Fig.
8a). Furthermore, gene co-expression modules were also
significantly enriched for GWAS signals of all six traits
(Fig. 8c). For instance, the gene co-expression module
coloured yellow, which was significantly enriched in im-
mune responses and the regulation of canonical Wnt
signalling pathway (Fig. 7c), was significantly (FDR <
0.1) enriched for GWAS signals of MFD, CVFD, and CN
(Fig. 8c).

By comprehensively integrating GWAS [40], the tran-
scriptome data from this study, the sheep expression
atlas [41, 42], and the human GWAS atlas [43, 44], we
proposed the most promising candidate genes for each
of the six traits (Additional file 17: Table S10). For in-
stance, the top SNP of SPHK1 explained 0.44% of the
genetic variance (the fourth QTL region regarding the
explained genetic variance) in CVFD and its expression
level gradually increased during hair follicle develop-
ment. SPHK1 was specifically and highly expressed in
the immune system and was strongly associated with
immune-related traits such as the reticulocyte fraction of
red blood cells in humans (Fig. 8d). The top SNP of
GHR explained 0.76% (the third QTL region) and 0.39%
(the ninth QTL region) of the genetic variance in CN
and MSL, respectively. GHR was gradually

Fig. 7 The weighted gene co-expression network analysis (WGCNA). a Bar chart shows numbers of each gene type detected in individual
modules. Grey module includes genes that are not assigned to any co-expression modules. b Correlations between gene modules and
developmental stages. The statistical significance of module-developmental stage relationship is corrected for multiple testing using the FDR
method. The yellow stars denote FDR < 0.05. Each cell contains the correlation and the corresponding FDR value in bracket. c Heatmap shows
the normalized gene expression for genes in the top five significant modules. Top enriched GO terms (biological process; BP), the normalized
gene expression for module-enriched TFs, and the top representative sequence motif are shown next to each module
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downregulated during hair follicle development. It was
specifically expressed in liver and was significantly asso-
ciated (FDR < 0.05) with metabolism-related traits such
as trunk fat-free mass in humans (Fig. 8e). PPP1R27
showed the highest expression level at E105 compared
to other stages, and its top SNP explained 0.36%, 0.37%,
0.24%, and 0.22% of genetic variance in LW, MFD,
GFW, and CV, respectively. It was specifically expressed
in muscle and was significantly associated with hair
colour and haemoglobin levels in humans (Fig. 8f). The
explained genetic variance, expression patterns across
tissues, and phenome-wide association study (PheWAS)
results of CSRP2 for MFD, EEF1A2 for MSL, and PTPN1
for GFW are shown in Additional file 18: Fig. S8. In
summary, the candidate genes discovered here showed
specificity for developmental stage and tissue type, and

their orthologues were associated with similar complex
traits in humans.

Discussion
The elucidation of the morphology and molecular mech-
anisms underlying the normal development of sheep hair
follicles expands our understanding of hair growth biol-
ogy and the genetic basis of wool traits. In this study, we
first explored the morphogenesis of hair follicles using
the H&E staining approach across six developmental
stages, and demonstrated the asynchronous development
of sheep hair follicles. Sheep and mouse exhibit the simi-
lar anatomical structure of the primary hair follicles, in-
cluding the de novo formation of wool placode, dermal
condensation, and the thickening of epidermis and der-
mis [4, 45]. However, sheep has secondary hair follicles,

Fig. 8. Integrative analysis of stage-specific molecular signatures and co-expression modules with GWAS signals of wool and growth traits. a The
GWAS signal enrichment results across the stage-specific upregulated molecular features including PCGs, miRNA targets, circRNAs, circRNAs
parental genes, lncRNAs, lncRNA targets, and DNA methylation. b Similar to a, but for stage-specific downregulated molecular features. c The
GWAS signal enrichment results for 15 gene co-expression modules. Traits include mean fibre diameter (MFD), coefficient of variation of fibre
diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). Colour corresponds to
enrichment degrees (− log10FDR) calculated using the sum-based GWAS signal enrichment analysis, where (∗) means FDR < 0.1. d, e GHR; f
PPP1R27. For left to right, the first plot is for the genetic variance explained by SNPs of SPHK1 (each dot is one SNP, and the highlighted region
corresponds to gene region), the second for the expression patterns of SPHK1 across six developmental stages, the third for the expression
patterns of SPHK1 across multiple tissues in sheep gene expression atlas, and the last for the results of phenome-wide association study (PheWAS)
for SPHK1. e, f Similar to d, but for GHR and PPP1R27, respectively
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sweat glands, and postnatal hair growth cycles, while
mouse lacks them. This indicates that although mam-
mals share similarity during hair follicle development,
sheep might exhibit distinct morphology and regulation
mechanisms [46].
We demonstrated that stage-specific PCGs, non-

coding RNAs, and DNA methylation play a critical role
in hair follicle development. We discovered several
stage-specific TFs, such as KLF4, LEF1, HOXC13, RBPJ,
VDR, RARA, and STAT3, associated with hair follicle
development and growth [24–30]. Functional enrich-
ment analysis indicated that stage-specific genes were
significantly enriched in signalling, cell migration, and
aggregation, highlighting the central roles of intercellular
crosstalk and dynamic cell rearrangement in the hair
morphogenesis. Specifically, it has been demonstrated
that the hair follicle fate was regulated by the canonical
Wnt/β-catenin signalling [47], cellular differentiation by
BMP signalling [48], and dermal papilla cell proliferation
by Notch signalling [49].
We found that stage-specific genes (e.g. IFN, CD40

and TGFBR3) and co-expression modules were signifi-
cantly enriched in the immune system. Previous studies
proposed that hair follicles had an immune capacity in
the growth stage of hair cycle, characterized by the
downregulation of major histocompatibility complex
(MHC) class I and the upregulation of potent immuno-
suppressants in mammals [50]. This hair follicle immune
capacity is also regulated by pathways like NF-kappa B,
CD antigens, interleukins (IL), TNFs, and IFNs related
[51]. The collapse of this hair follicle immune capacity
has been proposed to initiate the loss of hair as seen in
patients with the autoimmune disease alopecia areata
(AA) [52, 53].
According to the biological hypothesis of ceRNA [54],

circRNAs and lncRNAs regulate the expression of target
genes by modulating miRNAs [55, 56]. In this study, by
constructing ceRNA interaction networks using the
stage-specific PCGs, miRNAs, circRNAs, and lncRNAs,
we found that several circRNAs and lncRNAs regulated
the expression of PCGs via modulating stage-specific
miRNAs. We also found that a single miRNA can simul-
taneously target multiple circRNAs and lncRNAs, indi-
cating that miRNA plays a central role in this
interaction network by supplying multiple intermediate
bridges linking circRNAs/lncRNAs to PCGs [57].
Identifying the causal genes and tissues for complex

phenotypes contributes to animal breeding. Recent stud-
ies integrated various types of data from a wide range of
tissues, such as gene expression [17, 58], DNA methyla-
tion [59], chromatin states [60, 61], histone modifica-
tions [62], and expression quantitative trait loci (eQTL)
[63], with GWAS summary statistics to identify tissues
and cell types that were relevant with complex traits and

diseases. Here, by integrating developmental stage-
specific PCGs, miRNAs, circRNAs, lncRNAs, and DNA
methylation regions as well as gene co-expression mod-
ules with GWAS signals of wool and growth traits in
sheep [40], we expanded our insights into the genetic
architecture underlying such complex traits. However,
functional experiments (e.g. gene editing) will be re-
quired to validate the candidate genes of wool traits
identified in this study, and to assess their usefulness in
animal breeding. In addition, the findings here can be
further incorporated into genomic prediction models as
biological priors, such as GFBLUP [64], for improving
the prediction accuracy and for fine-mapping causal
genes [17]. In future studies, additional omics data (e.g.
ChIP-Seq, ATAC-Seq, Hi-C, and single-cell RNA-seq)
from more tissue types (e.g. immune tissues) should be
included to identify the molecular drivers underlying
hair follicle development. Overall, the increasingly com-
prehensive functional annotations of genome will enable
us to better elucidate the genetic basis of complex trait
variation and to enhance the genetic improvement pro-
gram in livestock [65].

Conclusions
In summary, we here characterized the global changes of
the whole transcriptome and DNA methylation across
six developmental stages of hair follicle in sheep. We
identified the key molecular features that were signifi-
cantly associated with hair follicle morphogenesis, and
highlighted the complexity of the regulatory networks of
PCGs and non-coding RNAs during the hair follicle de-
velopment. Through integrating these findings with
GWAS of wool traits, we provided novel insights into
the genetic and biological mechanisms underpinning
such traits in sheep. These datasets and findings pro-
vided a valuable resource for understanding the biology
of hair follicle development and for interpreting the gen-
etic basis of skin-relevant traits in mammals.

Methods
Animal and tissue collection
All the experimental animals were Subo Merino sheep
obtained from Xinjiang Fine Wool Sheep Breeding Farm
(Xinjiang, China). Subo Merino is a sub-type of Merino,
which was bred in 2014 in China by crossing Australian
Merino (paternal) with the Chinese Merino (maternal)
[66]. Eighteen healthy Subo Merino ewes (2–3 years old;
MFD, 18.1 ± 0.5 μm) were artificially inseminated with
fresh sperm from a Subo Merino ram (3 years old; MFD,
19.0 ± 0.4 μm) and then managed at the same flock. The
pregnant ewes were housed indoor for a 7-day “settling-
in period” prior to being euthanized (electrocution
followed by exsanguination). The embryos were col-
lected in pregnant ewes at four embryonic days (i.e. E65,
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E85, E105, and E135). The skin tissues were collected
immediately after euthanasia. The skin tissues of postna-
tal lambs were collected in vivo with approximately 2
cm2 × 3mm deep at P7 and P30. The wound was recov-
ered in 2 weeks with care. Three biological replicates
were generated for each of six developmental stages, and
the body weight and length of all these 18 individuals
were measured.
All eighteen skin tissues were collected from the right

mid-side regions behind the shoulder blade of each indi-
vidual and rinsed in 1 × phosphate-buffered saline
(PBS). Each skin tissue was divided into two parts: One
was cut into a strip and fixed in 4% paraformaldehyde at
4 °C for ~ 1 week before H&E staining. The H&E stain-
ing was performed according to the classic method [67].
The skin samples were then made into paraffin sections.
We selected three horizontal sections from each individ-
ual and 10 fields of view for each section, to count the
average number of PF and SF by taking pictures with the
same magnification using the electron microscope. The
remaining skin samples were minced and snap-frozen in
liquid nitrogen for the subsequent RNA extraction.

Library construction and sequencing
The total RNA from the 18 skin tissues was extracted
using TRIzol reagent (Thermo Fisher Scientific, Wal-
tham, MA, USA). All samples had high-quality RNA
with RNA integrity number (RIN) > 8.0. For mRNA and
lncRNA, the strand-specific sequencing libraries were
constructed using the ribosomal RNA (rRNA) removal
method following a previously described protocol [68].
For circRNA, the strand-specific sequencing libraries
were constructed using rRNA-depleted and RNase R-
digested methods according to the previous protocol
[69]. For miRNAs, the RNA molecules in a size range of
18–30 nt were enriched from total RNA by the poly-
acrylamide gel electrophoresis (PAGE). The 3′ adaptors
were then added, followed by the enrichment of RNAs
with length of 36–44 nt and the ligation of 5′ adaptors
to the RNAs. The ligation products were reverse-
transcribed by PCR amplification. All of the above librar-
ies were sequenced on the Illumina NovaSeq6000 plat-
form, which generated 150-bp paired-end (PE150) reads.
For MeDIP-Seq, the DNA libraries were prepared with

a TruSeq DNA ample preparation kit (Illumina, San
Diego, CA, USA). In brief, genomic DNA was extracted
with a DNeasy blood & tissue kit (Qiagen, Hilden,
Germany). DNA (3 μg) was sonicated in the range of
100–500 bp. Subsequently, DNA underwent the end-
repair, the generation of 3′-dA overhangs, and adaptor
ligation steps using a Paired-End DNA Sample Prep kit
(Illumina, San Diego, CA, USA). DNA was then recov-
ered by AMPure XP Beads and used for MeDIP using
the Magnetic Methylated DNA Immunoprecipitation Kit

(Diagenode, Denville, NJ, USA) following the manufac-
turer’s protocol. Adaptor-mediated PCR was performed
to amplify the enriched fragments, and the library was
sequenced on an Illumina HiSeq2500 PE150 platform.

Pre-processing sequence data
All raw reads were quality-tested with FastQC v. 0.11.8
(http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). For the mRNAs and lncRNAs, clean reads were
obtained by removing adaptor and low-quality reads
with Seqtk [70]. The rRNA-free reads were mapped to
the sheep reference genome (Ensembl Oar_v3.1) using
Hisat2 v. 2.4 [71]. Stringtie v. 1.3.1 [72, 73] was used to
count the fragment within each gene. The expression of
PCGs and lncRNAs was normalized as fragments per
kilobase of exon model per million mapped fragments
(FPKM). To compare the newly built Oar_rambouillet_
v1.0 with Oar_v3.1, we also mapped all 18 RNA-seq
datasets to Oar_rambouillet_v1.0 using the same pipe-
line and found similar results in terms of mapping rates,
gene expression, and stage-specific expression (Add-
itional file 19: Table S11 and Additional file 20: Fig. S9).
LncRNAs were defined as novel transcripts using the
following filters: length ≥ 200 bp; number of exons ≥ 2;
ORF ≤ 300 bp; have no or weak protein-coding ability
(CPC score < 0 [74] & CNCI score < 0 [75] and no sig-
nificant similarity with Pfam database [76]). Gffcompare
v.0.9.8 [77] was used to compare lncRNAs derived from
the current RNA-seq datasets with the known lncRNAs
in NONCODE v5. The genes transcribed within 10 k bp
up- and downstream of an lncRNA were considered as
its cis-acting target genes. The trans-acting target genes
of lncRNAs were predicted using RNAplex software [9].
For the circRNAs, clean reads were obtained by fastp

v. 0.18.0 [78]. Reads were then aligned to the reference
genome by Hisat2 v. 2.4 [71], and those with full length
mapped were discarded. Next, from the unmapped
reads, we extracted 20-nt from both ends and aligned
them independently to find unique anchor positions
within spliced exons by Hisat2 v. 2.4 [71]. Anchors align-
ing in the reverse orientation (head-to-tail) indicated cir-
cRNA splicing. They were then subjected to CIRI [79] to
identify the circRNAs. The expression of circRNAs was
quantified using the number of spanning back-spliced
junction reads and normalized as spliced reads per bil-
lion mapping (SRPBM) [80].
For the miRNAs, clean tags were obtained by FASTX-

Toolkit v. 0.0.13 [81] and aligned with small RNAs in
the GeneBank (Release 209.0) and Rfam (Release 11.0)
[82] databases to identify and remove rRNA, scRNA,
snoRNA, snRNA, and tRNA. All clean tags were aligned
to the sheep reference genome (Ensembl Oar_v3.1). The
tags mapped to exons or introns from mRNA degrad-
ation and repeat sequences were removed. All clean tags
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were then searched against the miRBase (Release 22.1)
[20] database to identify known miRNAs. The expres-
sion of miRNAs was calculated and normalized to
counts per million (CPM). The target genes of miRNAs
were predicted using three approaches, including mireap
v. 0.20 [83], miRanda v. 3.3a [84], and TargetScan v. 7.0
[85, 86], and those detected by all three approaches were
chosen for downstream analysis.
For the MeDIP-Seq data, raw reads were first proc-

essed to filter out low-quality reads that containing more
than 5 “N”s or over 50% of the sequence with low-
quality value (Phred score < 5) using FASTX-Toolkit v.
0.0.13 [81]. The clean reads were aligned to the sheep
reference genome, allowing up to two mismatches, using
Bowtie v. 0.12.8 [87]. Peak calling were conducted using
MACS v. 2.1.1 [88]. Peaks detected in individual samples
from the same developmental stage were merged using
BEDTools [89]. Genomic features were annotated in the
R package ChIPseeker [90]. Promoters were defined as
1500 bp up and 500 bp downstream from the TSS of
each gene. To evaluate the enrichment of methylation
peaks, the fold enrichment ratio was calculated as the
MeDIP-Seq counts relative to expected background
counts λlocal [88].

Identification and annotation of stage-specific molecular
features
Stage-specific PCGs (FDR < 0.05), lncRNAs (FDR <
0.05), circRNAs (P < 0.01), and miRNAs (P < 0.01) were
identified between one stage and others using the R
package edgeR [91]. Stage-specific MRs (P < 0.01) were
identified using the R package DiffBind [92]. Stage-
specific PCGs and circRNAs were separately clustered
with the R k-means function where k = 6 within the
cluster package according to the Euclidean distance. All
functional enrichment analyses were conducted for each
stage-specific gene types using the R package clusterPro-
file [93]. The edgeR package in R [48] was used to calcu-
late the fold changes of PCGs in each stage compared to
the other stages. These fold changes were used as input
data in the GSEA. GSEA was performed to establish
whether a set of genes in specific GO terms were signifi-
cantly differed from the other stages using the R package
GSVA [94, 95], together with the annotated gene sets C5
v. 7.1 downloaded from the MsigDB database [96]. Sig-
nificantly enriched gene sets (FDR < 0.05) were then
ranked by the consensus score [97]. The top five repre-
sentative gene sets (FDR < 0.05) with the largest consen-
sus scores were selected for each stage and visualized
with the R package pheatmap [98]. The sequence motif
enrichment analysis of promoters of stage-specific PCGs
was conducted by MEME v. 5.3.3 [99], based on the JAS-
PAR (2020) core non-redundant vertebrate motifs from
Tomtom [99, 100].

Regulatory network construction
A hypergeometric test was used to determine whether
stage-specific PCGs were significantly (FDR < 0.05)
enriched in miRNA or lncRNA targets. The regulatory
networks of target genes of top three significantly (FDR
< 0.05) enriched lncRNAs and miRNAs were visualized
using Gephi v. 0.9.2 [101].
The ceRNA network was constructed according to the

following steps: (1) All stage-specific transcripts were se-
lected and the expression correlation between PCG-
miRNA or lncRNA-miRNA or circRNA-miRNA was
evaluated using the PCC. Pairs with PCC < − 0.7 were
selected as negatively co-expressed pairs. (2) Among all
lncRNA-PCG and circRNA-PCG pairs, those with PCC
> 0.7 were selected as positively co-expressed pairs. (3)
The hypergeometric test was used to determine whether
the common miRNA sponges between the two genes
were significant. Pairs with P < 0.05 were selected.
(4) The ceRNA network was constructed by assem-
bling all co-expressed competing triplets, which were
identified in (3), and visualized using Gephi v. 0.9.2
[101].

Weighted gene co-expression network analysis (WGCNA)
An unsigned gene co-expression network was con-
structed using the R package WGCNA v. 1.12.0 [62].
Briefly, 29,616 PCGs and non-coding RNAs were used
for the analyses. They all had expression > 0.1 (FPKM
for PCG and lncRNA, SRPBM for circRNA, CPM for
miRNA) in ≥ 12 samples. The normalized matrix was
transformed to a matrix of Pearson correlations between
gene pairs which, in turn, was converted to an adjacency
matrix. To identify highly co-expressed gene modules,
genes with similar expression patterns (r > 0.9) were
clustered with a dynamic hybrid cutting algorithm.
Eigengenes for these modules were defined as the first
principal component of the corresponding expression
matrix and were associated with all six hair follicle de-
velopmental stages.

GWAS signal enrichment analysis
The details of the weighted single-step genome-wide as-
sociation study (WssGWAS) for five wool traits and one
growth trait including MFD, CVFD, CN, MSL, GFW,
and LW in Merino sheep was described previously [40].
Briefly, the GWAS population consisted of 7135 individ-
uals (aged at 15 months) with phenotype data, among
which 1217 had imputed high-density (HD) genotype
data (n = 372,534) [40]. A sum-based marker-set test
method was applied using the QGG package in R [17,
102] for GWAS signal enrichment analyses across stage-
specific molecular features and gene co-expression
modules:
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Tsum ¼
Xmg

i¼1

b2 ð1Þ

where Tsum represents the summary statistics for each
molecular feature, mg is the number of SNPs overlap-
ping the molecular feature, and b is the SNP effect from
GWAS. The marker-set sizes and LD patterns among
markers were controlled by applying a genotype cyclical
permutation strategy as described previously [103, 104].
To obtain empirical P values for the association of a mo-
lecular feature with a complex trait, the permutation
procedure was repeated 10,000 times and a one-tailed
test was applied based on the proportion of random
summary statistics greater than that observed [17, 102].
The P values were corrected for multiple testing using
the FDR method. FDR < 0.1 was considered significant.

Detection of candidate genes of wool and growth traits
with multiple data sources
To detect candidate genes of wool and growth traits in
sheep, we first focused on the stage-specific genes that
were located in the top 50 ranked QTLs in terms of their
explained genetic variance for each trait. The proportion
of genetic variance explained by SNPs of candidate genes
is derived from WssGWAS [40, 105]. To detect whether
candidate genes show tissue-specific expression in a
wide range of tissues and cell types, the gene expression
estimates (transcripts per million, TPM) of 500 ovine
samples were downloaded from the sheep gene atlas as
reported by Clark et al. [41, 42]. They comprised 87 tis-
sue and cell types with varying numbers of animals per
tissue type. According to the known tissue biology [41],
the samples were classified into 13 organ systems. The
details are described in Additional file 21: Table S12.
The PheWAS has been widely used to associate a gen-

etic variant with many phenotypes to explore its pleio-
tropic effect on complex traits [43]. To detect whether
the human orthologues of candidate genes detected for
wool and growth traits in sheep here are associated with
similar traits in humans, a PheWAS analysis was con-
ducted for each candidate gene based on the GWASAT
LAS database [43, 44]. We used the GWAS summary
statistics of 586 complex phenotypes from 159 publicly
available human GWAS (the total sample size of each
study > 2000). We considered genes with adjusted P
values (FDR) less than 0.05 as significant. The complex
traits were classified into 12 trait domains based on the
known biology [106, 107]. The details are described in
Additional file 22: Table S13.
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Additional file 1: Fig. S1. The global study design. Grey boxes
represent 18 samples collected from skin tissue at six developmental
stages (three biological replicates per stage) of hair follicle in sheep. The
H&E staining method is used to observe the morphology of each sample.
Orange boxes are for data generation, including strand-specific RNA-Seq
for mRNA, lncRNA, circRNA and miRNA, as well as MeDIP-seq for DNA
methylation in each of 18 skin samples. Green boxes show the major bio-
informatics and statistical analyses involved in this study for functional an-
notation of stage-specific molecular signatures. Blue boxes describe other
resources used for detecting candidate genes of wool traits in sheep. Pink
boxes outline the main objective of this study, which is to reveal the gen-
etic and biological basis of hair follicle development in sheep.

Additional file 2: Table S1. Mapping summary of all sequence data in
this study.

Additional file 3: Table S2. Comparison of expressed genes detected
in this study with known genes in sheep reference genome.)

Additional file 4: Table S3. The distribution of DNA methylation peaks
among different genomic features.

Additional file 5: Fig. S2. Principal component analysis (PCA) of
samples based on the expression levels of all four gene types including
protein-coding genes (PCGs), lncRNAs, circRNAs and miRNAs.

Additional file 6: Fig. S3. General characteristics of circRNAs in sheep
skin. a, Genomic origin of circRNAs in sheep skin. b, Distribution of
parental genes (hosting genes) encoding different numbers of circRNAs
in sheep skin.

Additional file 7: Fig. S4. Identification of stage-specific molecular sig-
natures during sheep hair follicle development. a, b, c, d, e, and f are
numbers of stage-specific PCGs (FDR < 0.05), lncRNAs (FDR < 0.05), cir-
cRNAs (P < 0.01), miRNAs (P < 0.01), methylation regions (MRs) (P < 0.01)
and genes overlapped in MRs, respectively. Solid lines: upregulation;
dashed lines: downregulation.

Additional file 8: Table. S4. Top five representative Gene Ontology
(GO) terms for upregulated and downregulated genes at each
developmental stage revealed by a gene set enrichment analysis (GSEA).

Additional file 9: Table S5. Motif enrichment analysis for promoters of
upregulated and downregulated stage-specific genes.

Additional file 10: Fig. S5. Functional enrichment analysis of down-
regulated circRNAs during sheep skin development. Heatmap shows the
normalized expression of top 10 downregulated stage-specific circRNAs
at each developmental stage. Bubble plot shows the top five enriched
Gene Ontology (GO) terms (biological process; BP) for parental genes of
downregulated stage-specific circRNAs.

Additional file 11: Fig. S6. Functional enrichment analysis of up- and
down-regulated lncRNAs and miRNAs during sheep hair follicle develop-
ment. Heatmaps show the normalized expression of top 10 upregulated
and downregulated lncRNAs (a, b) and miRNAs (c, d) at each develop-
mental stage. Bubble plots show the top five enriched gene ontology
(GO) terms (biological process; BP) for targets of upregulated and down-
regulated lncRNAs (a, b) and miRNAs (c, d).

Additional file 12: Table S6. Number of significantly (FDR < 0.05)
enriched lncRNAs and miRNAs.
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Additional file 13: Table S7. Number of the negatively correlated
(Pearson correlation coefficient (PCC) < -0.7) miRNA-targets pairs.

Additional file 14: Table S8. Number of the positively correlated
(Pearson correlation coefficient (PCC) > 0.7) endogenous RNA (ceRNA)
pairs targeted by a common miRNA (P < 0.05).

Additional file 15: Fig. S7. Gene co-expression modules determined by
a weighted gene co-expression network analysis (WGCNA). a, Heatmap
on the left shows the normalized gene expression of 15 modules. Top
enriched Gene Ontology (GO) terms for each module are summarized on
the right. b, Bar chart shows the numbers of annotated and unannotated
genes in each module. c, Density chart shows the percentage of anno-
tated and unannotated genes in each module. b and c share the same
figure legend.

Additional file 16: Table S9. Significant GWAS signal enrichment
results in wool and growth traits.

Additional file 17: Table S10. Summary of candidate genes for wool
traits and live weight in Merino sheep.

Additional file 18: Fig. S8. Integrative analysis with multi-databases to
detect candidate genes for wool traits and live weight in Merino sheep.
a, CSRP2; b, EEF1A2; c, PTPN1. Plots (from left to right) show the genetic
variance explained by SNPs of candidate gene (each dot is one SNP), the
expression patterns of corresponding genes during sheep skin develop-
ment, the expression patterns of corresponding genes across multi-
tissues, and the phenome-wide association study (PheWAS) results for
each candidate gene in humans, respectively.

Additional file 19: Table S11. Comparisons of the mapping statistics of
18 RNA-seq datasets between Oar_v3.1 and Oar_rambouillet_v1.0.

Additional file 20: Fig. S9. Comparison of gene expression for all 18
RNA-seq samples between Oar_v3.1 and Oar_rambouillet_v1.0. a. The
Pearson correlation coefficient (PCC) of mean log2(count+ 1) is 0.95, P-
value< 2.2e-16; b. The PCC of mean log2(FPKM+ 1) is 0.94, P-value < 2.2e-
16. c and d The PCC of log2(count+ 1) and log2(FPKM+ 1) for each sam-
ple, respectively. e and f. Comparison of the stage-specific expression of
PCGs between the two genome assemblies (Oar_v3.1 and
Oar_rambouillet_v1.0).

Additional file 21: Table S12. Gene expression levels (transcripts per
million, TPM) of six candidate genes in sheep gene expression atlas.

Additional file 22: Table S13. Phenome-wide association study (Phe-
WAS) results for six candidate genes in humans.
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