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Abstract

Background: Characterizing phage–host interactions is critical to understanding the ecological role of both
partners and effective isolation of phage therapeuticals. Unfortunately, experimental methods for studying these
interactions are markedly slow, low-throughput, and unsuitable for phages or hosts difficult to maintain in
laboratory conditions. Therefore, a number of in silico methods emerged to predict prokaryotic hosts based on viral
sequences. One of the leading approaches is the application of the BLAST tool that searches for local similarities
between viral and microbial genomes. However, this prediction method has three major limitations: (i) top-scoring
sequences do not always point to the actual host; (ii) mosaic virus genomes may match to many, typically related,
bacteria; and (iii) viral and host sequences may diverge beyond the point where their relationship can be detected
by a BLAST alignment.

Results: We created an extension to BLAST, named Phirbo, that improves host prediction quality beyond what is
obtainable from standard BLAST searches. The tool harnesses information concerning sequence similarity and
bacteria relatedness to predict phage–host interactions. Phirbo was evaluated on three benchmark sets of known
virus–host pairs, and it improved precision and recall by 11–40 percentage points over currently available, state-of-
the-art, alignment-based, alignment-free, and machine-learning host prediction tools. Moreover, the discriminatory
power of Phirbo for the recognition of virus–host relationships surpassed the results of other tools by at least 10
percentage points (area under the curve = 0.95), yielding a mean host prediction accuracy of 57% and 68% at the
genus and family levels, respectively, and drops by 12 percentage points when using only a fraction of viral
genome sequences (3 kb). Finally, we provide insights into a repertoire of protein and ncRNA genes that are shared
between phages and hosts and may be prone to horizontal transfer during infection.

Conclusions: Our results suggest that Phirbo is a simple and effective tool for predicting phage–host relationships.
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Background
Viruses infecting bacteria (phages) are the most abun-
dant entities across all habitats and represent a vast res-
ervoir of genetic diversity [1]. Phages mediate horizontal
gene transfer and constitute a major selection pressure

that shapes the evolution of bacteria [2]. Bacterial viruses
also affect biogeochemical cycles and ecosystem dynam-
ics by controlling microbial growth rates and releasing
the contents of microbial cells into the environment [2,
3]. Moreover, phages play a key role in shaping the com-
position and function of the human microbiome in
health and disease [4–6]. Recently, there has been
renewed interest in phage therapy and phage-based bio-
control of harmful bacteria [7, 8] in medical treatment
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[9, 10] and the food industry [11, 12]. Hence, character-
izing phage–host interactions is critical to understanding
the factors that govern phage infection dynamics and
their subsequent ecological consequences [13].
The scope of phage–host interactions is poorly under-

stood, although it has been hypothesized that all bacteria
fall prey to viral attacks [1]. Methods for studying
phage–host interactions primarily rely on cultured
virus–host systems; however, recent in silico approaches
suggest a much broader range of hosts may be suscep-
tible to viral infections [14, 15]. These methods predict
bacterial hosts based on sequence composition [16, 17],
direct sequence similarity between phages and hosts [14,
15], analysis of CRISPR spacers or tRNAs [13, 18], and
machine-learning approaches that integrate several
sequence-based methods [19, 20].
Despite significant progress in phage–host predic-

tions, the classic BLAST [21] algorithm is currently
the leading non-machine-learning method for identify-
ing phage–host interactions [14, 16]. Depending on
the data set, the tool finds the correct genus level
host for 40–60% of phages [14, 16]. The task of find-
ing a host for a given phage using BLAST is concep-
tualized as obtaining the host sequence with the
highest similarity to the query phage sequence. How-
ever, restricting host predictions to the first top-
scored bacterial sequence has three limitations. First,
the true host may not be the top-scoring match in
the BLAST results. Second, mosaic phage genomes
may match to many, typically related, bacteria. Al-
though phages are generally host-specific, some may
infect multiple host species [22, 23]. Finally, many
distantly related bacterial species may obtain a com-
parable BLAST score for a query phage due to spuri-
ous alignments. These ambiguous host predictions
require further manual curation of the taxonomic or
phylogenetic relationship between the top-scored pro-
karyotic species to select the true host(s).
We have addressed these issues by developing a

simple extension to BLAST, named Phirbo, that ex-
ploits the information contained in the full BLAST
results, rather than its top-ranking matches. Phirbo
improved the accuracy of finding hosts, beyond what
is found from the best BLAST match, by relating
phage and host sequences through intermediate, com-
mon reference sequences that are potentially homolo-
gous to both phage and host queries. Subsequent
quantification of the overlapping signals allows for
the reliable prediction of phage–host interactions
without the need for direct comparisons between the
phage and host sequences and without any prior
knowledge of their phylogenetic or taxonomic
context.

Results
Phirbo algorithm overview
Our algorithm is based on the assumption that the
degree of similarity between phage and host
sequences is proportional to the overlap between
ranked similarity matches of each sequence to the
same reference data set of prokaryotic sequences.
Specifically, to compare a pair of phage (P) and host
(H) sequences, we first perform two independent
BLAST searches against the reference database of
prokaryotic genomes (D)—one BLAST search for
phage and the other for the host query (Fig. 1a). The
two lists of BLAST results (Fig. 1b), P → D and H →
D, contain prokaryotic genomes ordered by decreasing
sequence similarity (i.e., bit-score). To avoid a taxo-
nomic bias due to multiple genomes of the same
prokaryote species, we rank prokaryotic species
according to their first appearance in the BLAST list
(Fig. 1c). In this way, both lists represent phage and
host profiles consisting of the ranks of top-score
prokaryotic species.
The properties of these lists (Fig. 1c) can be charac-

terized by four features: (i) species listed at the top of
each ranking are more important (similar) to the
query than those listed at the bottom; (ii) the lists
may not be conjoint (some species may appear in one
ranking but not in the other); (iii) the ranking lists
may vary in length (BLAST may return few prokary-
otic matches in response to virus sequences in con-
trast to thousands of matches in cases of multiple-
species prokaryotic families); (iv) two or more species
from the database may achieve the same BLAST score
and, therefore, occupy the same position on the rank-
ing list (Fig. 1c). A recently introduced similarity
measure used for comparing the rankings of Web
search engine results [24], the Rank-Biased Overlap
(RBO), satisfies these four conditions. The RBO algo-
rithm starts by scoring the overlap between the sub-
list containing the single top-ranked item of each list.
It then proceeds by scoring the overlaps between sub-
lists formed by the incremental addition of items fur-
ther down the original lists. Each consecutive iteration
has less impact on the final RBO score as it puts
heavier weights on higher-ranking items by using geo-
metric progression, which weighs the contribution of
overlaps at lower ranks (see the “Methods” section).
An overall RBO score falls between 0 and 1, where 0
signifies that the lists are disjoint (have no items in
common) and 1 means the lists are identical in con-
tent and order. Our results indicate that the extent of
the phage–host relationship can be estimated by the
application of an RBO measurement to the ranking
lists generated from BLAST results (Fig. 1d).
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Phirbo differentiates between interacting and non-
interacting virus–host pairs
To assess the discriminatory power of Phirbo to
recognize virus–host interactions, we used two pub-
lished reference data sets: Edwards et al., which con-
tains 2699 complete bacterial genomes and 820 phages
with reported hosts [14, 25], and Galiez et al. that has
3780 complete prokaryotic genomes and 1420 viral ge-
nomes [17, 26]. For each data set, we compared the dis-
tribution of Phirbo scores between all known virus–
host interaction pairs and the same number of ran-
domly selected non-interacting virus–prokaryote pairs

(Additional file 1: Figure S1). The scores obtained by
Phirbo in both data sets separated the interacting from
non-interacting virus–host pairs more than the BLAST
scores. The median Phirbo score across interacting
virus–host pairs was nearly 1500 times greater than for
non-interacting pairs, while the median BLAST score
was three times higher for interacting pairs than non-
interacting pairs (Additional file 2: Table S1). Both
methods differentiated between interacting and non-
interacting virus–host pairs with higher accuracy than
WIsH—the state-of-the-art, alignment-free, host pre-
diction tool [17].

Fig. 1 Calculation of the interaction score between phage and host sequences. (a) The BLAST search of phage and prokaryote sequences against
a reference data set result in (b). Two BLAST lists containing prokaryote matches ordered by decreasing similarity (i.e., bit-score). (c) BLAST lists
were converted into rankings of prokaryote species. The ranked lists differ in content: Yersinia rohdei and Y. ruckeri are present in the first ranking
list but absent in the second list, while Shigella dysenteriae and Erwinia toletana are only present in the second list. Two species, Y. rohdei and Y.
ruckeri, from the first BLAST search have the same scores and are consequently tied for the same rank. (d) An interaction score was calculated
between two ranking lists using rank-biased overlap
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To further examine the discriminatory power of
Phirbo across all possible virus–prokaryote pairs, we
used receiver operating characteristic (ROC) curves
(Fig. 2a, b). The area under the ROC (AUC), which
measured the discriminative ability between interact-
ing and non-interacting virus–host pairs, was higher
for Phirbo (AUC = 0.95) in the Edwards et al. and
Galiez et al. data sets than for BLAST (AUC = 0.86)
and WIsH (AUC = 0.84–0.85). An additional advan-
tage of Phirbo was its capacity to score virus–host
pairs whose sequence similarity could not be estab-
lished by a direct BLAST comparison but, instead,
through other, “intermediate” prokaryotic sequences
that were detectably similar to both virus and host
query sequences. For example, BLAST did not pro-
vide scores for 20% of the interacting virus–host pairs
in the Edwards et al. and Galiez et al. data sets due
to alignment score thresholds (Additional file 2: Table
S2). Using the same BLAST lists, Phirbo evaluated
99% of the interacting virus–hosts pairs. This high
coverage indicated that nearly every pair of virus–
prokaryote sequences could be related by at least one
common prokaryotic sequence detectably similar to
both the virus and host sequences.

Phirbo has the highest host prediction performance
To evaluate host prediction performance, we used preci-
sion–recall (PR) curves, which provide more reliable in-
formation than ROC when benchmarking imbalanced
data sets for which the non-interacting pairs vastly out-
number the interacting pairs [27, 28]. Accordingly, we
plotted PR curves for Phirbo, BLAST, and WIsH predic-
tions obtained from the Edwards et al. (Fig. 2a) and
Galiez et al. (Fig. 2b) data sets. Overall, Phirbo per-
formed better at host prediction at the species level than
BLAST and WIsH, regardless of the data set. The area
under the PR curve (AUPR), which summarized overall
performance, was higher in Phirbo by 25 percentage
points (AUPR = 0.56–0.65) than in BLAST (AUPR =
0.33–0.41).
Phirbo also reported the highest F1 score (an aver-

age of precision and recall [see the “Methods” sec-
tion]) in the Edwards et al. and Galiez et al. data sets
(Fig. 2a, b). Specifically, the precision and recall of
Phirbo in predicting interacting virus–host pairs were
59–65% and 57–64%, respectively, while BLAST had
precision and recall in the range of 28–43% (Fig. 2a,
b). When setting a score cut-off that maximized the
F1 score of each tool, Phirbo recalled 27–28% more
interacting virus–host pairs than BLAST and 34–44%
more pairs than WIsH. Phirbo found the correct host
at the species and genus levels for 38–50% and 55–
60% of the analyzed viruses, respectively (Fig. 2c, d).
These results represent a 10% and 20% improvement

over BLAST in the prediction of hosts at the species
and genus levels, respectively.

Phirbo preserves BLAST top-ranked host predictions
We further evaluated the host prediction accuracy of
Phirbo by selecting a top-scored prokaryotic sequence
for each virus without thresholds on score values [14,
16, 17, 19]. Briefly, host prediction accuracy is calculated
as the percentage of viruses whose predicted hosts have
the same taxonomic affiliation as their respective known
hosts (if multiple top-scoring hosts are present, the pre-
diction is scored as correct if the true host is among the
predicted hosts). Phirbo restored all hosts predicted by
BLAST in the data sets by Edwards et al. and Galiez
et al., achieving the same prediction accuracy as BLAST
across all taxonomic levels (Table 1). Of note, BLAST
found multiple different host species with equal scores
for 14 phage genomes. This was observed in phages in-
fecting bacteria from the Enterobacteriaceae family and
the Rhodococcus and Bacillus genera. However, Phirbo
assigned the highest score to the correct host species
(Additional file 2: Table S3). Additionally, it refined the
host prediction for the Cronobacter phage ENT39118
sequence, which BLAST assigned to the Escherichia coli
genome. Phirbo revealed Cronobacter sakazaki as the
primary host species, as the BLAST list of the Cronobac-
ter phage is more similar in content and order to the
BLAST list of C. sakazaki (Phirbo score = 0.50) than E.
coli (Phirbo score 0.48) (Additional file 1: Figure S2).
As Phirbo links virus to host through common se-

quences, the content of the sequence database was the
main factor defining host prediction quality. Since the
similarity between viruses may indicate a common host
[19, 29], we expanded the two BLAST databases of pro-
karyotic sequences obtained from Edwards et al. and
Galiez et al. by viral sequences (n = 820 and n = 1420,
respectively), and recalculated Phirbo scores between
every virus–prokaryote pair. The virus–host linkage
through homologous prokaryotic and viral sequences
increased the host prediction accuracy of Phirbo at all
taxonomic levels, allowing correct identification of
hosts at the genus level for 56–63% of viruses (Table 1).
Specifically, Phirbo refined BLAST mis-predictions for
55 phage genomes and showed which sequences dem-
onstrated low similarity to the sequences of their host
species. The direct BLAST alignments of these phage
sequences, and the sequences of their corresponding
hosts, obtained significantly lower scores than align-
ments obtained by the other known phage–host pairs
(P = 1.9 × 10−45, Mann–Whitney U test). Notably,
Phirbo also assigned correct host species for 18 phages
whose hosts were not reported in the BLAST results,
mainly Chlamydia species, Vibrio cholerae, and the op-
portunistic pathogen, Acinetobacter baumannii.
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Fig. 2 (See legend on next page.)
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Phirbo is suitable for incomplete viral sequences
We tested the robustness of our host prediction algo-
rithm to fragmentation of the viral sequence. Following
earlier studies [16, 17, 19], viral genomes from Edwards
et al. and Galiez et al. data sets were randomly subsam-
pled to generate contigs of different lengths (20 kb, 10
kb, 5 kb, 3 kb, and 1 kb) with 10 replicates. Host predic-
tion accuracy was calculated as the mean percentage of
viruses whose predicted hosts had the same taxonomic
affiliation as their respective known hosts (Fig. 3). Al-
though Phirbo achieved equal host prediction accuracy
with BLAST across all contig lengths, it had substantially
higher overall performance in terms of AUC and AUPR
(Fig. S3; P < 10−5, Wilcoxon signed-rank test). Surpris-
ingly, BLAST-based methods obtained higher host pre-
diction accuracy across all contig lengths compared to
WIsH, a tool designed to predict the hosts of short viral
contigs (Fig. 3).
The host prediction accuracy of Phirbo was examined

using the expanded BLAST database of both prokaryotic
and viral full-length sequences. To ensure fairness, for
each tested viral contig, we removed its corresponding
full-length sequence from the BLAST database and
recalculated Phirbo scores between the viral contig and
every prokaryotic sequence. This approach outper-
formed BLAST at every contig length across all taxo-
nomic levels in both data sets (Fig. 3). Generally, the

host prediction accuracy of Phirbo improved by 5–11
percentage points compared to the BLAST results. For
example, when the contig length was 3 kb, the predic-
tion accuracy of Phirbo was 8–11% higher than BLAST
at the family level and 8–17% higher than WIsH (Fig. 3;
Additional file 2: Table S4). Phirbo also achieved the
highest AUC and AUPR scores when discriminating be-
tween interacting and non-interacting virus–host pairs
(Additional file 1: Figure S3).

Phirbo uses multiple protein and non-coding RNA signals
for host prediction
We investigated the sequence information used by
BLAST and Phirbo for host prediction. For each virus
that was correctly assigned to the host species by both
tools (n = 485), we calculated the fraction of the viral
genome that was included in the segments aligned with
prokaryotic sequences (sequence coverage). This analysis
revealed that our tool used three times more viral se-
quence (median sequence coverage 35%) than BLAST
(12%) (Additional file 1: Figure S4; P < 10−15, Wilcoxon
signed-rank test). This increased sequence coverage indi-
cates that different genome regions of the viruses map
to the genomes of prokaryotic species other than the
host species. For 249 of the 485 phages, more than one
third of their genomes were aligned to genomes of their

(See figure on previous page.)
Fig. 2 Host prediction performance of Phirbo, BLAST, and WIsH. The performance is provided by receiver operating characteristic (ROC) and
precision–recall (PR) curves and statistical measures (i.e., F1 score, precision, and recall) separately for (a) Edwards et al. and (b) Galiez et al. data
sets. ROC curves and the corresponding area under the curve (AUC) display the classification accuracy of virus–host predictions across all possible
virus–prokaryote pairs. Dashed lines represent the levels of discrimination expected by chance. Dashed lines in the PR curve plots represent the
levels of discrimination expected by chance. Score cut-offs for each tool were set to ensure the highest F1 score. (c), (d) Number of correctly
predicted virus–host interactions (%) in the Edwards et al. and Galiez et al. data sets, respectively. Bars indicate the number of viruses for which a
correct host was predicted at the species (blue bars) and genus (red bars) levels out of all phages in Edwards et al. (n = 820) and Galiez et al. (n
= 1,420)

Table 1 Host prediction accuracies (%) for virus and host genomes from the data sets by Edwards et al. [14] and Galiez et al. [17]

Data set Method Species Genus Family Order Class Phylum

Edwards et al. [14] WIsH 28 44 50 53 62 70

BLAST 43 59 71 78 87 96

Phirboa 43 59 71 78 87 96

Phirbo (+viruses)b 48 63 75 82 90 97

Galiez et al. [17] WIsH 21 44 48 53 68 77

BLAST 31 53 62 68 88 95

Phirboa 31 53 62 68 88 95

Phirbo (+viruses)b 35 56 65 72 90 96

The highest accuracies among the methods for each taxonomic level are in bold
aPhirbo scores were calculated using rank-biased overlap (RBO) between BLAST lists containing prokaryotic sequences. Specifically, the BLAST database contained
2699 sequences of bacterial genomes in the Edwards et al. data set and 3780 sequences of bacterial and archaeal genomes in the Galiez et al. data set
bPhirbo scores were calculated using RBO between BLAST lists containing both prokaryotic and viral sequences
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Fig. 3 Host prediction accuracy over virus contig length. Prediction accuracy is provided separately for (a) Edwards et al. and (b) Galiez et al. data
sets. Each complete virus genome was randomly subsampled 10 times for different sequence lengths (i.e., 20 kb, 10 kb, 5 kb, 3 kb, and 1 kb).
Hosts were predicted on each subsampling replicate by selecting a prokaryotic sequence with the highest similarity to the query viral sequence.
Points indicate the average of the resulting accuracies for all the viruses at a given subsampling length and host taxonomic level (i.e., species,
genus, and family). An extended version of this figure containing host prediction accuracy values is provided in Additional file 2: Table S4

Fig. 4 Functional classification of phage coding sequences used by Phirbo for host prediction. Protein families (pVOGs) were classified into 15
functions (e.g., DNA replication, transcription). Numbers in the dark circles indicate the number of different pVOGs related to a given function. An
extended version of this figure containing the list of pVOGs is provided in Additional file 2: Table S7
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host species (Additional file 2: Table S5). Such large re-
gions of homology are likely prophages or phage debris
left by large-scale recombination events during phage
replication. The observed high sequence coverage points
to the virus taxa, known for their temperate lifestyle and
frequent recombination with host genomes (i.e., Sipho-
viridae family as well as the Peduovirinae and Sepvirinae
subfamilies).
To further examine the properties of sequences that

may be exchanged between a phage and its host, we
selected a population of phages with sequence cover-
age below 30% (n = 236). These phages, which are
less likely to represent complete prophages, belong to
16 viral families (Additional file 2: Table S6). Next,
we re-annotated the genomic sequences of the phages
to find putative protein and non-coding RNA
(ncRNA) genes. Phage sequence regions used by
Phirbo for host predictions were significantly enriched
(P < 10−5) in 82 protein families of known or prob-
able function. In contrast, only half of the protein
families were used in BLAST-based host predictions
(Additional file 2: Table S7). The protein families
used by Phirbo covered most of the processes of the
viral life cycle including DNA replication, cell lysis,
recombination, and packaging of the phage genome
(Fig. 4). In contrast to BLAST, Phirbo also exploited
the information contained in phage ncRNAs while
assigning phages to host genomes. The vast majority
of these ncRNAs (>90%) were tRNAs, which showed
significant overrepresentation in the phage sequence
fragments used by Phirbo (P = 4 × 10−13) (Additional
file 2: Table S8). The remaining ncRNAs belonged to
group I introns (3%), RNAs associated with genes as-
sociated with twister and hammerhead ribozymes
(1%), skipping-rope RNA motifs (1%), and eight less
abundant RNA families.

Phirbo has higher precision and recall than
VirHostMatcher-Net and PHP
We tested Phirbo against two machine-learning host
prediction tools, VirHostMatcher-Net [19] and Prokary-
otic virus Host Predictor (PHP) [20]. VirHostMatcher-
Net predicts phage–host interactions using multiple
virus–host and virus–virus sequence similarity features
including BLAST. PHP utilizes a Gaussian model based
on differences of k-mer frequencies between viral and
host genomic sequences. We benchmarked Phirbo,
VirHostMatcher-Net, and PHP using the Wang et al.
data set of 1462 viruses (W) and 62,493 candidate pro-
karyotic hosts [19, 30]. Analogously, we calculated host
prediction accuracy for each tool by selecting a top-
scored prokaryotic sequence for each virus (Table 2).
Phirbo was outperformed by PHP at the levels from
order to phylum, and it had lower prediction accuracy
than VirHostMatcher-Net at taxonomic levels from up
to the class level.
Although VirHostMatcher-Net and PHP were trained

and tested on mutually exclusive sets of viruses [19, 20],
both data sets contained viruses that have high sequence
similarity and infect the same host species. To minimize
the effect on the benchmark results of these potentially
crossmatching sequences, we performed a more strin-
gent test that gradually separated the testing viral se-
quences from the training data set. Specifically, we
assembled three subsets (Wspecies, Wgenus, and Wfamily)
from the Wang et al. virus set (1,462 phages). Wspecies

consisted of all viruses for which host specificity at the
species level was different than for viruses in the original
training set. Correspondingly, Wgenus and Wfamily sets
had different host genera or families, respectively.
Across the three data sets, Phirbo achieved the highest

host prediction accuracy at all taxonomic levels; for ex-
ample, it recalled the correct host genus for 56–62% of

Table 2 Host prediction accuracies (%) for virus and host genomes from the Wang et al. [19] data set

Data set Method Species Genus Family Order Class Phylum

W (1462 phages) Phirbo 32 52 64 69 78 87

VirHostMatcher-Net 44 59 70 78 84 86

PHP 20 44 64 75 86 90

Wspecies (451 phages) Phirbo 32 62 71 80 87 92

VirHostMatcher-Net 11 51 58 71 82 85

PHP 12 34 49 68 82 91

Wgenus (261 phages) Phirbo 37 56 69 77 84 89

VirHostMatcher-Net 20 34 48 64 78 81

PHP 14 25 44 67 77 87

Wfamily (171 phages) Phirbo 34 56 66 74 83 89

VirHostMatcher-Net 22 39 42 62 79 80

PHP 10 26 37 66 79 88

The highest accuracies among the methods for each data set and taxonomic level are in bold
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viruses—outperforming VirHostMatcher-Net (n = 34–
51%) and PHP (n = 25–34%) (Table 2). Phirbo was also
markedly robust in regard to data set heterogeneity, as
predictions across all four data sets varied significantly
less, particularly at the species, genus, and family levels
(standard deviation = 2–4%), than results of
VirHostMatcher-Net (11–14%) and PHP (4–11%).
To compare the performance of Phirbo,

VirHostMatcher-Net, and PHP at different score thresh-
olds, we plotted ROC and PR curves for all four data
sets: W, Wspecies, Wgenus, and Wfamily (Fig. 5). Phirbo dis-
criminated between interacting and non-interacting
virus–host pairs with higher accuracy (AUC = 0.95) than
VirHostMatcher-Net (AUC = 0.86–0.9) and PHP (AUC
= 0.83–0.88) (Fig. 5a). Our tool also provided a better
precision–recall trade-off (AUPR = 0.31–0.45) than
VirHostMatcher-Net (AUPR = 0.07–0.34) and PHP
(0.02–0.04) (Fig. 5b).

Implementation and availability
Predicting hosts from phage sequences using BLAST
is accomplished by querying phage sequences against
a database of candidate hosts. However, Phirbo also
uses information about sequence relatedness among
prokaryotic genomes. Therefore, it requires ranked
lists of prokaryote species generated by BLAST for
the virus and host genomes. The computational cost

of querying every host sequence against the database
of all candidate hosts using BLAST may still be a
limiting factor. However, for mass host searches, the
computational cost of all-versus-all host comparisons
becomes marginal, as it must be done only once.
After the relatedness among host genomes is estab-
lished, the time required for Phirbo host predictions
is negligibly higher than the time for typical BLAST-
based host predictions. For example, running Phirbo
between ranked lists of host species for 1462 viruses
and 62,493 candidate hosts from Wang et al. (result-
ing in ~91 million phage–host comparisons) took 2 h
on a 16-core 2.60GHz Intel Xeon.
As Phirbo operates on rankings, BLAST can be re-

placed by an alternative sequence similarity search tool
to reduce the time to estimate homologous relationships
between host genomes. For instance, Mash [31] com-
puted host relationships in 2 h for the Wang et al. data
set that encompassed 62,493 bacterial and archaeal ge-
nomes (see the “Methods” section). The host prediction
performance of Phirbo using BLAST-based rankings for
viruses and Mash-based rankings for host genomes is
comparably high to the performance of Phirbo predic-
tions using BLAST rankings for both viral and host ge-
nomes (Additional file 2: Table S9).
We envisage Phirbo as a natural extension to standard

BLAST-based host predictions. The Phirbo tool is

Fig. 5 Host prediction performance of Phirbo, VirHostMatcher-Net, and PHP on the Wang et al. data set. The performance was evaluated using
(a) precision–recall (PR) curves and (b) receiver operating characteristic (ROC) curves
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written in Python and freely available at https://github.
com/aziele/phirbo/.

Discussion
The identification of similar sequence regions between
host and phage genomes using BLAST has been a base-
line for the identification of putative virus–host connec-
tions in numerous metagenomic projects [13, 32–34].
However, a BLAST search requires regions with signifi-
cant similarity between the query phage and host [14,
16, 17]. Yet, many viral and host sequences lack suffi-
cient similarity and escape detection with standard
BLAST searches. To tackle this issue, alignment-free
tools have been developed to predict prokaryotic hosts
from viral sequences [14, 16, 17, 35]. The rationale be-
hind these tools is based on the observation that viruses
tend to share similar patterns in codon usage or short
sequence fragments with their hosts [14, 16, 17]. As
virus replication is dependent on the translational ma-
chinery of its host, some viruses adapt their codon usage
to match the availability of tRNAs during viral replica-
tion in the host cell [36–38]. Similar oligonucleotide fre-
quency use may be driven by evolutionary pressure on
the virus to avoid recognition by host restriction en-
zymes and CRISPR/Cas defense systems [37, 39]. Al-
though state-of-the-art alignment-free tools (i.e., WIsH
[17] and VirusHostMatcher [16]) can rapidly assess se-
quence similarity between any pair of virus and
prokaryote sequences, they are less accurate for host
prediction than BLAST [14, 16]. The relatively high ac-
curacy of BLAST suggests that localized similarities of
genetic material may be a stronger indication of virus–
host interactions than global convergence of their gen-
omic composition. This evidence comes in the form of
protein-coding DNA fragments and non-coding RNAs.
The latter group is dominated by tRNA genes, which are
strongly over-represented in direct BLAST alignments
between phages and their hosts and are even more
prevalent among indirect connections used by Phirbo.
This may be important, as previous studies have shown
that not all phage tRNA genes come directly from their
hosts. Some appear to be derived from genomes of
other, often distantly related, bacteria and may be the re-
sult of earlier evolutionary events [40]. For protein-
coding genes, a more diverse picture emerges. Proteins
rich in phage–host BLAST alignments can be assigned
into different functional categories including phage vir-
ion components, replication-related proteins, regulatory
factors, and proteins involved in the metabolism of the
host. The transfer of some over-represented families in
phages and/or prophages has been previously reported
(e.g., lytic proteins, DNA replication and recombination
proteins, and enzymes involved in nucleotide and energy
metabolisms [41]), and some of these genes are

connected with the phage–host range [42, 43]. However,
no clear pattern emerges after analyzing the functions of
the remaining, over-represented proteins.
In this study, we attempted to expand the information

content of a single local alignment of virus and host se-
quences by incorporating the results of multiple align-
ments between a viral sequence and different
prokaryotic genomes. This approach may more closely
resemble a manual assignment of virus–host pairs,
where an expert analyst not only considers a top-ranked
matching prokaryote in the BLAST results, but also uses
the information contained in other, less significant,
matches and their sequence and taxonomic similarity.
Through a taxonomically aware stratification scheme,
this approach tracks the multilateral dynamics of hori-
zontal gene transfer. This dynamics is reflected by the
fact that BLAST lists obtained by querying a database of
prokaryotic genomes with viral sequences tend to cover
more taxa than similar lists based on prokaryote–
prokaryote comparisons (Additional file 1: Figure S5).
This observation points to the phages as the hot-spots of
horizontal gene transfer between evolutionary and eco-
logically related species. Therefore, we propose to relate
virus and host sequences through multiple intermediate
sequences that are detectably similar to both the virus
and host sequences. By linking virus and host sequences
through similar sequences, Phirbo achieved a more com-
prehensive list of virus–host interactions than BLAST.
Simultaneously, Phirbo was capable of assessing almost
all virus–host pairs, bringing the method closer to
alignment-free tools, which compute scores between all
possible virus and host pairs. Thus, our approach can be
directly applied to different virus and prokaryote data
sets without training or optimizing the underlying RBO
algorithm.

Conclusions
Our results show that expanding the information ob-
tained from plain similarity comparisons by incorporat-
ing taxonomically grounded measurements of phage–
host similarity leads to improved precision and recall of
phage–host predictions. The Phirbo method provides
the phage research community with an easy-to-use tool
for predicting the host genus and species of query
phages, which is usable when searching for phages with
appropriate host specificity and for correlating phages
and hosts in ecological and metagenomic studies.

Methods
Virus and prokaryotic host data sets
The data sets analyzed in this study were retrieved from
three previously published virus–host studies [14, 17,
19]. The first set [14] contained 2699 complete bacterial
genomes obtained from NCBI RefSeq and 820 RefSeq
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genomes of phages for which the host was reported. The
data set encompassed 16,757 known virus–host inter-
action pairs and 2,196,424 pairs for which interaction
was not reported (non-interacting phage–host pairs).
The second data set [17] contained 3780 complete pro-
karyotic genomes of the KEGG database and 1420 vi-
ruses for which host species were reported in the RefSeq
Virus database. The data set consisted of 26,024 inter-
acting- and 5,341,576 non-interacting virus–host pairs.
The third data set [19] included 1462 viruses and 62,493
candidate prokaryotic hosts encompassing 113,250 inter-
acting- and 91,251,516 non-interacting virus–host pairs.

Phirbo score
The interaction score for a given virus–host pair was
calculated using the ranked-biased overlap (RBO) meas-
ure. RBO [24] is a measurement of rank similarity that
compares two lists of different lengths (giving more at-
tention to high ranks on the lists). RBO ranges from 0 to
1, where a greater value indicates greater similarity be-
tween lists. Equation 1 was used for the calculation of
the RBO value between two ranking lists, S and T.

RBO S;T ; pð Þ ¼ 1−pð Þ
Xn

d¼1

pd−1A S;T ; dð Þ

where the parameter p (0 < p < 1) determines how
steeply the weight declines (the smaller the p, the more
top results are weighted). When p = 0, only the top-
ranked item is considered, and the RBO score is either 0
or 1. In this study, we set p to 0.75, which assigned
~98% of the weight to prokaryotic species at the first 10
ranks. A(S, T, d) is the Jaccard index, which measures
overlap between the two ranking lists, S and T, up to
rank d, calculated by Eq. 2. n is the number of distinct
ranks on the ranking list.

A S;T ; dð Þ ¼ S:d∩T :dj j
S:d∪T :dj j

where S:d and T:d represent the elements present in the
first d ranks of lists S and T, respectively.

Host prediction tools
The host prediction tools BLAST [21], WIsH [17], and
Phirbo were run separately on the Edwards et al. and
Galiez et al. data sets. For each tool, sequence similarity
scores were calculated across all combinations of virus–
prokaryote pairs. BLAST 2.7.1+ [44] was run with de-
fault parameters (task: blastn, e-value threshold 10) to
query each virus sequence against a database of candi-
date host genomes. For each BLAST alignment, the
highest bit-score between every virus–host pair was

reported (for virus–host pairs that were absent in the
BLAST results, a bit-score of 0 was assigned). For RBO
host prediction, an additional BLAST search was per-
formed to establish ranked lists of genetically similar
host genomes. Specifically, a nucleotide BLAST was run
with default parameters to query each host sequence
against a database of candidate host genomes. As an al-
ternative to BLAST, Mash 2.1 [31] was used with default
parameters (k-mer size = 21, sketch size = 1000) to es-
tablish ranked lists for each host by comparing its se-
quence against the database of candidate host genomes.
RBO scores were calculated between all pairwise combi-
nations of virus and host ranking lists. WIsH 1.0 [17]
was used with default parameters to calculate log-
likelihood scores between all pairwise combinations of
virus–host sequences. To have comparable values be-
tween different phages, log-likelihood scores returned by
WIsH were converted into z-scores. VirHostMatcher-
Net 1.0 [19] and Prokaryotic virus Host Predictor (PHP)
[20] were run using default parameters.

Evaluation metrics
The metrics of host prediction performance were calcu-
lated using sklearn (i.e., AUC, AUPR, recall, precision,
specificity, and accuracy) [45]. Optimal score thresholds
to calculate recall, precision, specificity, and accuracy
were computed as maximizing the F1 score, an accuracy
metric, which is the harmonic mean of precision and re-
call. Host prediction accuracy was evaluated analogous
to previous studies [14, 17, 19]. Specifically, for each
query virus, the host with the highest score to the query
virus was selected as the predicted host. In cases where
multiple hosts were predicted with equal score, the pre-
diction was scored as correct if the correct host was
among the predictions. The prediction accuracy was cal-
culated at each taxonomic level as the percentage of vi-
ruses whose predicted hosts shared a taxonomic
affiliation with known hosts.

Phage genome annotation
To define phage genes potentially exchanged between
phage and host genomes, we re-annotated 485 phage ge-
nomes that were correctly assigned to host species by
both Phirbo and BLAST. The genes were classified into
predefined pVOGs (prokaryotic Virus Orthologous
Groups) [46] and RNA families [47]. Briefly, open read-
ing frames (ORFs) in the analyzed 485 phage genomes
were identified using Transeq from EMBOSS [48]. The
ORFs were then assigned to the respective orthologue
group by HMMsearch (e-value < 10−5) against the data-
base of hidden Markov models (HMMs) created for
every of 9518 pVOG alignments using HMMbuild of
HMMER v3.3.1 [49]. Non-coding RNAs (ncRNAs) were
predicted in the phage genomes (e-value < 10−5) using
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Rfam covariance models v14.3 [47] and the Infernal tool
v1.1.3 [50]. We counted the number of times each
pVOG and Rfam term was present in phage sequences
used by BLAST and Phirbo during host prediction. To
determine whether the observed level of pVOG/Rfam
counts was significant within the context of all the terms
within the phage genome, we calculated the p-value
using the hypergeometric distribution implemented in
Scipy [51].

Abbreviations
AUC: Area under the ROC curve; AUPR: Area under the precision–recall curve;
PHP: Prokaryotic virus Host Predictor; RBO: Ranked-biased overlap;
ROC: Receiver operating characteristic
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Additional file 1: Figure S1. Discriminatory power of Phirbo, BLAST,
and WIsH scores to differentiate between interacting and non-interacting
virus-prokaryote pairs. Virus-host pairs were obtained from a. Edwards
et al. and b. Galiez et al. data sets. Box plots show the distribution of
scores for all interacting virus-host pairs (n = 16,757 and n = 26,024 in Ed-
wards et al. and Galiez et al., respectively) and the same number of ran-
domly selected, non-interacting virus-host pairs. The horizontal line in
each box displays the median; boxes display the first and third quartiles;
whiskers depict lowest and highest non-outlier scores (details of distribu-
tions including outliers are provided in Additional file 2: Table S1). Figure
S2. Host predictions for Cronobacter phage ENT39118 (RefSeq accession:
NC_019934) using a. BLAST and b. Phirbo. Querying the Cronobacter
phage sequence with a BLAST search against the host database returned
the genomic sequence of Escherichia coli (NC_017641) as the best match
(bit-score = 14,588), and Cronobacter sakazakii (NC_009778) as the
second-best match (bit-score = 14,020). Phirbo predicted Cronobacter
sakazakii as the top-score host for the Cronobacter phage due to the
highest extent of overlap between the top-ranking BLAST matches of
each sequence (NC_019934 and NC_009778) of the same database. For
clarity, only the first ten BLAST matches are shown. Figure S3. Host pre-
diction performance of Phirbo, BLAST and WIsH over virus contig length
in terms of a. Area under the curve (AUC) and b. Area under the
precision-recall curve (AUPR). Bars indicate the AUC or AUPR averaged
across 10 replicates at a given subsampling length of phage sequence.
Figure S4. Scatter plot of the phage sequence coverage used in host
predictions of Phirbo versus that of BLAST. Each dot represents a phage
genome. Figure S5. Distribution of different bacteria taxa (from species
to phylum) across the first 10 depths of BLAST lists obtained from query-
ing a. 820 phage genomes and b. 2,699 bacterial genomes from Ed-
wards et al. (2016) against a database of the bacterial genomes. The blue
line shows the mean of different taxa and the light blue shade indicates
the 95% confidence level. For example, on average there are 10 different
bacteria species up to the 8 ranking (depth = 8) present in the virus-
prokaryote BLAST lists.

Additional file 2: Table S1. Distribution of Phirbo, BLAST and WIsH
scores among interacting and non-interacting virus-prokaryote pairs ob-
tained from Edwards et al. and Galiez et al. data sets. Score ranges were
summarized separately for 16,757 interacting and non-interacting virus-
host pairs from Edwards et al., and 26,024 interacting and non-interacting
virus-host pairs from Galiez et al. Table S2. Number of virus-host pairs
evaluated by Phirbo, BLAST, and WIsH in Edwards et al. and Galiez et al.
data sets. Table S3. Phages assigned by BLAST to multiple, equally-
scored host species. Phirbo differentiated between host species and pro-
vided the highest score to primary host species. Table S4. Host predic-
tion accuracy of Phirbo, BLAST, and WIsH over virus contig length. Table
S5. Phage sequence coverage of 485 phages correctly assigned by BLAST
and Phirbo to their host species. Sequence coverage was calculated for

each phage as the sum of the lengths of its non-overlapping high scor-
ing pairs to the genome of the correct host species, divided by the size
of the query phage genome. Prophages were assumed to have sequence
coverage greater than or equal to 30%. Table S6. Summary of taxo-
nomic affiliations of 236 phages that had sequence coverage < 30% with
the host species genomes. Table S7. Protein families present in se-
quence regions of 236 phage genomes that were used by BLAST and/or
Phirbo in host prediction. The table provides information on each protein
family (prokaryotic Virus Orthologous Group (pVOG)) used by BLAST and
Phirbo, including: (i) pVOG description and functional assignment (manu-
ally curated), (ii) pVOG count (number of times a given pVOG was present
in the phage genome, as well as in sequences used by BLAST or Phirbo),
(iii) pVOG percentage (pVOG count divided by pVOG count in the gen-
ome), and (iii) P-value of pVOG enrichment. Table S8. RNA families
present in sequence regions of 236 phage genomes that were used by
BLAST and Phirbo in host prediction. The table provides information on
each Rfam family used by BLAST and Phirbo. Table S9. Comparison of
Phirbo’s host prediction performance between BLAST-based and Mash-
based rankings of prokaryotic species.
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