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Abstract

Background: The human foetus typically needs to rotate when passing through the tight birth canal because of
the complex shape of the pelvis. In most women, the upper part, or inlet, of the birth canal has a round or
mediolaterally oval shape, which is considered ideal for parturition, but it is unknown why the lower part of the
birth canal has a pronounced anteroposteriorly oval shape.

Results: Here, we show that the shape of the lower birth canal affects the ability of the pelvic floor to resist the

pressure exerted by the abdominal organs and the foetus. Based on a series of finite element analyses, we found
that the highest deformation, stress, and strain occur in pelvic floors with a circular or mediolaterally oval shape,

whereas an anteroposterior elongation increases pelvic floor stability.

Conclusions: This suggests that the anteroposterior oval outlet shape is an evolutionary adaptation for pelvic floor
support. For the pelvic inlet, by contrast, it has long been assumed that the mediolateral dimension is constrained
by the efficiency of upright locomotion. But we argue that the mediolateral elongation has evolved because of the
limits on the anteroposterior diameter imposed by upright posture. We show that an anteroposteriorly deeper inlet
would require greater pelvic tilt and lumbar lordosis, which compromises spine health and the stability of upright

posture. These different requirements of the pelvic inlet and outlet likely have led to the complex shape of the
pelvic canal and to the evolution of rotational birth characteristic of humans.
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Background

Human childbirth typically involves a complex rotational
motion of the foetal head, followed by the shoulders and
rest of the body, as the baby passes through the birth
canal (Fig. 1A). The tight fit between the human birth
canal and the foetus results in relatively high rates of
birth-related morbidities and, in the absence of medical
interventions, maternal and foetal mortality [1, 2]. Rota-
tional birth is necessary as the human birth canal is not
a uniform structure: its largest dimensions are oriented
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in different directions in the three “planes” of the pelvis,
the inlet, the midplane and the outlet (Fig. 1). In most
women, the pelvic inlet has its longest diameter in the
mediolateral (ML) direction, but the longest diameter in
the outlet is in the anteroposterior (AP) direction. In be-
tween these planes lies the midplane, which usually is
the narrowest part of the human birth canal [3]. This
shape difference between the upper and lower birth
canal mainly owes to the medially protruding ischial
spines in the midplane and the ischial tuberosities as
well as the position of the sacrum in the outlet. In
physiological vaginal birth, the foetus presents by the
head and aligns the largest dimension of the head (the
sagittal direction) with the longest diameters of the ma-
ternal birth canal in the three planes by rotating through
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Fig. 1 Rotational birth in humans. A The foetal head engages in a transverse to oblique direction and rotates about 90° to align its maximum
dimension with the largest dimension of each pelvic plane. B Pelvic inlet, midplane and outlet in frontal view with parts of the pubic and ischial

the birth canal (Fig. 1) [4—6]. This raises the question as
to why the midplane and the outlet differ in shape from
the inlet, thus requiring the complicated and risky rota-
tional birth process. Presumably, human childbirth
would be easier if all pelvic planes had the same shape.
Great apes, for example, tend to have easier births and
their birth canals are both spacious relative to the size of
the foetus and have a uniformly anteroposteriorly oval
shape [7-10]. Old and New World monkeys also have
anteroposteriorly oval-shaped birth canals [8]. Humans
are the only primate where the inlet has a mediolaterally
oval shape, i.e. an anteroposterior-to-mediolateral ratio
(AP/ML) below 1 [8].

Evolutionarily, human pelvic morphology has been the
target of many, partly antagonistic selection pressures.
The size of the birth canal presumably evolved by trad-
ing off the advantage of a large birth canal for childbirth
against the disadvantage for bipedal locomotion,
thermoregulation, and particularly pelvic floor support
[5, 11-20]. The size of the pelvic floor, as determined by
the dimensions of the bony pelvis, affects the risk of de-
veloping pelvic floor disorders. Up to 45% of women ex-
perience some degree of incontinence or pelvic organ
prolapse in their life, especially postpartum, but pelvic
floor disorders can also affect young and nulliparous
women [21-24]. Clinical and biomechanical studies [25—
29] confirmed that a larger birth canal increases the risk

of pelvic floor disorders, because a larger pelvic floor
must be able to bear higher stresses and strains and
shows larger vertical displacement under pressure.

We propose that not only the size but also the shape
of the birth canal is subject to functional and evolution-
ary trade-offs between parturition, pelvic floor stability
and locomotion. These selective factors, however, differ-
entially affect various parts of the pelvis. The size and
shape of the pelvic inlet is particularly decisive for suc-
cessful parturition. Locomotion efficiency is assumed to
be affected by the distance between the acetabula [17,
30], which are located close to the inlet and might thus
impose an indirect selection pressure on the inlet form.
A narrow distance between the hip joints has been sug-
gested to be energetically more efficient for bipedal loco-
motion [17, 30], but see [31, 32]. Selection for pelvic
floor function acts on the lower birth canal (midplane
and outlet), which provides the attachment points for
the pelvic floor tissues [11, 33]. A circular or slightly
mediolaterally oval inlet (‘gynecoid’ pelvis) is reported to
be advantageous for parturition in the gynaecological lit-
erature and is the most frequent inlet shape [34—36]. For
instance, Betti and Manica [37] reported that the mean
AP/ML ratio of the pelvic inlet ranges from 0.77 to 0.94
across 20 human populations, whereas the ratio of AP
diameter in the outlet to ML diameter in the midplane
(which best represents the dimensions of the pelvic
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floor) ranges from 1.10 to 1.28. Why is the longest di-
mension of the lower birth canal not aligned with the
longest dimension of the inlet, thus requiring the foetus
to perform a complex rotation of the head and shoulders
to pass through the birth canal? What is the advantage
of a ‘twisted’ birth canal?

The deformation of the pelvic floor in response to
pressure increases with the average radius of the pelvic
floor for a constant pelvic floor shape [29], which makes
women with a larger birth canal more susceptible to pel-
vic floor dysfunction. When considering variation in pel-
vic floor shape independent of size, we can idealise the
pelvic floor as an elliptically shaped elastic membrane
that varies in eccentricity. A circular pelvic floor has a
larger minimum diameter than an oval pelvic floor of
the same area. In other words, an elliptical shape of the
pelvic floor keeps some of the fibres (those along the
minor axis of the ellipse) shorter compared to a circular
shape of the same area. This, in turn, may reduce pelvic
floor deformation under pressure. Based on this argu-
ment, we propose that even though a round inlet may
be advantageous for childbirth, an oval outlet is advanta-
geous for pelvic floor support.

We tested this hypothesis by a series of finite element
analyses (FEA) of idealised pelvic floor models that vary
from oval to round, while keeping the area and thickness
constant. Loaded with an increased physiological intra-
abdominal pressure (typical of a Valsalva manoeuvre, see
‘Methods’ section), we observed the magnitude of
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deformation (maximum displacement), stress, and strain
in the pelvic floor for the differently shaped pelvic floor
models. To disentangle the biomechanical effects of pel-
vic floor geometry from those of the material properties,
we studied three different geometric idealisations of the
pelvic floor: a flat membrane, a regular 3D oval-shaped
hammock, and an anatomically more realistic shape (re-
ferred to as ‘flat’, ‘ellipsoid’, ‘anatomical’ models; Fig. 2,
see the ‘Methods’ section).

Results

For the flat and ellipsoid models, the highest values of
displacement, stress, and strain were found in models
with a circular shape (Fig. 3). Introduction of gravity to
the finite element analyses increased displacement, stress
and strain by a small amount. We modelled gravity by
adding the weight of the pelvic floor, applied as an
equivalent vertical force, see ‘Methods’ section. For most
shapes of the anatomical model, maximum deformations
occurred in two separate centres, which correspond to
the anterior compartment (between the pubis and the
boundary between the anterior and posterior walls of
the vagina) and the posterior compartment (posterior
wall of the vagina, rectum and post-rectum area) of the
pelvic floor (Fig. 2A). Only in the four models with the
longest AP diameter did the position of maximum dis-
placement shift away from these compartments (Add-
itional file 1: Fig. S2 and S3). Overall, displacement was
higher in the anterior compartment than in the posterior
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Fig. 2 Pelvic floor models (in sagittal view) for finite element analysis. A Anatomical model (cyan colour, superimposed on the muscles of the
pelvic floor, which are shown in red), oriented approximately along the pubococcygeal axis of an upright person. B Flat, ellipsoid and anatomical
models (sagittal views). In the left column the three models are shown before loading, whereas the right column shows the displacement in
response to 4 kPa pressure. The rainbow colour scheme indicates the magnitude of the maximum displacement of the model elements. Blue

19.128 Max
17.002
L 14.877

H 10.626
I as011
L] 6370
H 42506
B 21253
0Min




Stansfield et al. BMC Biology (2021) 19:224

Page 4 of 11

Ellipsoid Anatomical
o | e ]
T - B
€ N © - ﬁg@ anterior
= 0~ T
c -~
o o
£ — P ©
8 w | ¥
8 - .
2 - S posterior
o o | o |
~ (32}
»
T T T T T T T
1.0 05 0.0 05 -1.0 -0.5 0.0 0.5 1.0
w0 =
[«2) — T
2 =)
5 © 8 g o esee0sseg
3 . S e
%] [19) — o
g 8 2 | -
s <o S e
s ] - (=}
> 3 .
e g - -
S ° N T T T IS T T T
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0
el
T . S -
o ; ©
s 2 ° 5 S -
2 S | = @’&g@@%
o . 8 |
o g = 8
3 27 . S
K2} o ] (=
= — o
c — = 4 —
S 3 = g
S T T T T I T T T g T T T
-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0
log(AP/ML) log(AP/ML) log(AP/ML)
O pressure 4 kPa O pressure 4 kPa and gravity
Fig. 3 Results of loading experiments (total displacement, maximum von Mises strain, maximum von Mises stress) for the three geometries. In
each panel, the horizontal axis represents the shape of the pelvic floor models, expressed as the natural logarithm (log) of the ratio AP/ML to
guarantee that the same mediolaterally and anteroposteriorly oval shapes are equally distant from circularity, i.e. log(AP/ML)=-log(ML/AP).
Negative values correspond to mediolaterally elongated shapes; positive values to anteroposteriorly elongated shapes (depicted by the grey
ellipses below). The value log(AP/ML)=0 corresponds to a circular pelvic floor with AP=ML. The blue marks represent the results for an applied
pressure of 4 kPa, and the red marks the results for pressure and gravity applied together. In the anatomical model, most of the deformation
occurred in two separate centres, corresponding to the anterior and posterior pelvic floor compartments, for which the results are shown
separately here (blue/red for the anterior compartment; light blue/light red for the posterior compartment)

compartment (Fig. 3, see also Additional file 1: Fig. S2
and S3 for the positions of total maximum displace-
ment), whereas strains and stresses were higher in the
posterior compartment. In contrast to the flat and ellips-
oid models, the highest displacement of the anatomical
model occurred at an AP/ML ratio of 0.83, while models
with AP/ML=0.71 experienced the highest stresses and
strains (Fig. 3). The introduction of gravity slightly in-
creased displacement, stress and strain.

For all three geometries, the stress-strain relationships
followed the same trajectory (Additional file 1: Fig. S1).
The material stiffness was linear for the experimental

pressure of 4 kPa and slightly nonlinear for a pressure of
20 kPa. Nonetheless, also for the higher pressure, all
three model types showed the same stress-strain rela-
tionship (Additional file 1: Fig. S1). This indicates that
the biomechanical differences between anatomical, flat
and ellipsoid geometries are due to their differences in
shape, rather than due to the non-linear effect of the nu-
merical model of the material (see ‘Methods’ section).

Discussion
The focus of this study was to investigate how changes
in the shape of the pelvic floor—independent of
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variation in size and tissue properties—affect its stability
and displacement under pressure. Therefore, we kept
pelvic floor size, thickness and tissue material properties
constant in our models, all of which are important clin-
ical risk factors that dominate empirical studies on pelvic
floor disorders. Our findings on the influence of pelvic
floor shape on its response to pressure are robust with
respect to the choice of size and material. Absolute
values of displacement, strain and stress would clearly
be altered by changes in size, thickness or material, but
their relationship with pelvic floor shape, as reported
here, would remain similar. Likewise, we assumed tissue
isotropy, i.e. we did not explicitly model the different di-
rections of the muscle fibres. Anisotropy of the muscle
fibres can affect the degree of deformation at different
locations, but they are unlikely to alter the influence of
pelvic floor shape on overall deformation. Nonetheless,
future modelling work should include both variations in
muscle thickness and direction of the muscle fibres.

In agreement with our hypothesis, we found that the
ability to resist pressure is indeed affected by the shape
of the female pelvic floor, as delimited by the lower birth
canal. For flat and ellipsoid models, a circular shape led
to the highest displacements. Deviation from circularity
in either the anteroposterior (AP) or mediolateral (ML)
direction equally reduced deformation, stress and strain.
This symmetrical behaviour results from the geometrical
symmetry of the flat and ellipsoid models as well as from
the isotropic material properties adopted here. For the
more realistic anatomical model, by contrast, the sagittal
cross-section was not symmetrically shaped, with the
maximum curvature located at the area of the anal
sphincter rather than at the mid-point. As a result, the
highest deformation was not observed for a circular
model but for a mediolaterally elongated shape with AP/
ML=0.83. The highest values of strain and stress oc-
curred in models with AP/ML=0.71. An even more ex-
treme ML oval shape only weakly reduced displacement,
stress and strain. However, increasing the AP/ML ratio
towards a more AP oval shape of the anatomical model
led to a rapid decrease in all three measures. As our ana-
tomical model still is an idealisation of the real pelvic
floor, the actual pelvic floor shape leading to the greatest
deformation may deviate from our estimate but is likely
to have an AP/ML ratio smaller than 1 (see the ‘Valid-
ation’ section in the ‘Methods’ section).

These findings suggest that a mediolaterally elongated
shape of the lower birth canal is particularly disadvanta-
geous for pelvic floor support. The more anteroposter-
iorly oval the lower birth canal is, the more resistant the
pelvic floor is in response to pressure. This is in agree-
ment with clinical literature reporting that a mediolater-
ally wider lower birth canal predisposes to pelvic floor
dysfunction [25, 38—40]. Based on these findings, we
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suggest that the length and orientation of the ischial
spines and the sacrum specifically evolved to decouple
the shape of the lower birth canal from that of the upper
canal in order to ensure a pelvic floor shape that in-
creases the mechanical stability of the pelvic floor. Al-
though non-human primates and other quadrupeds also
display anteroposteriorly elongated outlets, they usually
have very small ischial spines and a straight and often
shorter sacrum [3, 11].

The size of the human pelvic canal is certainly more
important for parturition and pelvic floor support than
its shape. For instance, the increase in pelvic floor dis-
placement resulting from 1 SD (standard deviation) in-
crease in pelvic floor size (Reported by Stansfield et al.
[29]) is about 2.8 times as large as the displacement
resulting from 1 SD increase in pelvic floor shape (AP/
ML). Furthermore, the stability of the pelvic floor does
not only depend on its size and shape. Parity, mode of
delivery, age, obesity and weakness or injuries of pelvic
floor tissue are important risk factors for pelvic floor dis-
orders [27, 41-43]. However, most of these factors are
presumably uncorrelated with pelvic canal shape and
thus are able to evolve independently. Only age is related
to both pelvic floor function and pelvic shape [44—47].
But the age at first birth has a low heritability (in a twin
study, Topf et al. [48] reported 1?=0.26), and the age
changes of the pelvic canal are subtle; it may thus im-
pose little constraints on pelvic evolution. Similarly, al-
though pelvic shape scales allometrically with body
height [49], pelvic floor shape is basically uncorrelated
with pelvic floor size (R*=0.002 within populations and
R*=0.028 between human populations, based on the data
by Betti & Manica [37]). In other words, the presence of
other, clinically more relevant factors does not rule out
that the shape of the lower birth canal has an independ-
ent effect on pelvic floor stability. In turn, this implies
that pelvic floor stability imposes a selective pressure on
the shape of the pelvic canal. Although pelvic form is
also influenced by nutrition during childhood and ado-
lescence, age of menarche and maternal age at birth, it
has a relatively high heritability [50] and thus is expected
to respond to the selection imposed by pelvic floor
stability.

Our modelling results explain why the lower birth
canal evolved an AP oval shape. But they do not explain
why the inlet has evolved a different shape and, thus,
why the human birth canal is twisted. After all, a uni-
formly shaped birth canal would likely ease parturition
as it would make the complex mode of human rotational
birth obsolete. Some rotation during parturition has also
been observed in chimpanzees, baboons and squirrel
monkeys, all of which have a uniformly AP oval birth
canal. In these species, rotation is much simpler and not
enforced by the shape of the birth canal but presumably
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exists to enable the birth of the shoulders [9, 51]. The
similarities across non-human primates in birth canal
shape suggest that an AP oval inlet constitutes the an-
cestral primate condition. Why, then, did a mediolater-
ally shaped pelvic inlet evolve in the human lineage?

In humans, a balanced upright posture requires a
curved spine, particularly a pronounced lumbar lordosis
(inward curvature of the lower spine), which brings the
centre of mass of the upper body above the line connect-
ing the two hip joints [52, 53]. In this way, the body is
pivoted at the hip joints and balanced anteroposteriorly.
An increase in AP length of the pelvis would require re-
balancing this system by forward-rotating the sacrum
and increasing lumbar lordosis (Fig. 4). An increased
lumbar lordosis, in turn, may also require increased
thoracic and sacral kyphosis (outward curvature). These
geometric relationships between spinal curvature and
pelvic form are well-documented by the correlations be-
tween AP pelvic dimensions, pelvic orientation and lum-
bar lordosis reported in orthopaedic studies [54—57]. In
late pregnancy, lumbar lordosis is even further increased
to balance the additional abdominal weight [58]. The
amount of spinal curvature, however, is limited by the
size, strength and wedging of the vertebral bodies as well
as by necessary adaptations within the spinal muscula-
ture. It is well known in the orthopaedic clinical
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literature that a large lordotic angle increases anterior
shearing strain in the vertebrae and intervertebral discs
and that it brings the centre of mass anterior to the sa-
cral endplate, both of which are associated with chronic
back pain, spondylolisthesis (displacement of vertebrae)
and disc herniation [59-63].

We therefore suggest that an evolutionary increase in
anteroposterior length of the pelvic inlet has been con-
strained by the adverse effects it would have on spine
health and structural stability of upright posture. Since
Washburn’s seminal article on the ‘obstetrical dilemma’
[64], researchers have been asking why humans did not
evolve a ML wider pelvic inlet to ease birth. Many re-
searchers have assumed that the energetics of efficient
upright walking constrain the evolution of a ML wider
pelvis [65-67] (although some speculated that also AP
dimensions may be constrained by bipedalism [10, 68]).
However, the fact that most women do have a ML oval
inlet implies that the constraint on the ML dimension of
the inlet is less severe than that on the AP dimension.
Indeed, recent studies found little or no energetic disad-
vantage associated with a mediolaterally wide pelvis [18]
but see [10, 32]. Given this tight biomechanical con-
straint on the AP diameter of the inlet, a further ML
elongation may simply contribute little to ease child-
birth. As expected under this hypothesis, the particularly
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AP narrow pelvis of the bipedal australopithecines [69—
72] was likely associated with a lower lordotic angle (41°
versus an average of 51° in humans [73]). Chimpanzees,
on the contrary, can biomechanically ‘afford’ a pro-
nounced AP oval inlet because they are mostly quadru-
pedal and do not need to balance their weight above the
hip joints.

These spinopelvic relationships also shed light on the
human sex differences in lumbar lordosis and vertebral
wedging, which tend to be greater in females than in
males [58, 74, 75]. Whitcome et al. [58] proposed that
this dimorphism, which was already present in early
Homo and partly even in Australopithecus, evolved as an
adaptation to mitigate the shearing forces generated by
foetal load. However, we suggest that the evolution of
increased female lordosis and vertebral wedging are, at
least partly, a direct consequence of the larger pelvic
canal (including the inlet AP diameter) in females [13,
76]. Only if the average female lordosis exceeds the de-
gree of lordosis expected for female pelvic dimensions
would an adaptation for foetal load be a plausible ex-
planation. But this remains to be shown.

Our results provide a novel evolutionary explanation
for the twisted shape of the human birth canal. We show
that this complex shape has emerged as an evolutionary
compromise to different, partly antagonistic selective
forces acting on the pelvis: The shape of the birth canal
is subject to selection for childbirth, pelvic floor support
and upright posture. An even more anteroposteriorly
oval lower birth canal would be advantageous for pelvic
floor stability but disadvantageous for childbirth. At the
same time, an AP oval inlet would ease parturition by
avoiding the complex rotation of the foetus but would
compromise the structural stability of upright posture
and locomotion.

The relative strengths and actual trade-off dynamics of
these antagonistic selective forces depend on biological,
environmental and sociocultural factors that have chan-
ged during human history and partly differ among popu-
lations today (‘shifting trade-off model’ [77]). For
instance, average pelvic size as well as neonatal weight
and head circumference differ considerably across popu-
lations, leading to variable magnitudes of obstetric selec-
tion on pelvic form [37, 76, 78—80]. The prevalence of
pelvic organ prolapse and incontinence vary across
countries as well as by ethnicity and sociocultural back-
ground [81-83], imposing different strengths of selection
for pelvic floor support. Physical activities and diet differ
among populations and cultures, thus exerting different
physical stresses on the pelvis and the pelvic floor (e.g.
[81]) and providing different metabolic capacities during
pregnancy [31]. Transitions in environmental and socio-
economic conditions can also affect the relationship be-
tween average foetal and maternal size, which influences
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the difficulty of labour [84, 85]. Hence, it is likely that
the observed population differences in pelvic shape [37]
have partly resulted from local differences in selective
pressures.

Conclusions

The anteroposterior oval shape of the lower pelvic canal
is an evolutionary adaptation for pelvic floor support. By
contrast, the mediolateral elongation of the pelvic inlet
presumably evolved because of the limits on the antero-
posterior diameter imposed by upright posture. We
showed that an anteroposteriorly deeper inlet would re-
quire greater pelvic tilt and lumbar lordosis, which com-
promises spine health and the stability of upright
posture. These different requirements of the pelvic inlet
and outlet likely have led to the complex shape of the
pelvic canal and to the evolution of rotational birth char-
acteristic of humans.

Methods

We assessed how changes in the ratio of anteroposterior
to mediolateral diameters (AP/ML) of the pelvic floor
affect the amount of displacement under physiological
pressure conditions. We used three different idealisa-
tions of pelvic floor geometry: a flat membrane, a regular
3D oval-shaped hammock and a 3D membrane that re-
sembles real pelvic floor geometry as it is suspended in
the midplane and outlet of the birth canal. We refer to
the first model as ‘flat’, the second model as ‘ellipsoid’
and the third model as ‘anatomical’ (Fig. 2). The shape
of the transverse outline of each of the three models was
varied from mediolaterally wide to anteroposteriorly
long and loaded with pressure from above. As the ‘ana-
tomical’ model is geometrically in-between the flat and
ellipsoid models, the latter two set the range of the ex-
pected mechanical response due to the three-
dimensional curvature. The ‘anatomical’ model, with any
approximation to the real shape made by us, is therefore
expected to experience deformations within this range of
behaviour. Due to the symmetry of the flat and ellipsoid
models, any deviation of the deformation behaviour in
the anatomical pelvic floor will then be possible to
ascribe to its more complex 3D geometry.

3D geometry

Computer-aided design (CAD) models of the pelvic floor
were created as shells in SOLIDWORKS (© 1995-2019
Dassault Systémes). Their mediolateral (ML) diameter
corresponded to the distance between the ischial bones
at the points of muscle insertion on the ischial spines
and was thus equal to the width of the midplane of the
birth canal (Fig. 1C). The anteroposterior diameter of
each model corresponded to the distance from the infer-
ior point at the pubic symphysis to the apex of the fifth
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sacral vertebra, which was equal to the length of the out-
let of the birth canal in the sagittal view (Fig. 1B).

The transverse diameters of our models were based on
the means and standard deviations (SD) of modern
Europeans as reported by DelPrete [86]. The ‘base
model’ was assigned the average values of the ML
and AP diameters. To create further models, we varied the
ML diameter in steps of 0.5 or 1.0 standard deviations
(SD), while the surface area was kept constant by a corre-
sponding change of the AP diameter. In total, 23 models
whose ML diameter ranged from -4.5 to +8 SD from the
mean were created for each of the three experiments (i.e.
flat, ellipsoid and anatomical; Additional file 1: Tab. S1).
This range extends well beyond the variation observable
in modern humans, allowing us to assess how extreme
pelvic shapes, which may have been selected against in the
past, would perform. The ellipsoid and anatomical models
were assigned a constant depth of 2.9 mm. The depth was
determined as an average value of the perpendicular dis-
tance between the pubo-coccygeal axis and the position of
the anal sphincter in sagittal CT scans of 10 female indi-
viduals chosen randomly from the New Mexico Decedent
Image Database collection [87]. The depth of the ellipsoid
model was taken perpendicular to the anteroposterior and
mediolateral axes at the centre point. The 3D geometry of
the anatomical base model was built following the proto-
col of Stansfield et al. [29]. Figure 1 demonstrates the fit of
the three models in the female birth canal. Details of all
models are given in the Additional file 1: Table S1.

Finite element model

FE model

We assigned a uniform thickness of 6 mm and a density
of 1.0597 g/cm3 to each of the models [29, 88]. The
geometry was discretised using more than 3000 HEX 8
elements with an average element size of 2 mm. An im-
plicit solution scheme using ANSYS Mechanical (©
2008-2021 ANSYS, Inc.) was adopted to solve the quasi-
static loading problem. The boundary conditions were
identical across models and involved setting the mobility
of the rim to zero in all three directions, while allowing
for rotation. We assumed that the pelvic floor is at an
equilibrium at the normal intra-abdominal pressure of
0.5kPa [89]. The pressure of 4.5kPa is an average intra-
abdominal pressure produced by a Valsalva (straining)
manoeuvre, a technique used in medical diagnostics,
where patients make a forceful exhale motion while
keeping airways closed. This increases the intra-
abdominal pressure in a controlled way without contrac-
tion of the pelvic floor muscles [90]. We therefore apply
the difference of 4kPa between the normal and the Val-
salva intra-abdominal pressure as an equivalent normal
force to the entire superior surface of the mesh. This ap-
proach allowed us to validate our pelvic floor model
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(Additional file 1: Tab. S2) against published data on
pelvic floor displacement during dynamic magnetic res-
onance images of healthy women [91]. The pressure of
4.5 kPa is evolutionarily relevant as it is within the upper
range of normal intra-abdominal pressure during typical
activities [89]. Across all experiments, material proper-
ties were kept constant to assess how displacement,
stresses and strains of the pelvic floor changed as a con-
sequence of pelvic floor geometry.

Material properties and model validation

We adopted an isotropic Mooney-Rivlin constitutive law
(also see Additional file 1) to represent pelvic floor tis-
sues with the following parameters: ¢;=26 kPa, c,=14
kPa [91], and the bulk modulus, K = 1000 kPa [92].
These material properties have been sourced from pub-
lished literature [91] and were previously used for valid-
ation of our anatomical model with the base ML and AP
diameters [29] (Additional file 1: Tab. S2).

Experiments and measurements
Separately for the flat, ellipsoid and anatomical geom-
etries and the different AP/ML ratios (Additional file 1:
Tab. S1), we quantified the mechanical response to the
applied pressure of 4kPa. We kept the surface area con-
stant in all experiments. In the ellipsoid and anatomical
models, we also kept the depth constant. In addition, we
assessed the effect of non-linear material properties by
comparing the relationship between stresses and strains
in the flat, ellipsoid and anatomical base models when
applying experimental pressures of 4 kPa and 20 kPa.
We measured three variables at the location of max-
imum displacement to assess the performance of the
pelvic floor model: the maximum total displacement
magnitude (in mm), the maximum von Mises strain and
the maximum von Mises stress (in MPa). The engineer-
ing term ‘strain’ is a dimensionless measure that de-
scribes the amount of extension the material experiences
per unit length, while ‘stress’ denotes the amount of
force experienced by the material per unit of its surface.
A large strain magnitude implies that the material was
stretched, compressed or sheared to a high degree. At
the same time, a large stress signifies a high amount of
energy that the material absorbed in order to achieve its
deformation. The von Mises stresses and strains are the-
oretical values calculated from the three-dimensional
stress and strain state of the material, therefore combin-
ing in a single parameter the maximum distortion en-
ergy [93]. We ignored stresses and strains at the edges of
the models because of our boundary conditions. The
measurements were exported from ANSYS Mechanical
as the maximum value for 20 elements located at and
around the centre of the maximum displacement. These
elements were identical across results for one model but
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varied across models due to slight differences in the
node numbering and the location of the maximum dis-
placement. In anatomical models, the maximum dis-
placement positions were determined for the anterior
and posterior compartments (Additional file 1: Fig. S2).
All experiments were performed both with and without
the effect of gravity. The latter accounted for the weight
of the pelvic floor membrane only and was automatically
calculated from the provided density of the material. It
was then applied as an equivalent vertical (as opposed to
normal) force to the entire volume of the mesh.

Validation

The geometry of the real human pelvic floor is more
complex than our anatomical model as it is neither
homogeneous in thickness nor in tissue properties. Add-
itionally, pelvic floor tissue properties vary due to indi-
vidual genetic differences and change with age,
hormonal status and pelvic floor training [94—100]. They
also differ between women with and without urinary in-
continence [90-102]. Our base model, however, was
successfully validated by measuring the displacement of
the posterior compartment against published dynamic
magnetic resonance imaging data [29] (Additional file 1:
Tab. S2) and captures the essence of the behaviour of
the female pelvic floor during a Valsalva manoeuvre by
revealing two main areas of displacement. The max-
imum displacement of the anterior compartment in our
model occurs at the anatomical location of the urogeni-
tal hiatus, where fibres of the urogenital diaphragm and
the anterior part of the levator ani insert into the urethra
and anterior vagina. The maximum displacement of the
posterior compartment in our model coincides with the
location of the ‘bend’ created between the levator plate
and the puborectalis muscle (Fig. 2A). In clinical prac-
tice, displacements in these two areas are used for diag-
nosing pelvic floor tissue health and prolapse [103-107],
indicating that our base model successfully reproduces
the anatomical areas critical for pelvic floor health.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/512915-021-01150-w.

Additional file 1: Tab. S1. List of models and their AP/ML ratios used
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