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Abstract

Background: Oral microbiome dysbiosis is linked to overt inflammation of tooth-supporting tissues, leading to
periodontitis, an oral condition that can cause tooth and bone loss. Microbiome dysbiosis has been described as a
disruption in the symbiotic microbiota composition’s stability that could adversely affect the host's health status.
However, the precise microbiome dynamics that lead to dysbiosis and the progression of the disease are largely
unknown. The objective of our study was to investigate the long-term dynamics of periodontitis progression and its
connection to dysbiosis.

Results: We studied three different teeth groups: sites that showed disease progression, sites that remained stable
during the study, and sites that exhibited a cyclic deepening followed by spontaneous recovery. Time-series
analysis revealed that communities followed a characteristic succession of bacteria clusters. Stable and fluctuating
sites showed high asynchrony in the communities (i.e., different species responding dissimilarly through time) and a
reordering of the communities where directional changes dominated (i.e, sample distance increases over time) in
the stable sites but not in the fluctuating sites.

Progressing sites exhibited low asynchrony and convergence (i.e, samples distance decreases over time). Moreover,
new species were more likely to be recruited in stable samples if a close relative was not recruited previously. In
contrast, progressing and fluctuating sites followed a neutral recruitment model, indicating that competition
between closely related species is a significant component of species-species interactions in stable samples. Finally,
periodontal treatment did not select similar communities but stabilized a-diversity, centered the abundance of
different clusters to the mean, and increased community rearrangement.

Conclusions: Here, we show that ecological principles can define dysbiosis and explain the evolution and
outcomes of specific microbial communities of the oral microbiome in periodontitis progression. All sites showed
an ecological succession in community composition. Stable sites were characterized by high asynchrony, a
reordering of the communities where directional changes dominated, and new species were more likely to be
recruited if a close relative was not recruited previously. Progressing sites were characterized by low asynchrony,
community convergence, and a neutral model of recruitment. Finally, fluctuating sites were characterized by high
asynchrony, community convergence, and a neutral recruitment model.
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Background

The oral cavity harbors a large and complex community
of beneficial microbes that remain stable over long pe-
riods [1]. As in other microbiomes, this complex assem-
bly of organisms’ stability is critical for good health but
remains almost entirely unexplored.

Periodontitis, one of the most common oral diseases
globally, is an example of dysbiosis-driven disease, which
results in an uncontrolled inflammation of the periodon-
tal tissues, which can lead to tooth and bone loss [2].
Despite being studied for decades, our understanding of
the ecological shift toward periodontitis initiation and
progression is still limited.

That is due, in part, to the cross-sectional nature of
previous clinical studies. Even though they have revealed
compositional and functional dysbiosis of the oral
microbiome in periodontitis [2—4], only longitudinal ob-
servations can shed light on the microbiome dynamics
during disease progression. Understanding the oral
microbiome’s temporal dynamics is integral in leveraging
these microbial communities to promote human health.

Most microbiome stability studies have focused on the
gut microbiome and used summary community metrics
of diversity and distance to quantify and relate commu-
nities over time [5, 6]. However, these kinds of studies
do not address the fundamental problem of what makes
a microbiome stable. Dysbiosis is believed to be a critical
factor in the onset of several microbiome-driven diseases
[7-9]. Nonetheless, the study of microbial taxonomic
profiles has limits in explaining dysbiosis, as these pro-
files can be highly divergent among patients, making it
difficult to implicate specific microbial species or strains
in disease onset and progression. To manipulate the
microbiome to improve health, we need to understand
community structure and composition, and we need
models to quantify and predict the microbial commu-
nity’s stability.

The mere definition of dysbiosis is problematic. It is
such a broad concept that it could mean almost any
change in microbiome compositions [10], and as Olesen
and Alm indicate [11]: “the fact that healthy and ill
people have different microbiomes is no longer a novel
or useful observation. We need to show that differences
in the microbiota can be used to predict or ameliorate
disease, and not just show that differences exist.” There-
fore, there is a need to identify overarching principles
and patterns of microbiome behavior linked to the com-
munity’s stability.

To begin addressing this knowledge gap, we focused
our interest on understanding the dynamics of long-
term changes in the oral microbiome’s community
structure rather than explaining the disease’s progression
by changes in the relative abundance of specific organ-
isms. Specifically, we hypothesized that changes in the
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microbiome members’ interconnections and their dy-
namics could be a complementary indicator of the dis-
ease’s outcome. Here, we study the oral microbiome’s
long-term dynamics by systematically monitoring and
sampling a cohort of the same 15 individuals presenting
periodontitis during 1 year. In addition, specific teeth in
the entire mouth of the patients enrolled in the study
were sampled individually every 2 months. After the
study was finalized, samples were classified according to
their clinical profiles as stable if no changes in clinical
measurements were observed during the study or pro-
gressing if clinical measurements indicated an exacerba-
tion of the disease.

Additionally, we studied teeth that exhibited cyclic de-
terioration of clinical measurements followed by spon-
taneous recovery, a fluctuating behavior commonly
observed in the clinic [12, 13]. The work described here
characterized oral microbial stability by looking at
changes in ecological elements of community
organization. Temporal correlation network analysis re-
vealed a higher degree of centrality and lower between-
ness centrality in stable samples during the whole study.

We were able to identify the synchrony of the progres-
sing samples as a defining element for these sites. Asyn-
chrony among species can result in community stability
if a rise in one compensates for a decline in another spe-
cies. Therefore, the degree of community synchrony is
an essential indicator of ecosystem properties’ stability
[14]. Besides, we found that new species were more
likely to be recruited in stable samples if a close relative
was not recruited previously.

In contrast, progressing and fluctuating sites followed
a neutral recruitment model, indicating that competition
between closely related species is a significant compo-
nent of species-species interactions in stable samples.
Thus, in the progressing and fluctuating samples, co-
operation could be driven by these interactions. To-
gether, our findings show that the study of the oral
microbiome dynamics in disease progression through
time-series analysis can define overarching ecological
principles that could better explain the evolution and
outcomes of specific microbial communities in the oral
cavity.

Results

Patterns of periodontitis progression across clinical
groups

The data presented here were obtained from a prospect-
ive multi-center clinical study to identify periodontitis
biomarkers (i.e, gum disease) progression described
elsewhere [13, 15]. A total of 415 participants were ex-
amined every 2 months for 12 months in the absence of
periodontal treatment to Additional File 5, Table
Slmonitor periodontal disease progression, based on
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clinical attachment level (CAL) measurements. Then,
participants received periodontal therapy (scaling and
root planning, SRP) and were followed for six more
months. At each visit (baseline, 2, 4, 6, 8, 10, and 12
months, and 6 months post-treatment visits), partici-
pants received clinical examination and provided subgin-
gival (i.e, below the gumline) microbial samples from
the same specific teeth. At the end of the study, three
clinical behaviors were observed on the teeth examined:
stability, disease progression, and fluctuation (cycles of
disease progression/regression) [13, 15].

Our approach is detailed in Additional File 1, Fig. Sla.
Fifteen individuals were selected for the present study.
Three teeth were chosen in each of them, each repre-
senting one of the three clinical groups (3 teeth/partici-
pant, 45 teeth total). For each tooth, we analyzed eight
samples, representing each of the time points in the lon-
gitudinal study (baseline, 2, 4, 6, 8, 10, and 12 months,
and 6 months post-treatment), for a total of 360 micro-
bial samples included in this study. Complete details of
the study outline are presented elsewhere [13, 15]. To
assess whether a sample size of 15 subjects per group
likely affords adequate statistical power, we calculated
effect size measured as omega-squared (w?) described in
Kelly et al. [16] using Jaccard distance. This method has
been specifically designed to estimate sample size for
microbiome analysis. We found that with a power of
90%, the stable group has a w” of 0.019, the progressing
group 0.042, and the fluctuating group 0.022; all smaller
than the »” of 0.08 that Kelly et al. found in the ten sub-
jects per group.

Time-series modeling and forecasting confirmed the
validity of the three clinical trajectories selected to study.
We employed the Dickey-Fuller test to determine
whether the time series were stationary or non-
stationary, using CAL in our predicted trajectories:
stable (no change in CAL), progressing (an increase of
CAL with time), and fluctuating (up and down changes
in CAL), illustrated in Additional File 1, Fig. S1b. Both
progressing and fluctuating were non-stationary. Autore-
gressive Integrated Moving Average (ARIMA) modeling
[17], a widely used approach to stationary time-series
forecasting, was used for stable samples, whereas differ-
encing [17] was employed for progressing and fluctuat-
ing samples. We performed forecasting on CAL profiles
as a proxy for disease progression with time for the
ACAL in stable, progressing, and fluctuating samples
(Additional File 2, Fig. S2). Forecasting results indicate
that, without intervention, the three patterns previously
defined in our samples followed the predicted classifica-
tion (Additional File 2, Fig. S2b,d,f). The forecasted
values for the next 12 months flatten in the stable sam-
ples (Additional File 2, Fig. S2b), the ACAL (difference
of CAL values between time points) grows exponentially
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in the case of the progressing sites (Additional File 2,
Fig. S2d), and it follows a zig-zagging trajectory in the
fluctuating sites (Additional File 2, Fig. S2f). As expected,
after periodontal treatment, CAL values were reduced in
all groups (Additional File 2, Fig. S2a,c,e).

Patterns of community structure during periodontitis
progression across clinical groups

We profiled prokaryotic composition for the 16S rRNA
gene datasets and eukaryotic composition for ITS1 and
ITS2 genes using Kraken2 and Bracken programs with a
custom 16S rRNA+ITS database [18, 19]. The profiles of
community composition in the three kinds of samples
showed a similar composition of the most abundant
taxa, although some species’ relative abundance was dif-
ferent (Fig. 1a). For instance, Fusobacterium nucleatum
was more abundant in the fluctuating samples than in
stable and progressing samples, whereas Streptococcus
sp. oral taxon 064 and oral taxon 058 were more abun-
dant in the stable and progressing samples than in the
fluctuating (Fig. 1a). Progressing and stable samples also
showed specific differences. Lactobacillus panis was con-
sistently more abundant in stable samples, whereas Acti-
nomyces naeslundii was consistently more abundant in
progressing samples (Fig. 1la). Also, we assessed a-
diversity in the globality of samples under the three dif-
ferent conditions. Shannon diversity, which accounts for
both abundance and evenness of the species present,
was significantly higher in the fluctuating samples,
followed by progressing samples and stable samples with
the lower overall a-diversity (Fig. 1b). Similar results
were obtained for other a-diversity indexes such as rich-
ness and Fisher «o-diversity (Additional File 3, Fig. S3a).
Shannon diversity values were consistently higher in the
progressing and fluctuating sites than in stable sites for
the study’s whole period (Fig. 1c and Additional File 3,
Fig. S3b). Remarkably, fluctuating samples were the ones
showing higher o-diversity, statistically significantly
higher than the other two groups, and at months 8, 10,
and 12 (Fig. 1c). After treatment, all conditions showed
a stabilization in a-diversity (Fig. 1c).

Shannon diversity’s rate of change was higher during
disease progression for most of the sampled points,
while the rate of change of Shannon diversity was con-
sistently lower in the stable sites (Fig. 1d). Thus, the
periodontal treatment seems to stabilize the rate of di-
versity change in the progressing sites and lower it in
the other two conditions (Fig. 1d).

Three different B-diversity metrics—the Jaccard index
(for membership), Bray—Curtis (B.C.) dissimilarity (for
abundance), and weighted-Unifrac (for phylogenetic re-
latedness) were used to assess bacterial communities dif-
ferences. B-diversity multivariate tests yielded significant
results for the progressing and fluctuating sites when
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Fig. 1 Taxonomy and diversity profiling of the different clinical groups of teeth according to disease progression. a Temporal changes in the
relative frequency of the most abundant common taxa (> 10%) among all groups at the species level. Counts were edgeR normalized. The
vertical green line indicates the moment when patients received periodontal treatment. b Violin plot of Shannon a-diversity of all samples in the
three different groups. Boxes span the first to third quartiles; the horizontal line inside the boxes represents the median, and black dots represent
all samples in each group. Pairwise comparison is performed using the non-parametric Wilcoxon test, and p values are displayed. ¢ Profiles of
Shannon diversity across time. Error bars represent standard deviation. The vertical blue line indicates the moment when patients received
periodontal treatment. d Rate of change of Shannon index over time. We calculated the first differences, which is the magnitude of change
between successive time points, and represented them on a volatility plot. Error bars represent standard deviation
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compared to the stable samples, whereas progressing
and fluctuating site samples were not significantly differ-
ent (Additional File 4, Fig. S4).

Taxa associated with one of the analyzed conditions at
different times were identified using the linear discrimin-
ant analysis effect size (LEfSe) [20]. Taxa with effect size
(LDA) scores higher than 2 could be considered bio-
markers of the different conditions. The most specific
associated taxa samples were the fluctuating samples
with Fusobacteria and Flavobacteria frequently associ-
ated with them (Fig. 2). Stable samples showed Firmi-
cutes and, most specifically, the family Streptococcaceae
as the most abundant phylogenetic unit, while in the
case of progressing sites after the sixth-month Actino-
bacteria (family Actinomycetaceae) was the most abun-
dant phylogenetic unit (Fig. 2). Surprisingly, in the
samples of month 18, the biomarkers of the different
communities seemed to diverge instead of converging
due to periodontal treatment (Fig. 2).

Temporal network analysis and network cartography

Microbial abundances are not independent, and trad-
itional statistical metrics (e.g., correlation) for detecting
OTU-OTU relationships can lead to spurious results.

Moreover, microbial sequencing-based studies typically
measure hundreds of OTUs on only tens to hundreds of
samples; thus, inference of OTU-OTU association net-
works is severely underpowered. We used SPIEC-EASI
to reconstruct ecological networks. This statistical
method addresses both of these issues [21]. We first per-
formed temporal network analysis and generated dy-
namic networks as described in the vignette of the tsna
R package [22]. We then assigned roles to the different
species in the ecological network, as described by Gui-
mera and Amaral [23]. These authors demonstrated that
nodes could be classified into universal roles according
to their pattern of intra- and inter-module connections.
They are thus yielding a “cartographic representation” of
complex networks [23]. Within-module degree z mea-
sures how “well-connected” a particular node (bacterial
species) is to other nodes in the same module. High
values of z indicate high within-module connectivity and
vice versa. The participation coefficient (P) defines how
the node is positioned in its module and with respect to
other modules. The participation coefficient is close to 1
if its links are uniformly distributed among all the mod-
ules and 0 if all its links are within its module [23].
Based on z and P, nodes in a network can be classified
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as hubs if z > 2.5 and non-hubs if z <2.5. In all three
conditions, most nodes were classified as peripheral or
ultra-peripheral, that is non-hub nodes with most links
within their modules (0.05 < P < 0.62) [23] (Fig. 3a—c).
In stable sample networks, Actinomyces gerencseriae,
Anaeroglobus geminatus, Desulfomicrobium orale, Pep-
tostreptococcaceae bacterium oral taxon 369, Polypor-
ales sp., Treponema sp. oral taxon G76, acted as hub
connector; that is, hubs with many links to most of the
other modules (0.30 < P < 0.75). In the progressing sites,
Actinomyces sp. oral taxon 171, Actinomyces sp. oral
taxon 448, Aspergillus caesiellus, Candida albicans, Can-
dida quercitrusa, and Cardiobacterium valvarum were
hub connectors (Fig. 3a, b, Additional File 5, Table S1).
Finally, in fluctuating sites, Actinomyces sp. oral taxon
169, Actinomyces sp. oral taxon 171, Actinomyces sp. oral
taxon 175, and Aspergillus flavus acted as hub connec-
tors (Fig. 3c, Additional File 5, Table S1).

We then performed a temporal analysis of two net-
work centralities: degree and betweenness centrality.
The degree of a node (or a species) refers to the number
of links to other interacting partners in the network,
while the betweenness of taxa is a measure of taxa’s con-
trol in the network. Stable samples showed an increase

in degree centrality throughout the study (Fig. 3d) while
progressing sites showed a high degree of centrality con-
sistently until month 10 when there was a steep de-
crease. Interestingly, fluctuating sites showed low-degree
centrality compared to the other two conditions until
the tenth month when, as in the progressing sites, a
steep increase occurred (Fig. 3d). High betweenness cen-
trality implies that a corresponding node has more influ-
ence in the network and vice versa. In betweenness
centrality, progressing and fluctuating sites showed a
similar pattern to the one observed for degree centrality,
low values in fluctuating sites, and higher in progressing
sites (Fig. 3e). Stable samples showed, in general, sharper
oscillations, with a high peak between 2 and 6 months
(Fig. 3e). In all three cases, there was a significant in-
crease in-betweenness after treatment, special pro-
nounce in the case of the progressing sites (Fig. 3e).
Finally, we measured the number of edges formed at dif-
ferent times in the different temporal networks. Progres-
sing sites showed the most distinct profiles with a high
peak at month 4 and a lower number of edges formed at
month 8 (Fig. 3f). At months 4 and 6, the stable net-
works showed a significantly lower formation of nodes
than progressing and fluctuating sites (Fig. 3f).
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Temporal community dynamics and dominance structure
vary with clinical progression

To better understand the dynamics in microbial species
composition within and across sample types, we first
visualize the degree to which the most abundant species
reorder over time and the effect of periodontal treatment
on this rearrangement of species. There were substantial
shifts in species dominance in all communities over the
sampling period. Rank clocks highlight that there has
been high reordering in the relative abundance of the
dominant species in the fluctuating and progressing
microbiomes, but to a less extent in the stable commu-
nities (Fig. 4a).

The temporal measure of species reordering measured
as Mean Rank Shifts (MRS) showed large oscillations
during the study period. MRS progression describes rela-
tive changes in species rank abundances and indicates
the degree of species reordering between two time

points. Calculating mean rank shifts highlights that com-
munities” stability diverged from the beginning of the
study, with changes an increase of MRS at the beginning
of the study in progressing sites and a decrease during
the same period (2 to 6 months) in stable and fluctuating
sites (Fig. 4b). At month 8, there was a peak in all the
groups, after which all of them showed a steep decrease,
especially pronounced in the stable samples (Fig. 4b).
Interestingly, periodontal treatment resulted in an MRS
increase in all groups (Fig. 4b).

We also assessed the rate and pattern of variability
within a community, which indicates whether species
reordering over time results in a directional change; that
is, sample distance increases over time. Differences in
species composition were characterized by Euclidean
distances, calculated on pairwise communities across the
entire time series. The regression line’s slope indicates
the rate and direction of compositional change in the
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community [24]. Communities converge if sample dis- directional change [24]. The stable samples showed a
tances decrease over time, whereas if sample distance in- more significant directional change through time than
creases over time, the communities are undergoing the progressing and fluctuating samples (Fig. 4c). The
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progressing and fluctuating communities were unstable
with a negative slope and undergoing convergence, with
the fluctuating samples showing a more negative value
of the slope (Fig. 4c, d).

Defined sub-communities followed marked temporal
fluctuations

Next, we considered the degree to which different spe-
cies clustered in their abundance profiles during the
study. Using an infinite Gaussian process mixture model
[25], we found that in the case of the stable samples,
there were 12 clusters of behavior, while in the progres-
sing and fluctuating groups, there were 11 and 13, re-
spectively  (Additional File 6, Fig. S5 and
Additional File 7, Table S2). One cluster had the most
species in all three conditions, more than 200 (cluster 2).
More importantly, these clusters shared a large propor-
tion of species. One hundred eighty-three species were
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common to all three clusters 2 (Additional File 6, Fig.
S5d).

Furthermore, although the composition of these clus-
ters was similar, their behavior was very different. For
example, cluster 2 from fluctuating samples and the
other two groups followed opposite trajectories at the
beginning of the study, but after month 8, while stable
samples showed a decrease in the abundance of cluster
2, progressing sites maintained a high proportion of
those bacteria (Additional File 6, Fig. S5e). On the other
hand, cluster 2 of the fluctuating samples followed a
completely different profile. While in high proportion up
to month 6, it decreased in proportion at the end of the
study (Additional File 6, Fig. S5e).

One unexpected result was obtained when we plotted
all clusters on the same graph, and temporal fluctuations
of the different clusters were observed, in what looks like
a succession of different communities, with peaks and
valleys of abundances (Fig. 5a—c). What is more, in some
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cases, two or more clusters shared temporal peaks but
behaved differently at other times. Thus, the periodontal
treatment seemed to work by selecting specific clusters
while reducing others in abundance (Fig. 5a—c). In par-
ticular, cluster 2 was relatively less abundant in progres-
sing and fluctuating samples but no stable samples
(Fig. 5a—c).

Progressing samples are characterized by high synchrony,
where different species respond similarly through time
One key question in the relationship between species
diversity and stability is how the community’s compo-
nents affect the whole community’s aggregate proper-
ties’ stability. Unstable species populations may still
maintain stable communities, which is a time series,
is reflected by a pattern in which species negatively
covary whereas total community stability remained
relatively stable. The previous section showed that
different communities followed a succession in time,
with some clusters following similar or opposite pro-
files (Fig. 5a—c).

To assess community stability, we used Tilman’s
method to aggregate species abundances within replicate
and time and utilize these values to calculate community
stability as the temporal mean divided by the temporal
standard deviation [26]. As expected, the stable commu-
nities reported higher stability values, as defined by Til-
man [26], than progressing communities (Fig. 5d).
Surprisingly, fluctuating sites were only slightly less
stable than the stable communities (Fig. 5d).

The variance ratio (V.R.) was one of the first met-
rics to characterize species covariance patterns [28]. It
was used in an early synthesis paper of species covari-
ance in long time series [29]. The metric compares
the community’s variance as a whole relative to the
sum of the individual population variances. If species
vary independently, then the variance ratio will be
close to 1. A VR <1 indicates predominately negative
species covariance, whereas a V.R. >1 indicates that
species generally positively covary. Our results show
that in the species of the stable samples, covary pre-
dominantly negatively (V.R. <1), whereas in the pro-
gressing and fluctuating samples, they do positively
(V.R.>1) (Fig. 4e). A significant criticism of the vari-
ance ratio is that it is sensitive to species richness,
which is of particular concern when the metric is
used to compare communities with different species
richness levels. Other alternative metrics that quantify
species asynchrony have been developed in part to re-
spond to this issue. We measured synchrony using
the Loreau and Mazancourt metric that compares the
variance of aggregated species abundances with the
summed variances of individual species [27]. This
metric ranges from O (perfect asynchrony between
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species) to 1 (perfect synchrony). Stable and fluctuat-
ing samples presented a lower synchrony level in the
communities than the progressing (Fig. 5f).

Progressing and fluctuating sites follow a neutral model
of phylogenetic recruitment of new species

Knowing when and why new species are recruited
into microbial communities has significant implica-
tions in understanding the dynamics of health and
progression and implications in devising strategies to
managing the microbiome to restore a healthy status.
We used a mathematical model developed by Darcy
et al. that describes the order in which new species
are detected in microbial communities over time
within a phylogenetic framework [30]. The model es-
timates the degree to which the recruitment of new
species is more or less likely when a close relative
has been previously recruited. The model estimates
an empirical dispersion parameter D, which quantifies
the degree to which first-time species detections are
phylogenetically related. If D = 0, then species are
preferentially added if they have relatively low (D <0)
or relatively high (D >0) phylogenetic distance to the
resident community, yielding accumulations of total
phylodiversity that are relatively slow (D <0) or rela-
tively fast (D >0) compared with the neutral model
(D = 0) [30]. Figure 6a shows the phylogenetic accu-
mulation of the three datasets. New species with a
previously detected close relative contribute little phy-
lodiversity and cause slow phylodiversity accumulation
(blue). New species that do not have a close relative
contribute more phylodiversity and cause faster accu-
mulation (green). Stable samples showed a relatively
faster accumulation of phylogenetic diversity than the
neutral model (green fraction is reduced with time).
In contrast, the progressing and fluctuating samples
followed the neutral model of phylogenetic accumula-
tion (green and blue fractions do not change with
time) (Fig. 6a). Figure 6b shows the estimates for D’s
empirical value, which is the value at which APD = 0.
Figure 6¢ shows the distribution of D estimates where
dots within violins are means. While stable samples
show mean estimates of D much higher than 0, new
species are more likely to be recruited if they are
phylogenetically distant (overdispersed) from previ-
ously recruited species, progressing and fluctuating
sites followed a neutral model, D < 0.

The “individual null” test results confirm the previous
conclusions; progressing and fluctuating sites followed a
neutral model of phylogenetic recruitment of new spe-
cies (Fig. 6d). This “individual null” accounts for differ-
ences in total species relative abundance across a time
series, while the simulation above only considers the
presence-absence of species.
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Discussion

The objective of the present study was to begin to
understand changes in the oral microbiome’s community
structure by examining its long-term dynamics over
time, something that has never been done, particularly
in the breadth and depth as presented here. Here we

performed a time-series analysis of the oral microbiome
in people with periodontal disease, focusing on the eco-
logical elements that could explain the transition from
health to disease rather than changes in species compos-
ition. Our findings highlight the importance of time-
series data to facilitate ecological explanations of how
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microbiome stability comes about over time. For 1 year,
we followed a defined cohort and sampled the same sites
from the same patients. From those patients, we sampled
the following: sites that showed periodontitis progres-
sion, sites that did not change clinically during our
study, and sites that fluctuated, exhibiting a cyclic deep-
ening followed by spontaneous recovery to their original
depth [12, 13]. Because we followed the same teeth from
the same patients and the three kinds of samples had
the same clinical features at the baseline of the study,
this cohort provided an unparalleled opportunity to
identify what changes in the community could be associ-
ated with the progression of the disease.

As expected, the microbial composition of the differ-
ent groups varied largely throughout the study. Although
cross-sectional studies have found an association of indi-
vidual organisms with the disease, the oral microbiome’s
relative composition varies from study to study [31-33].
Our results show that the microbial communities in our
samples followed oscillating patterns significantly differ-
ent in the three clinical groups studied. Oral sites from
patients with periodontitis with no clinical signs of dis-
ease are already impacted and are already different from
what is considered health [34]. Interestingly, after treat-
ment, although the clinical status of the three groups
improved and a-diversity consistently stabilized or
slightly decreased, the different microbiomes did not
converge into a “core” healthy microbiome shared by all
types of samples. However, they differ from each other,
and they were more similar to the last samples before
treatment, pointing to the interpersonal variability [35].
Periodontal treatment leads to stabilizing or decreasing
the rate of change of a-diversity and narrowed the fre-
quencies of the different clusters around the mean but
had no effect in selecting a “healthy” core microbiome.

Measures of diversity showed a consistent higher a-
diversity in fluctuating sites, and as reported in other
studies, Shannon diversity was significantly higher in
progressing samples [36, 37] than in stable sites. Thus,
although it has been proposed that higher diversity may
lead to higher stability of the microbial community [38],
the relationships between diversity and stability are
much more nuanced, and high diversity is not always a
sign of health [39].

We further hypothesized that the community’s emer-
gent properties, such as stability and robustness, could
be a complement to defining dysbiosis in the oral cavity
during disease progression. Dysbiosis has also been
interpreted as a breach of the microbiome’s robustness
and a transition to a new, more unstable state [40].
However, determining which factors make specific
microbiota robust is a difficult task. We observed that
the communities in the three groups had a different net-
work topology. Temporal network analysis of these
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communities showed species that acted as hub connec-
tors, hubs with many links to most of the other modules,
of the networks in all three conditions. Although in
stable samples, these hub connectors were represented
by a variety of species in the progressing and fluctuating
sites, fungi and species of the genus Actinomyces repre-
sented the vast majority of these hubs. In the skin and
lung microbiome of humans, it has been suggested that
fungi play a stabilizing role in the organization of the
ecological network [41]. Whether that is the role in the
progressing and fluctuating sites is not known yet.

Microbial hubs are strongly interconnected and have a
severe effect on communities. These nodes are essential
for maintaining network structure and potentially im-
portant species for community structure [42, 43]. Al-
though correlation does not imply causation, the
removal of network hubs can cause a drastic shift in a
microbiome’s composition and functioning [44]. The
higher the centrality values, the more associations be-
tween community members are established and, conse-
quently, the more (functional) redundancy exists [45].
Lower average degree centrality has been observed when
associations between community members are not as
tight [45]. Despite the wealth of theoretical and field-
work, there is still no complete agreement on the com-
plexity—stability relationship in ecosystems. Stable
networks were characterized by increased degree cen-
trality and a high betweenness centrality during the first
half of the study, implying an increase in complexity and
functional redundancy in the stable communities. Pro-
gressing samples showed consistently higher centrality
(degree and betweenness) than fluctuating samples until
the tenth month. Edge formation profiles indicated that
the period between 2 and 6 months is essential in re-
structuring the different networks.

Many community structure measures, such as diversity
indices, do not capture ecological systems’ temporal dy-
namics. Reordering describes relative changes in species
rank abundances in time. We found a high reordering in
the relative abundance of the dominant species in the
fluctuating and progressing, and lower in the stable
communities. More importantly, we identified a series of
bacterial clusters that followed similar relative abun-
dance patterns along the period of study. The micro-
biome composition of these clusters was specific to the
sampling group. However, we identified a large “core”
cluster shared by the three groups, albeit it followed dif-
ferent dynamics depending on the sample type.

Interestingly, these clusters did not maintain a steady
kinetic but showed a high degree of compositional fluc-
tuations, with temporal peaks and valleys represented by
different microbial clusters. These kinds of temporal
fluctuations in community members have been previ-
ously described in various human microbiome sites [46,
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47]. These fluctuations play a significant part in species’
coexistence in other biological systems and the stability
and implications for disease states [48]. Not surprisingly,
measures of stability were higher in the stable samples
but also in fluctuating sites. More interesting were the
results we observed when we analyze the synchrony of
the observed fluctuations. Ecological synchrony refers to
the level of populations that oscillate up and down to-
gether or precisely 180° out of phase. Stable samples
showed a higher degree of asynchrony. Although it is a
very different system, in plant ecology, synchrony of spe-
cies increases local communities’ stability, and asyn-
chrony among local communities enhanced
metacommunity stability by a wide range of magnitudes
[14]. Our results indicate that in the oral microbiome,
the microbial populations’ temporal synchrony also con-
trols the community’s level of stability, with higher syn-
chrony linked to unstable communities.

Finally, we studied whether these fluctuations followed
different taxa recruitment patterns, e.g., the order in
which new species are detected in microbial communi-
ties over time within a phylogenetic framework [30].
The type of phylogenetic recruitment of microbial com-
munities is critical if we want to better exploit disturb-
ance as a tool for managing microbial systems related to
human health and disease. The human microbiome gen-
erally follows the under-dispersion hypothesis. In other
words, new species are more likely to be recruited if a
close relative has been recruited previously (nepotism).
However, the exceptions are oral communities [30]. In
our study, the stable samples followed the pattern ob-
served by Darcy et al. for oral communities; new species
were more likely to be recruited if a close relative was
not recruited previously. These could be explained by
competition between closely related species. However, in
the progressing and fluctuating sites, the recruitment of
new species followed a neutral model where recruitment
likelihood is not related to phylogenetic relationships
among species, potentially indicating cooperating net-
works, which could be efficient but are often unstable
[49].

Conclusions

In conclusion, the oral microbiome’s dysbiotic process
leading to the outcome of a site in patients with peri-
odontitis seems to be determined by the community’s
emergent properties, such as the level of asynchrony and
the type of phylogenetic recruitment the community ex-
hibits rather than by changes in composition. We
recognize that this is a small sample size for any specific
predictions to be made and that additional, more exten-
sive studies need to be performed. Moreover, we still
lack a functional/mechanistic explanation of microbiome
composition that confers stable, or even transferable,
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metabolic phenotypes when subjected to particular dis-
eases or environmental factors. Moving forward, more
time-series studies should be performed to confirm our
results, and functional studies should be incorporated to
complement metagenomic analysis.

Methods

Experimental model and subject details

Human cohort

The present study subjects were recruited as part of a
multi-center clinical trial to determine biomarkers of
periodontal disease progression (Biomarkers of Peri-
odontal Disease Progression Clinical Trials.gov ID
NCT01489839). Subjects were monitored clinically for
up to 1year every 2 months to detect periodontal sites
and subjects with periodontal disease progression. A de-
cision was made to collect samples every 2 months to
obtain a significant number of samples for time-series
analysis and, at the same time, minimize the effect that
the sampling process could have on the results. Pivotal
studies on the topic of periodontitis progression
employed a similar design [12, 50-53]. Subgingival mi-
crobial samples were collected from up to 32 sites per
subject per visit. These 32 sites represent the interproxi-
mal sites of all existing posterior teeth (tooth sites 1 and
3 circled and red dots in the figure). The rationale for
sampling these sites was that disease progression occurs
most frequently at proximal sites on posterior teeth.
Only posterior teeth of periodontitis patients were sam-
pled. Progressing sites were selected based on the exist-
ence of microbial samples (sites 1 and 3 of posterior
teeth, i.e., mesial and distal sites of pre-molars and mo-
lars). The study was described thoroughly to all subjects
before obtaining informed consent. Inclusion criteria
were as follows: age > 24 years; > 20 natural teeth (ex-
cluding third molars); at least four teeth with at least
one site of pocket depth (P.D.) of 5mm or more and
concomitant clinical attachment loss (CAL) greater than
or equal to 2 mm; radiographic evidence of mesial or
distal alveolar bone loss around at least two of the af-
fected teeth; and in good general health. Exclusion cri-
teria were as follows: current -cigarette smokers;
pregnant or nursing; received antibiotic or periodontal
therapy in the previous 6 months; any systemic condi-
tion potentially affecting the course of periodontal dis-
ease (for example, diabetes or AIDS); chronic use of
non-steroidal anti-inflammatory drugs; or any condition
requiring antibiotic coverage for dental procedures. In
total, a subset of 15 patients was selected for this study.
Disease progression was defined based on the evolution
of clinical attachment loss (CAL) as described in Teles
et al. [13]. Linear mixed models (LMM) were fitted to
longitudinal CAL measurements for each tooth site, and
the predicted CAL levels were used to categorize sites
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regarding progression or regression. The threshold for
progression was established based on the model esti-
mated error in predictions. Three groups of sites studied
were defined based on the LMM results [15]. The three
groups studied were as follows: sites that showed pro-
gression of the disease, sites that remained stable during
the study, and sites that fluctuated, exhibiting a cyclic
deepening followed by spontaneous recovery. Clinical
parameters defining the subjects are presented in Table
S4. Participants received periodontal therapy (scaling
and root planning, SRP) at the end of the study and were
monitored at 3 and 6 months. Sampling was only per-
formed at month 6 after treatment to assure the oral
microbiome was not influenced by periodontal treat-
ment. Power analysis was performed using the R package
“micropower” [16].

Subgingival plaque samples

Two plaque samples were taken from each posterior
tooth’s mesial and distal aspects (excluding third molars)
for up to 64 samples. After removing supragingival
plaque, subgingival plaque samples were individually col-
lected from each site with a single stroke using a sterile
Gracey mini-curette. After collecting one plaque sample,
the sterile end of another curette collected the following
sample. Each sample was placed in a separate microcen-
trifuge tube.

Ethics statement

Subject recruitment and study procedures were ap-
proved by and carried out in accordance with the Insti-
tutional Review Board at The Forsyth Institute.

Nucleic acid extraction and 16S rRNA and ITS sequencing
Total genomic DNA was extracted as described else-
where [54]. PicoGreen was used for DNA quantification,
and a 16 s rRNA metagenomics library was performed
using Swift Amplicon 16 + ITS Panel kit. This kit pro-
vides a single primer pool covering all the variable re-
gions of the 16S rRNA gene (V1-V9) and fungal ITS1
and ITS2 genes. In total, 50 pg of gDNA was used for
multiplex PCR in a 20 pl reaction mix. The PCR condi-
tion consisted of 30-s incubation at 98°C followed by
first five cycles of 98°C, 10s; 63 °C, 5min; and 65°C, 1
min; then 26cycles of 98°C, 10s; 64°C, 1min; and
65°C, 1 min. The multiplex PCR product was purified
with AMPure® XP Beads. After two, around 80% ethanol
washes, eluted with 5 pl of i5 index, 10 ul of i5 index,
and 35 pl of Indexing Reaction Mix. The indexing PCR
was performed by incubating at 37 °C for 20 min. The
indexing PCR was cleaned with an adding ratio of 0.85
PEG NaCl into Indexing PCR. The individual library was
quantified using the KAPA library quantification kit
(Kapa Biosystems, catalog number: KK4824) and

Page 13 of 17

monitoring on the BioRad CFX 96 real-time PCR sys-
tem. Barcoded samples were pooled equimolarly for se-
quencing one MiSeq 2 x 250 cycle run. The library
preparation was performed at the Gene Expression &
Genotyping of the Interdisciplinary Center for Biotech-
nology Research (University of Florida). The MiSeq run
was performed at NextGen of the Interdisciplinary Cen-
ter for Biotechnology Research (University of Florida).

Taxonomic profiling

When possible, in all bioinformatics analyses, GNU par-
allel was used [55]. Sequences were filtered for quality
using Trimmomatic [56]. Once filtered, sequences were
merged using bbmerge [57]. Next, chimeras were re-
moved using USEARCH [58] against the SILVA database
[59]. Phylogenetic assignment and relative quantification
were performed using Kraken2 [18] and Bracken [19]
against a custom 16S rRNA dabatase for the oral micro-
biome extracted from the HOMD database [60] and the
UNITE database [61] for fungal ITS sequences. We gen-
erated a custom database of the ITS sequences with se-
lected fungi species that had been previously identified
in oral samples and the ITS sequences of Entamoeba
gingivalis. Taxonomic representation of statistically and
biologically consistent differences between the different
groups was performed using the linear discriminant ana-
lysis effect size (LEfSe) method [20].

Diversity measurements

a-Diversity

Total a-diversity and ANOVA Shannon of the time
series were measured using the package “microbiome”
[62] and “microbiomeSeq” [63]. To examine how Shan-
non diversity and its rate of change vary across time, we
performed volatility analysis using QIIME2 [64, 65].

Ordination and B-dispersion

Multidimensional clustering was performed using PCoA
with three different dissimilarity distances: Bray-Curtis,
Jaccard, and weighted-Unifracusing. Ordination analysis
was performed using the R package “microbiome” [62].
Counts were normalized using as compositional. p-
dispersion was calculated by computing the average dis-
tance of individual groups to the group centroid. Finally,
permutation analysis of variance (PERMANOVA) was
calculated on the p-dispersion between all possible pair-
wise combinations of the grouping variable levels.

Time-series analysis

Forecasting analysis of clinical parameters

Dickey-Fuller test of stationary was performed using the
adfitest function of the “tseries” R package [66]. Time
series were analyzed using the “aTSA” R package [67].
We applied the ARIMA model for stationary series
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directly. We transformed the series into stationary on
the values for non-stationary series by subtracting CAL, ;
from CAL, for all values ¢ This technique is called dif-
ferencing and can be done with the “diff” function of the
aTSA package.

Bar-plot species
Species composition of the different groups and time
points were represented as bar-plots using the package
“phyloseq” [68].

Inference and cartography of ecological networks

To reconstruct ecological networks from data abun-
dance, we used SPIEC-EASI [21], a statistical method for
the inference of microbial ecological networks from
amplicon sequencing datasets. We then performed a
cartographic representation of the networks based on
the connectivity of the nodes as described by Guimera
and Nunes Amaral [23]. The cartographic representation
was obtained using the function “netcarto” from the R
package “rnetcarto” [69].

Temporal network analysis

To visualize temporal changes in the structure of eco-
logical networks, we performed temporal network ana-
lysis with the R package “tsna” [22]. First, we generated a
network as a static edge list with its associated vertex at-
tributes. We then import the temporal data associated
with the dynamic edges and dynamic nodes. We then
added the temporal data to the static network we cre-
ated above to form a dynamic network, using the net-
workDynamic() function. Finally, we measured edge
formation over time on this dynamic network and calcu-
lated the network’s rolling betweenness and degree
centralization using the function tSnaStats().

Dynamics of species over time

To visualize the degree to which species reorder over
time, we used rank clocks, calculate the relative changes
in species rank abundances or mean rank shifts (MRS),
and assess the rate and pattern of variability within a
community, which indicates whether species reordering
over time is resulting in a directional change we used
the R package “codyn” [70].

We clustered the different species’ trajectories using
the Dirichlet process Gaussian process mixture model
(DPGP) software [25]. A Dirichlet process determines
the number of clusters in a non-parametric manner,
while a Gaussian process models the trajectory and time
dependency of the specific species in a non-parametric
manner.

Measurements of stability, variance ratio, and syn-
chrony were performed using the R package “codyn”
[70]. Finally, we used the phylogenetic model for the
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recruitment of species described in Darcy et al. [30] to
test whether communities followed a neutral recruit-
ment model of new species. The model indicates
whether new species are more likely to be recruited if a
close relative has been recruited previously (nepotism)
or whether new species were more likely to be recruited
if a close relative was not recruited previously. The stat-
istical model describes the probabilities of detecting new
species over time. First, the model is used with empirical
data via simulations, where empirically detected species
are resampled using the model with known parameter
values to produce surrogate datasets. To this goal, the
model’s dispersion parameter (D) is fixed and recorded,
determining the extent to which species with a close
relative are preferentially added to the surrogate com-
munity (or, conversely, if species without a close relative
are preferred). Next, the parameter estimation compares
the empirical pattern of species detection to the surro-
gate datasets (which have known D values) to determine
which D value best describes the empirical data. Finally,
the hypothesis testing compares empirical data to re-
peated simulations under the neutral model, which is D
= 0, and all species have the same probability of being
detected for the first time.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/512915-021-01169-z.

Additional File 1: Figure S1. Experimental design. a) 15 participants
were selected from a total cohort of 415 participants. These patients had
all three conditions we wanted to study in their mouths. Thus genetic
background should have a minimal effect on the outcome of individual
sites. At baseline, all teeth used were clinically identical. Samples of
subgingival plaque were taken every two months for one year, after
which all patients underwent scaling and root planing as treatment. After
three months for a visual check-up and again after six months when they
were monitored, all of them came back to the clinic, and samples were
also taken. b) Desired trajectories of sites sampled. Stable sites: clinical at-
tachment loss (CAL) remained unchanged during the study. Progressing
sites: CAL increased steadily and significantly during the study. Fluctuat-
ing sites: exhibited a cyclic deepening followed by spontaneous recovery,
with no defined outcome. ¢) Different stages of periodontitis progression.
(i) The first stage (gingivitis) occurs when calculus builds up and gums
are inflamed. At his stage can reverse to health. (ii) If gingivitis is un-
treated dental plaque turns into hard tartar, and regular oral hygiene is
not enough to treat it. Inflammation causes the gum to separate from
the tooth, forming pockets. This stage is known as periodontitis, and it is
moderately severe. (jii) The last stage represents an irreversible form of
gum disease with severe bone loss, deep pockets, and the danger of los-
ing the tooth.

Additional File 2: Figure S2. Time-series forecasting of clinical attach-
ment loss (CAL) based on the observed results. a) Observed results of
CAL in the stable samples before treatment. b) ARIMA forecast results for
the stable sites. c) Observed results of CAL in progressing samples before
treatment. d) ARIMA forecast results for the progressing sites. e) Observed
results of CAL in fluctuating samples before treatment. f) ARIMA forecast
results for the fluctuating sites. Grey zones represent 95% confidence in-
tervals. Blue zones represent the period after periodontal treatment.

Additional File 3: Figure S3. Alpha-diversity results. a) a-diversity of all
samples in the three different groups measured as richness and Fisher
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index. b) ANOVA results for Shannon diversity comparisons. Levels of sig-
nificance (p < 0.05, p <0.01, p <0.001) were marked by one, two and
three asterisks, respectively.

Additional File 4: Figure S4. 3-diversity of microbial communities.
Multidimensional clustering was performed using PCoA with three dis-
similarity distances: a) Bray-Curtis, b) Jaccard, and ¢) weighted-Unifrac. f3-
dispersion was calculated by computing the average distance of individ-
ual groups to the group centroid. Permutation analysis of variance (PER-
MANOVA) and corresponding r-squared and p-values are calculated on
the B-dispersion between all possible pairwise combinations of the
grouping variable levels.

Additional File 5: Table S1. Taxa’s role in the network cartography as
shown in Fig. 3.

Additional File 6: Figure S5. Dirichlet process Gaussian process
mixture model (DPGP) clusters in species abundance trajectories. a)
Clusters corresponding to stable samples. b) Clusters corresponding to
progressing samples. ) Clusters corresponding to fluctuating samples. d)
Venn-diagram of cluster 2, the largest cluster, shows a large group of or-
ganisms shared by the three groups from the three different groups. e)
Trajectory of cluster 2 in the three groups.

Additional File 7: Table S2. Species composition of clusters presented
in Fig. 5.

Additional File 8: Table S3. Clinical measurements of the sites used in
the study.

Additional File 9: jupyter notebook. The notebook contains all code
and software used to process and analyze the data are available as a fully
reproducible computing environment in the jupyter notebook, which is a
Jipynb file that can be launched typing the command jupyter notebook
on a terminal on the directory that contains the notebook. The software
needed can be installed using pip (pip install notebook) or conda (conda
install -c conda-forge notebook).
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