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Abstract

Background: The cervicovaginal microbiome (CVM) plays a significant role in women’s cervical health and disease.
Microbial alterations at the species level and characteristic community state types (CST) have been associated with
acquisition and persistence of high-risk human papillomavirus (hrHPV) infections that may result in progression of
cervical lesions to malignancy. Current sequencing methods, especially most commonly used multiplex 16S rRNA
gene sequencing, struggle to fully clarify these changes because they generally fail to provide sufficient taxonomic
resolution to adequately perform species-level associative studies. To improve CVM species designation, we
designed a novel sequencing tool targeting microbes at the species taxonomic rank and examined its potential for
profiling the CVM.

Results: We introduce an accessible and practical circular probe-based RNA sequencing (CiRNAseq) technology
with the potential to profile and quantify the CVM. In vitro and in silico validations demonstrate that CiRNAseq can
distinctively detect species in a mock mixed microbial environment, with the output data reflecting its ability to
estimate microbes’ abundance. Moreover, compared to 16S rRNA gene sequencing, CiRNAseq provides equivalent
results but with improved sequencing sensitivity. Analyses of a cohort of cervical smears from hrHPV-negative
women versus hrHPV-positive women with high-grade cervical intraepithelial neoplasia confirmed known
differences in CST occurring in the CVM of women with hrHPV-induced lesions. The technique also revealed
variations in microbial diversity and abundance in the CVM of hrHPV-positive women when compared to hrHPV-
negative women.

Conclusions: CiRNAseq is a promising tool for studying the interplay between the CVM and hrHPV in cervical
carcinogenesis. This technology could provide a better understanding of cervicovaginal CST and microbial species
during health and disease, prompting the discovery of biomarkers, additional to hrHPV, that can help detect high-
grade cervical lesions.
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Background
High-risk human papillomavirus (hrHPV)-induced cer-
vical cancer affects more than half a million women
every year [1]. Although the oncogenic role of hrHPV is
clear in this process, only a minority of hrHPV infections
lead to cervical lesions, and ultimately, cancer. Hence,
there is a need to better understand hrHPV-induced
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alterations in the cervicovaginal environment that con-
tribute to cancer development. Accordingly, recent ef-
forts have focused on the host immune response and the
cervicovaginal microbiome (CVM) [2–4]. The latter has
a significant role in women’s cervical health and disease
[5]. Throughout women’s lives, the CVM can change
during the menstrual cycle, pregnancy, or after sexual
activities [6–10]. Such microbiome changes also occur in
pathogenic conditions like bacterial vaginosis (BV), Can-
didiasis, and viral infections [11–13]. Interestingly, the
composition of the CVM also depends on microbial
dominancy and diversity, creating characteristic commu-
nity state types (CST) that could be either dominant for
Lactobacillus species (CST I, II, III, and V) or diverse for
other bacterial species (CST IV). Variations in the CVM
have been widely described in relation to hrHPV infec-
tions, with CST IV significantly associated with high-
grade cervical lesions and cancer [4, 14, 15]. Further-
more, recent investigations have determined that these
microbiome alterations not only occur at the genus level
but also at the species level, suggesting that specific mi-
crobial species and CST are associated with progressive
or regressive behavior of cervical lesions and could act
as biomarkers for the disease [16–18]. Nevertheless,
studying the CVM and elucidating its function currently
relies mostly on short length 16S rRNA gene sequencing
(16S rRNA-seq), which struggles to distinguish microbes
at this taxonomic rank [19–22].
Microbiome profiling using 16S rRNA-seq is based on

the sequence analysis of hypervariable regions (VRs) in
ribosomal 16S rRNA genes for microbe identification
[23, 24]. PCR amplicons covering two VRs (e.g., V1-V2,
V3-V4) are generated with degenerate primer sets and
subjected to next-generation sequencing. The technique
results in bacterial identification typically providing for
family- or genus-level taxonomy, while species identifi-
cation is achieved for a limited number of genera [25,
26]. Moreover, several studies have observed bias in
microbiome profiling with 16S rRNA-seq due to vari-
ability in the selection of primers and VRs for amplifica-
tion and sequencing [27–29]. Since changes in the CVM
also take place at the species level, it is essential to de-
velop detection methods with higher resolution and spe-
cificity. To this end, Pinna et al. suggest that increasing
the number of analyzed VRs may improve the taxo-
nomic resolution in microbiome profiling [30].
Circular probe-based RNA sequencing (CiRNAseq)

using single-molecule molecular inversion probes
(smMIPs) has proven to be a useful tool for cancer re-
search [31–34] and hrHPV expression studies [35].
smMIPs can be designed to target any nucleic acid se-
quence and thus could be applied to recognize multiple
VRs and to identify diverse microbes such as bacteria,
fungi, and viruses simultaneously. Likewise, by targeting

and combining multiple VRs for microbiome profiling,
CiRNAseq carries a potential to perform high-resolution
sequencing with high specificity and sensitivity [30]. Be-
sides being customizable for its targets, the addition of a
unique molecule identifier (UMI) to a smMIP corrects
for PCR amplification bias, making the counting of amp-
lified smMIPs possible, which could be valuable for ab-
solute microbiome quantification [31, 35]. Because
CiRNAseq uses barcode technology, it can handle hun-
dreds of samples in one sequencing run, making the
technique cost-effective. Furthermore, it requires fewer
specialized skills for data analyses and interpretation
than other sequencing methods such as 16S rRNA-seq,
making it a handy and accessible technology [36, 37].
We describe here the characteristics and potential of a

CVM-specific CiRNAseq assay. We validate the tech-
nique’s resolution, specificity, and performance in vitro
with mock samples, and profile the CVM of a cohort of
cervical smears from women with and without hrHPV-
associated cervical abnormalities.

Methods
Study participants and samples
For this study, a total of 102 cervical smears in Preserv-
Cyt were collected from women participating in the
Dutch population-based cervical cancer screening pro-
gram, which were received and processed at Radbou-
dumc (Nijmegen, the Netherlands). Women
participating in the cervical cancer screening program
were informed that residual material could be used for
anonymous research and had the opportunity to opt-
out. Only residual material from women who did not
opt-out was included. The histological follow-up out-
comes were obtained from the nationwide network and
registry of histo- and cytopathology in the Netherlands
(PALGA; Houten, the Netherlands). hrHPV identifica-
tion was performed as previously described [35]. All
methods were performed following the institutional
guidelines for using human samples. One set of ten
hrHPV-positive smears was used for the comparative
analyses with 16S rRNA-seq. DNA from these samples
was isolated from 1ml of residual material using DNA
and Viral Small volume kit (Roche, cat. no. 6543588001)
and subjected to CiRNAseq. The cohort of the
remaining 92 cervical smears consisted of 46 hrHPV-
positive samples of women with confirmed high-grade
cervical intraepithelial neoplasia (CIN2+) and 46 hrHPV
DNA-negative smears. Five milliliters of each cervical
cell suspension was centrifuged for 5 min at 2500×g, and
the pellet dissolved in 1ml of Trizol reagent (Thermo
Scientific). RNA was isolated through standard proce-
dures and dissolved in 20 μl nuclease-free water. We
routinely processed a maximum of 2 μg of RNA for
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DNase treatment and cDNA generation, using Super-
scriptII (Thermo) as previously described [35].

smMIP design and targeted sequencing
We compiled a list of 434 previously identified microbes
that have been recognized as significant in the cervicovagi-
nal environment by recent literature and the Human Vagi-
nal Microbiome Project (Additional file 1) [38, 39]. The
genome sequences were initially retrieved from the Na-
tional Center for Biotechnology Information (NCBI [40])
using Biomartr [41]. Sequences from small ribosomal sub-
unit (SSU) and large ribosomal subunit (LSU) rRNA genes
were selected and extracted using Biopython [42] and
BEDTools [43], respectively [23, 44]. smMIPs against SSU
and LSU rRNA genes were designed in MIPgen [36]. We
selected smMIPs with homologous hybridization arms
and dissimilar regions of interest (ROIs) and included a
random octanucleotide UMI in the smMIP backbone.
Next, we compared the selected ROI sequences with the
corresponding rRNA sequences within the SILVA rRNA
database. Only sequences that were 100% identical over
the full length with this database were regarded as fit for
annotation [45]. Subsequently, MegaBLAST and the
Burrows-Wheeler Aligner (BWA) were combined to valid-
ate in silico the specificity of smMIPs in discriminating
species [46, 47]. Thereafter, a greedy algorithm was imple-
mented to validate the potential of a smMIP in identifying
as many species at once as possible based on ROIs se-
quences. This validation resulted in the selection of 30
smMIPs targeting the 434 microbes and pathogens (Add-
itional file 2). All smMIPs were validated on a dataset
composed of genomes and annotations from species iso-
lated from cervical smears (Fig. 1). Then, to standardize
species detection and reduce the chance of false-positive
annotation, we considered only species that were identi-
fied with two or more reactive smMIPs (on average six
probes per species). This filtering resulted in the final se-
lection of our targets consisting of 107 genera and 321
species that represent our cervicovaginal microbiome
panel (CVMP), including bacteria, fungi, and parasites
(Additional file 3). CiRNAseq was performed as previously
described [31, 35]. For the sequencing of individual spe-
cies, 10 ng of microbial DNA was analyzed. Analyses of
cervicovaginal samples were performed on ~ 50 ng of
cDNA/DNA generated according to standard protocols
(see the “Study participants and samples” section). Follow-
ing capture hybridization and probe circularization and
purification, circularized probes were subjected to PCR
with barcoded Illumina primers. After purification of the
correct-size amplicons, quality control, and quantification
as previously described [35], a 4-nM library was se-
quenced on the Illumina Nextseq500 platform (Illumina,
San Diego, CA) at the Radboudumc sequencing facility.

CiRNAseq output analysis
Reads were mapped against reference ROIs within our
CVMP using the SeqNext module of JSI Sequence Pilot
version 4.2.2 build 502 (JSI Medical Systems, Ettenheim,
Germany). The settings for read processing were a mini-
mum of 50% matching bases, a maximum of 15% mis-
matches, and a minimum of 50% consecutive bases
without a mismatch between them; for read assigning,
the threshold was a minimum of 95% of identical bases
with the ROIs. All identical PCR products were reduced
to one consensus read (unique read counts, URC) using
the UMI. We set an arbitrary threshold of at least 1000
URC from all smMIPs combined in an individual sam-
ple, below which we considered an output non-
interpretable [48]. For microbial annotation, species with
two reactive smMIPs were annotated when 100% of the
specific set of smMIPs had URC. Species with three or
more reactive smMIPs were annotated when more than
50% of their specific set of smMIPs had URC using a
custom R script. For analyses where isolates from our
CVMP were not considered, the URC for each isolate
were summed to represent the bacterium at the species
level. To define relative abundances, microbial species
URC was divided by the total URC of all microbes anno-
tated in the sample. For establishing microbial diversity,
URC was turned to 1 and 0, indicating the presence or
absence of microbes, respectively.

16S rRNA gene amplification and sequencing
Residual material from ten hrHPV-positive cervical
smears in PreservCyt solution, randomly obtained from
the Dutch population-based cervical cancer screening pro-
gram with approval from the regional institutional review
board and the National Institute for Public Health and En-
vironment (No. 2014-1295), was initially pelleted by cen-
trifugation. Pellets were suspended in 1ml DNA/RNA
shield buffer (Zymo, cat. no. R1104). DNA was extracted
according to standard protocols and processed by Base-
Clear B.V. (Leiden, the Netherlands) for microbiome pro-
filing using the primers 357F (5′-CCTACGGGAGGCAG
CAG-3′) and 802RV2 (5′-TACNVGGGTATCTAAKCC-
3′) that target the V3 and V4 variable regions of the 16S
rRNA gene [29]. PCR protocol was as follows: 2 m 95 °C
hot start; 35 cycles of 20 s 95 °C, 10 s 61 °C, 15 s 70 °C; 10
m 70 °C. The libraries were barcoded, multiplexed, and se-
quenced on an Illumina MiSeq machine with paired-end
300 cycles protocol and indexing by BaseClear [49]. Illu-
mina sequencing data were quality checked and demulti-
plexed by BaseClear standards, and FASTQ files were
generated.

16S rRNA gene sequencing data analysis
From the FASTQ files, forward and reverse reads were
pairwise assembled with PEAR (v0.9.10 [50]) in default
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settings. For the generation of the 16S-derived taxa-to-
sample compositional matrix, a customized Python
workflow based on Quantitative Insights Into Microbial
Ecology (QIIME v2.0 [51]) was adopted (http://qiime.
org). Relative abundances per sample were calculated
with QIIME2 default settings, where the reads per taxon
were divided by the total number of bacterial reads for
that sample.

In vitro validation of sequencing targets
To test in vitro the specificity and resolution of CiRNA-
seq, we used 12 bacterial species listed in Additional file
4: Supplementary Table 1, obtained from the Medical
Microbiology Department, Radboudumc, Nijmegen, the
Netherlands. Bacteria were grown in appropriate culture
media. Following growth, their genomic DNA was ex-
tracted using DNA and Viral Small volume kit (Roche,

cat. no. 6543588001). PCR and Sanger sequencing was
performed to validate species identification. Water was
used as the negative control. For CiRNAseq, we pre-
pared a concentration of 1.5 ng/μL from each microbes’
DNA in a final volume of 40 μL.

In silico validation of sequencing microbial species
For testing the specificity of CiRNAseq towards the spe-
cies Anaerococcus vaginalis, Anaerococcus tetradius,
Peptostreptococcus anaerobius, Gardnerella vaginalis,
Bifidobacterium longum, and Prevotella buccalis in silico,
we downloaded the 16S rRNA gene of the species A.
vaginalis (D14146), A. tetradius (D14142), P. anaerobius
(D14150), G. vaginalis (M58744), Bifidobacterium
longum sp. suillum (AB924532), and P. buccalis
(AB547676) from the LPSN database (DSMZ, Germany).
SnapGene® Viewer 5.3.2 (Insightful Science; snapgene.

Fig. 1 Design and workflow for targeted sequencing of the cervicovaginal microbiome. A The design and in silico validation of targeted
sequencing involved the initial selection of microbial species from the CVM and their regions of interest (ROIs) within the 16S rRNA gene.
Thereafter, single-molecule molecular inversion probes (smMIPs) were designed and validated to target specifically all the ROIs, which resulted in
thousands of promising smMIPs. By performing in silico analyses, the amount of smMIPs were shortened and validated to profile all the microbial
species, which resulted in the final selection of 30 different smMIPs that are able to achieve high-resolution microbiome profiling. B For CVM
profiling, these 30 smMIPs are available to hybridize to the 16S rRNA gene of microbes (e.g., DNA or cDNA from RNA) identified as part of the
cervicovaginal microbiome. In the cervicovaginal microbiome, hundreds of microbial species can be detected, playing a role in health and
disease. smMIPs were selected based on extension and ligation arms that are shared between species and flanking hypervariable ROI that are
unique per species. After smMIP hybridization and filling in the ROI gaps, followed by ligation, the library of circularized smMIPs is PCR amplified
with barcoded Illumina primers and sequenced. All collected ROI sequences in a sample are then compared to a reference database containing
reference ROIs from all microbial species of interest. Based on a combination of two or more ROIs, the microbiome can be annotated in high-
resolution. The assay is made quantitative by incorporating a unique molecule identifier (UMI), which eliminated PCR amplification bias
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com) was used to verify the hybridization of the ROIs
that are targeted by the smMIPs to detect the species
and the hybridization of the primers 357F and 802RV2
to the V3-V4 regions. Clustal Omega v1.2.4 [52] was
used to align ROIs sequences from each compared spe-
cies. Pairwise sequence similarities and phylogenetic
analyses were calculated using the method recom-
mended by Meier-Kolthoff et al. [53] for the 16S rRNA
gene via the GGDC web server [54] available at https://
ggdc.dsmz.de/

In vitro validation of RNA testing and quantification
To assess the capacity of CiRNAseq to quantify and
analyze microbial RNA, an Escherichia coli (E. coli;
ATCC 25922) culture in stationary phase was inoculated
at 5% in BHI medium and incubated at 37 °C on a shak-
ing platform at 100 rpm for 48 h. Optical density
(OD630) was measured every hour, and 1-ml aliquots
were taken after each measurement, pelleted, and stored
for nucleic acid isolation. After 26.5 h of culture, an ali-
quot was taken for autoclaving. A second aliquot was
treated with 0.75 ml of cefoxitin (1 mg/ml), followed by
further growth for an additional 20 h (Additional file 5:
Supplementary Table 2). Nucleic acids were isolated
from all aliquots using the MagNA Pure kit (Roche, cat.
no. 03730964001). RNA concentrations (ng/ml) were
measured using NanoDrop 2000 (Thermo Scientific).
After treatment with DNAase, RNA was processed to
cDNA for CiRNAseq analysis.

Statistical analyses
Analyses with our CVMP were performed using Clust-
Vis [55]. For the clustering analysis (Fig. 5A), the settings
were as follows: clustering distance for columns:
Canberra [56, 57]; clustering method: Ward (unsquared
distances); row scaling: Pareto scaling [58]. Canberra dis-
tance normalizes the absolute difference in abundance of
each taxon, allowing comparison of minor taxa. A
shorter Canberra distance indicates greater similarity.
Linear discriminant analysis (LDA) effect size was per-

formed using the LEfSe tool [59]. LEfSe combines stand-
ard tests for statistical significance (Kruskal-Wallis test
and pairwise Wilcoxon test) with LDA for feature selec-
tion. Alpha value for the factorial Kruskal-Wallis test
was 0.05. Threshold on the logarithmic LDA score for
discriminative features was 2.0 [59].
Microsoft Excel 2016® and GraphPad Prism v9.0.0

(GraphPad Software, Inc., USA) were used to analyze
datasets and determine species richness, Shannon’s di-
versity index, and Pearson’s r correlations. The statistical
significance of differences in microbial richness, diver-
sity, and relative abundance was calculated using Graph-
Pad with the Mann-Whitney test to obtain the p-value.

Significant differences between groups are denoted by *
p < 0.05, ** p < 0.01, *** p < 0.001, or **** p < 0.0001.

Results
CiRNAseq is a sequencing tool for high-resolution
microbiome profiling that uses smMIPs to target mul-
tiple VRs of the 16S rRNA gene characterizing the com-
position, abundance, and diversity of the CVM.
Following the identification of relevant microbes in the
cervicovaginal niche and their regions of interest (ROIs)
(Fig. 1A), we designed probes with homologous
hybridization arms with high specificity for ribosomal
RNA, that flank heterologous ROIs (Fig. 1A). With bio-
informatic analyses (see the “Methods” section), we vali-
dated thousands of smMIPs to select only 30 that
combined can detect 107 genera and 321 species within
the CVM (Fig. 1A). The selected probes were subjected
to an in silico validation to ensure accurate microbiome
profiling (Fig. 1A) [38, 39]. By comparing these ROIs
with a reference database, this method assigns URC to
microbes of interest. Because we require that at least
two different ROIs must be detected in a microbe, the
CiRNAseq pipeline ensures a robust species-level anno-
tation of the microbiome (Fig. 1B).
We performed in vitro and in silico validations to

demonstrate the potential of CiRNAseq for high
throughput sequencing of the microbiome and com-
pared this new method to 16S rRNA-seq. We designed a
dedicated CiRNAseq test to study the CVM in smears
from hrHPV-negative women and women with hrHPV-
associated CIN2+ lesions. We also validated the specifi-
city, resolution, reproducibility, targeting (DNA/RNA),
and quantification abilities of the technology in profiling
the CVM.

CiRNAseq exhibits high specificity and resolution
To validate the specificity of CiRNAseq in a mixed mi-
crobial environment, we first tested the technique by
analyzing a defined mixture of genomic DNA from
Anaerococcus tetradius, Anaerococcus vaginalis, Gard-
nerella vaginalis, Peptostreptococcus anaerobius, and
Prevotella buccalis, which are typical for the CVM (Fig.
2A, Additional file 4: Supplementary Table 1, Additional
files 7 and 8). Water was used as a negative control. CiR-
NAseq correctly identified the five input species based
on sequence comparison with the reference ROIs. In the
negative control, the technique did not yield any
reads (Fig. 2A). In silico analyses using the 16S rRNA
gene of these exact species and their ROIs (Additional
file 6: Supplementary Figure 1, and Additional file 9) fur-
ther confirm that the strict technique’s requirements for
species annotation (see the “Methods” section) facilitate
an accurate discrimination of microbes in a mixed mi-
crobial sample with high specificity.
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Subsequently, we assessed the technique’s resolution
in detecting microbes at the species level (Fig. 2B, Add-
itional file 4: Supplementary Tables 1, 7 and Additional
file 10). To this end, we prepared a mixed microbial
sample consisting of genomic DNA from three species
of Prevotella (Prevotella copri, Prevotella denticola, and
Prevotella disiens) and added these to a second mixed
sample containing DNA from three Lactobacillus species
(Lactobacillus delbruecki, Lactobacillus fermentum, and
Lactobacillus jensenii). All of these species are com-
monly found in the CVM. As represented in Fig. 2B,
CiRNAseq correctly identified all individual species in all
samples. Thus, CiRNAseq is able to distinguish microbes
at the species level for this specific mixed microbial sam-
ple, showing potential for high-resolution sequencing of
the CVM.

CiRNAseq RNA quantification capacity mirrors bacterial
growth and activity
In natural niches such as the CVM, DNA is a very stable
molecule, while RNA is rapidly degraded. Therefore,
whereas DNA sequencing can reveal the presence of
genomic DNA of bacterial species in a sample, RNA se-
quencing gives information on the activity of such spe-
cies by identifying which genomic regions are
transcribed to RNA [60]. To evaluate the CiRNAseq po-
tential in quantifying active microbes at the RNA level,
we examined how the growth of E. coli, a species that
can be found in the CVM [61, 62], is reflected in the
number of unique read counts (URC) obtained from

RNA sequencing. Following the growth of a pure culture
of E. coli for 48 h through OD measurement every hour,
we selected nine-time points where the E. coli culture
was sampled for RNA isolation, including the bacterial
lag, exponential, and stationary phases (Fig. 3A, in or-
ange dots). We also selected two samples that were ei-
ther autoclaved or treated with an antibiotic (Additional
file 5: Supplementary Table 2). Samples were taken in
duplicate and subjected to CiRNAseq to test reproduci-
bility (Additional file 11: Supplementary Figure 2A). The
mean number of URC achieved in these replicates for
the lag and exponential phases is shown in Fig. 3B
(green line, first seven-time points) and Additional file
11: Supplementary Figure 2B. When comparing the OD
of E. coli culture to the mean of URC obtained from se-
quencing, we found that the values were significantly
correlated, particularly from the lag to the exponential
phase (p = 0.0286) (Fig. 3B). Samples taken from the sta-
tionary growth phase had lower URCs, indicating lower
ribosomal activity in bacteria from the stationary phase
than bacteria from the exponential growth phase.
We also analyzed the RNA concentrations of each ali-

quot taken for sequencing and compared them to the
OD and URC, as shown in Fig. 3C, D, and Additional file
11: Supplementary Figure 2C. Here we noticed that the
isolated total RNA matched the OD of E. coli growth
phases (Fig. 3C). Furthermore, we observed that the
RNA levels of the samples taken from the stationary
phase (time points six and seven) were higher than those
from the exponential phase (Fig. 3D), reflecting the

Fig. 2 CiRNAseq exhibits high specificity and resolution. A CiRNAseq exhibits high specificity in a mixed microbial sample. The method can
discriminate different microbes in a single sample of mixed bacteria. B CiRNAseq displays high-resolution in detecting microbes. The technique
can identify different species of the same genus such as P. copri, P. denticola, and P. disiens and other species from a distinctive genus such as L.
delbruecki, L. fermentum, and L. jensenii within the same sample. The CVMP was shortened (CVMPs) in B to only display species and isolates from
Lactobacillus and Prevotella genera. Values represent the percentage of reactive smMIPs in the specific set for each microbe. Negative
control: water
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accessible RNA for sequencing. As expected, we did not
find any URC after autoclaving the sample taken in time
point eight, even though the OD and RNA concentra-
tion measured previous to autoclavation was similar to
the growth phase (Additional file 11: Supplementary Fig-
ure 2C). Similarly, the sample treated with cefoxitin
(antibiotic) had a low number of URC, suggesting inhib-
ition of ribosomal activities (Additional file 11: Supple-
mentary Figure 2C). Thus, CiRNAseq can quantify
microbes’ RNA, mirroring translational activity and
growth.

CiRNAseq provides genus-level microbiome profiling as
16S rRNA-seq but offers improved taxonomic resolution
Given that the gold-standard sequencing method for
profiling the microbiome is 16S rRNA-seq, we compared
both sequencing methodologies. First, we did an in silico
comparison analyses between both techniques based on
the 16S rRNA sequences of two different species within
the family Bifidobacteriaceae. Species from the genera
Gardnerella and Bifidobacterium can be found in the
CVM and studies have described that 16S rRNA-seq
struggles differentiating their species due to limited vari-
ability of the used VRs for microbiome profiling [8, 28,

29, 63]. As shown in Additional file 12: Supplementary
Figure 3, the V3/4 regions of the species Bifidobacterium
longum and Gardnerella vaginalis have > 90% similarity.
Our designed smMIPs also target V5, V6, and V9 re-
gions that have < 45% homology and therefore can dis-
criminate the species with higher confidence (Additional
file 5).
Next, we randomly selected ten hrHPV-positive

smears, which were simultaneously profiled using CiR-
NAseq and 16S rRNA-seq at the DNA level. Two out of
ten samples had low reads (< 2500 reads) with 16S
rRNA-seq compared to the rest of the samples (> 80,000
reads) and were excluded from the analyses. One add-
itional sample had < 1000 URC with CiRNAseq and was
also excluded from the study. In the remaining seven
samples, we determined the relative microbes’ abun-
dances. Following 16S rRNA-seq, we focused our ana-
lyses on 38 genera that were profiled by 16S rRNA-seq
and were also available for microbiome profiling using
CiRNAseq (Fig. 4 and Additional files 3, 13 – 15). Mi-
crobes with relative abundances ≤ 0.07% were consid-
ered non-present in the samples.
The seven remaining samples sequenced with 16S

rRNA-seq (SN-A) and CiRNAseq (SN-B) were analyzed,

Fig. 3 CiRNAseq RNA quantification capacity mirrors bacterial growth and activity. A The OD obtained from monitoring E. coli growth for 48 h
reveals the bacterial growth phases. The nine orange time points indicate the phases from when samples were taken for sequencing analyses. B
E. coli URC correlated with the OD, particularly from the lag to the exponential phases. Samples taken in the stationary phase had lower URC than
the last measurement within the exponential phase. C RNA concentrations of the samples taken for sequencing are parallel to the OD, indicating
that low URC found in time points six and seven may reflect the measurement of ribosomal activity. D RNA concentrations also match the URC
obtained from sequencing
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Fig. 4 CiRNAseq provides genus-level microbiome profiling as 16S rRNA-seq but offers improved taxonomic resolution. A 16S rRNA-seq (SN-A)
and CiRNAseq (SN-B) possess similar sequencing capacity when differentiating 31 of the 38 genera analyzed. The methods gave the same results
with respect to quantifying the genera Lactobacillus, Gardnerella, Atopobium, and Megasphaera. The microbial composition of samples A and B is
similar when analyzed using the two sequencing techniques. Microbial species and isolates URC were summed to show the results at the genus
level. B CiRNAseq allows detecting bacteria at high-resolution. The technique suggested 24 different bacterial species, including two species of
Anaerococcus, seven Lactobacillus species, five species of Prevotella, and two species of Sneathia. For A, values represent the relative abundances
of each microbe in the sample. Bacterial species isolates within our CVMP were considered for display of B
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as shown in Fig. 4. Here, we first observed that the rela-
tive abundances are highly similar using both techniques
(Fig. 4A), suggesting that CiRNAseq and 16S rRNA-seq
have a comparable efficiency in microbial identification
and quantification. This finding can be easily observed
in samples 3, 4, 6, and 7 (A and B), where both tech-
niques detected Lactobacillus with equivalent relative
abundances (r = 0.9605, p = 0.0006, Fig. 4A and Add-
itional file 16: Supplementary Figure 4A). Likewise, both
methods yielded similar relative abundances for Gard-
nerella (r = 0.9384, p = 0.0018, Fig. 4A and Additional
file 16: Supplementary Figure 4B), Atopobium (r =
0.9255, p = 0.0028, Fig. 4A and Additional file 16: Sup-
plementary Figure 4C), and Megasphaera (r = 0.8344, p
= 0.0196, Fig. 4A and Additional file 16: Supplementary
Figure 4D). Still, 16S rRNA-seq yielded a lower relative
abundance than CiRNAseq for the genera Dialister, Par-
vimonas, Prevotella, and Sneathia (Fig. 4A).
Both techniques profiled Gardnerella, Atopobium,

Aerococcus, Dialister, Lactobacillus, Megasphaera, Parvi-
monas, Prevotella, and Sneathia. CiRNAseq also de-
tected Anaerococcus and Fusobacterium in higher
relative abundances than 16S rRNA-seq (Fig. 4A).

Genera Actinomyces, Bifidobacterium, Corynebacterium,
Peptoniphilus, and Ureaplasma were detected by 16S
rRNA-seq (relative abundances between 0.10 and
0.40%), but not by CiRNAseq (Fig. 4A). From the 24
genera that 16S rRNA-seq yielded ≤ 0.07% in relative
abundances, CiRNAseq was concordant in 22 (91%). In
general, 16S rRNA-seq and CiRNAseq were concordant
in 31 out of the 38 genera analyzed (81%), illustrating
the technique’s specificity and sensitivity at the genus
level.
To further investigate the species resolution of CiR-

NAseq in the CVM, we also analyzed samples SN1B to
SN7B at this taxonomy level, as shown in Fig. 4B, Table
1, and Additional file 17. In total, we observed 24 differ-
ent species from our CVMP. We were able to detect two
species of Anaerococcus, seven species of Lactobacillus,
five species of Prevotella, and two species of Sneathia
(Fig. 4B, Table 1). When considering the classification of
cervicovaginal CST [5], CiRNAseq also allows the
characterization of CST IV (SN1B, SN2B, and SN5B;
high diversity), CST III (SN3B and SN6B; L. iners dom-
inance), and CST I (SN4B and SN7B; L. crispatus dom-
inance), which also resembled the composition defined

Table 1 Species-level identification using circular probe-based RNA sequencing

Bacterial species SN1B SN2B SN3B SN4B SN5B SN6B SN7B

Aerococcus christensenii •

Anaerococcus hydrogenalis •

Anaerococcus tetradius •

Atopobium vaginae • • •

Dialister micraerophilus • • •

Fenollaria massiliensis •

Fusobacterium nucleatum •

Gardnerella vaginalis • • • • • •

Lactobacillus acidophilus •

Lactobacillus crispatus • •

Lactobacillus gasseri •

Lactobacillus iners • • • •

Lactobacillus jensenii • •

Lactobacillus johnsonii •

Lactobacillus vaginalis •

Megasphaera genomosp type 1 • • •

Parvimonas micra • •

Prevotella amnii • •

Prevotella bivia •

Prevotella corporis •

Prevotella disiens •

Prevotella timonensis • •

Sneathia amnii •

Sneathia sanguinegens •
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by 16S rRNA-seq (Fig. 4A, B). Therefore, these CiRNA-
seq results suggest the ability to identifying bacteria at
the species level and in microbial communities with high
specificity in the complex CVM niche.

CiRNAseq: CVM changes in women with hrHPV-induced
lesions
Several studies suggest that accurate detection of micro-
bial species in the CVM may be relevant for predicting
the progression of hrHPV-induced precancerous cervical
lesions and cancer [15, 64–66]. To investigate this, we
applied CiRNAseq to RNA isolated from cervical smears
of hrHPV-negative women (considered healthy, n = 46)
and women with hrHPV-positive high-grade cervical
intraepithelial neoplasia (CIN2+, n = 46) (Additional
files 18 and 19).
Unsupervised clustering analysis using URC from each

microbial species in individual samples of our cohort is
shown to generate three clusters (Fig. 5A). The clusters
represented the well-known community state types
(CST) [5]. Cluster 1 consisted of 18 samples, of which
72.2% were hrHPV negative, and was characterized by a
CST I that is dominated by L. crispatus. Additional
Lactobacillus species such as L. iners, L. jensenii, L. ultu-
nensis, and L. acidophilus were also common (Fig. 5A).
With a Fisher’s exact test, CST I showed a small associ-
ation to hrHPV-negative women (p = 0.0639) when
compared to hrHPV-positive women in cluster 1.
Cluster 2 consisted of 27 samples, of which 20 (74%)

were from women with hrHPV-induced high-grade le-
sions. These women had a CVM consistent with CST
IV, characterized by depletion of Lactobacillus species
and colonization of mainly anaerobic bacteria such as
M. genomosp type 1, G. vaginalis, S. amnii, S. sanguine-
gens, D. micraerophilus, and A. vaginae. With a Fisher’s
exact test, CST IV exhibited a significant association to
hrHPV-positive women (p = 0.0055) when compared to
hrHPV-negative women in cluster 2. The third cluster
(3) contained 47 samples, of which 26 (55.3%) were
hrHPV negative and 21 (44.7%) had hrHPV-induced le-
sions. Women’s CVM in cluster 3 were still dominant
for Lactobacillus species, and their microbial compos-
ition was consistent with other CST such as II (domin-
ance for L. gasseri), III (dominance for L. iners), and V
(dominance for L. jensenii) (Fig. 5A).
We also tested our cohort of 92 samples through a

principal component analysis (PCA). We determined
PC1 and PC2, representing 32.7% and 12.6% of our co-
hort, respectively (Fig. 5B). Here, we observed a minor
separation of samples corresponding to both hrHPV-
negative and hrHPV-positive women with some overlap.
After analyzing the loading score of PC1 (Additional file
20), we found that anaerobic bacteria such as M. geno-
mosp type 1 and G. vaginalis showed the higher

correlation with PC1, suggesting an association of par-
ticular bacterial species with hrHPV status (Fig. 5B).
Although we observed a particular change in the CVM

of samples within clusters 1 and 2, the microbiome com-
position was ambiguous in cluster 3, possibly due to the
presence of different CST in this cluster (Fig. 5A). To
further evaluate the microbial composition of our co-
hort, we performed a supervised average analysis com-
paring the CVM of hrHPV-negative (n = 46) and
hrHPV-positive (n = 46) women (Additional file 21: Sup-
plementary Figure 5). This analysis showed that hrHPV-
negative women were typically colonized with L. acid-
ophilus, L. crispatus, L. jensenii, L. psittaci, L. ultunensis,
and L. vaginalis. In contrast, hrHPV-positive with high-
grade lesions women possessed a more diverse micro-
biome with anaerobic bacteria such as A. vaginae, D.
micraerophilus, G. vaginalis, S. amnii, and S. sanguine-
gens. Interestingly, L. iners was also present in hrHPV-
positive women. Other bacteria found in hrHPV-positive
women included Prevotella species such as P. amnii, P.
buccalis, and P. timonensis (Additional file 21: Supple-
mentary Figure 5). To confirm these observations, we
performed a linear discriminant analysis (LDA) effect
size (LEfSe) [59] modeling comparing microbiome com-
position and relative abundance between hrHPV-
negative (n = 45, an outlier was excluded from this ana-
lysis) and hrHPV-positive samples (n = 46) (Fig. 5C). In
the hrHPV-positive group, this analysis showed higher
levels for G. vaginalis, M. genomosp type 1, S. amnii, S.
sanguinegens, P. anaerobius, D. micraerophilus, A. vagi-
nae, P. amnii, and P. buccalis (p < 0.05) (Fig. 5C and
Additional file 22: Supplementary Figure 6A – 6I). In
contrast, in the hrHPV-negative group, this analysis de-
termined an over-representation of L. acidophilus (p <
0.05) (Fig. 5C and Additional file 22: Supplementary Fig-
ure 6 J). Thus, the alteration of the CVM due to hrHPV
infection is characterized by the change from a healthy
Lactobacillus microbiota to an anaerobic-diverse micro-
biota that can be explored using CiRNAseq.

CiRNAseq profiling reveals alterations in the CVM
To further show the significance of CiRNAseq in study-
ing CVM alterations, we examined the two clusters
enriched for CST I (1) and CST IV (2) from the analysis
described in Fig. 5A. We also assessed the difference in
microbial richness, diversity, and relative abundance for
L. iners in our cohort’s two main groups: hrHPV-
negative women versus hrHPV-positive women with
CIN2+.
The clusters enriched for CST I and IV had 18 and 27

samples, respectively. The CVM from these two clusters
seemingly varied in microbial diversity (Fig. 6A). CST I,
containing mostly hrHPV-negative women, had a shal-
low microbial diversity characterized by Lactobacillus
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Fig. 5 (See legend on next page.)
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(See figure on previous page.)
Fig. 5 CiRNAseq: the CVM changes upon hrHPV infection. A Unsupervised clustering analysis of randomly selected cervical smears from hrHPV-
negative and hrHPV-positive women (CIN2+) profiled at the RNA level shows three distinct clusters from left to right: the first cluster (1) includes
a higher proportion of hrHPV-negative women, who have a microbiome characterized of Lactobacillus species, and particularly L. crispatus (CST I).
The second cluster (2) contains a higher proportion of hrHPV-positive women with CIN2+ lesions, who possess a diverse microbiome (CST IV)
containing distinctive bacteria such as Atopobium vaginae, Dialister micraerophilus, Gardnerella vaginalis, Lactobacillus iners, Megasphaera genomosp
type 1, Sneathia amnii, and Sneathia sanguinegens. The third cluster (3) includes both hrHPV-negative and hrHPV-positive women with
predominantly hrHPV-negative women, who have a unique microbiome characterized by Lactobacillus species such as L. gasseri (CST II), L. iners
(CST III), L. jensenii (CST V), and L. acidophilus. Clustering distance for columns: Canberra; clustering method: Ward (unsquared distances); Row
scaling: Pareto scaling. The CVMP was shortened (CVMPs) to only include species with URC. URC from bacterial isolates in our CVMP were
considered for analysis. B Principal component analysis (PCA) shows that hrHPV-negative and hrHPV-positive samples are correlated with PC1. The
loading score of PC1 (data not shown) indicates that anaerobic bacteria have the stronger association with PC1 (Additional file 19). Original
values are ln(x + 1)-transformed. No scaling is applied to rows; SVD with imputation is used to calculate principal components. C Histogram of
the LDA scores computed for features differentially abundant between hrHPV-negative (negative) and hrHPV-positive women (positive)

Fig. 6 CiRNAseq profiling reveals alterations in the CVM. A The alteration of the microbial diversity at the species level reflects the need for high-
resolution sequencing methods. Cluster 1 enriched for CST I and hrHPV-negative women has a less diverse CVM with characteristic Lactobacillus
species. In contrast, cluster 2 enriched for CST IV and hrHPV-positive women with CIN2+ contain various microbial species in their microbiome.
CST I and IV are derived from the analysis detailed in Fig. 5A. Bacterial isolates from our CVMP were considered for only three species: G. vaginalis,
L. johnsonii, and Ureaplasma parvum. Species richness (B) and Shannon’s diversity index (C) further confirm the increase in microbial diversity in
hrHPV-positive women. They also demonstrate that hrHPV infections correlate with a rich and diverse CVM. D Using CiRNAseq, we can quantify
microbial species within the CVM. L. iners is less abundant in hrHPV-positive women than in hrHPV-negative women, indicating that the
progression of hrHPV infections to high-grade cervical lesions is associated with a decreased relative abundance of L. iners. Samples were selected
from our cohort of 92 samples. Negative: negative for hrHPV; Positive: positive for hrHPV; *p < 0.05
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species like L. acidophilus, L. crispatus, L. iners, L. jense-
nii, and L. ultunensis. Therefore, CST I was diverse at
the species level but less diverse at the genus level (Fig.
6A). In contrast, within CST IV, consisting of mainly
hrHPV-positive women, such Lactobacillus species were
depleted, and only L. iners continued to be present (Fig.
6A), as described in previous analyses (Fig. 5 and Add-
itional file 21: Supplementary Figure 5). Moreover, CST
IV had a highly diverse microbiome characterized by A.
vaginae, D. micraerophilus, G. vaginalis, L. iners, M. gen-
omosp type 1, P. timonensis, S. amnii, S. sanguinegens,
and other bacteria as detailed in Fig. 6A. To quantify this
observation, we calculated species richness and alpha-
diversity, which confirmed that hrHPV-negative women
had a less rich (mean of 4.2 microbes) and diverse (mean
of 1.22) microbiome when compared to hrHPV-positive
women, mean of 6.6 for richness and 1.60 for alpha-
diversity (p < 0.05) (Fig. 6B, C). In conclusion, CiRNAseq
let us determine that, besides a CVM change upon
hrHPV infections, there is an alteration of the microbial
diversity.
Given that L. iners colonize both hrHPV-negative and

hrHPV-positive women [64, 67] but did not show a
strong association to hrHPV status in our LefSe analysis,
we assessed the bacterium abundance independently. To
this purpose, we examined our cohort of 92 cervical
samples and selected samples for which CiRNAseq iden-
tified L. iners. Accordingly, we included 25 hrHPV-
negative samples and 34 hrHPV-positive samples for this
analysis. Following the estimation of relative abundances
within the samples, we calculated the mean and signifi-
cance of the differences, as observed in Fig. 6D. Here,
we noticed that L. iners had a higher relative abundance
in hrHPV-negative women (mean 19.3) when compared
to hrHPV-positive women (mean 11.9, p < 0.05), sug-
gesting that even though it is present in the diverse
microbiome of hrHPV-positive women, the abundance
of this specie decreases upon infection (Fig. 6D).

Discussion
16S rRNA gene sequencing is the most widely employed
method for microbiota analysis, which have transformed
community microbiological studies of the CVM [23, 28,
44, 68]. In this study, we introduce a novel targeted se-
quencing method with sufficient resolution and specifi-
city to enable the profiling of cervicovaginal microbiota
with similar performance to 16S rRNA-seq, but with
additional advantages such as very high-throughput pro-
filing, high taxonomic resolution, and improved sequen-
cing sensitivity. Using CiRNAseq, we show that hrHPV-
positive women with high-grade cervical intraepithelial
neoplasia acquire a characteristic CST IV microbiome as
observed by earlier 16S rRNA-seq studies.

CiRNAseq achieves improved sensitivity for micro-
biome profiling, which is a result of the underlying
smMIP technique in which the same molecule is ampli-
fied multiple times over in a circular fashion. Our find-
ings detailing the identification and quantification of
genera such as Lactobacillus, Gardnerella, Atopobium,
and Megasphaera with equivalent results to 16S rRNA-
seq corroborate our technique’s specificity at the genus
level. Nonetheless, since CiRNAseq uses two and more
VRs for microbiome profiling and can target both SSU
and LSU for identifying some species, its resolution in-
creases to the species taxonomy rank, but further studies
on the level of classification confidence at species reso-
lution are warranted. Using CiRNAseq we demonstrated
that in fact such genera corresponded to specific species
such as L. crispatus, L. iners, L. jensenii, G. vaginalis, A.
vaginae, or M. genomosp type 1 which are extremely
relevant for women’s cervical health and disease [4, 8,
69, 70]. Thus, our technology confirms recent studies
highlighting the advantage of targeting and combining
multiple VRs to improve the resolution of microbiome
profiling [30, 71].
CiRNAseq showed that the CVM of women changes

from a healthy-dominated Lactobacillus microbiome
(CST I) to an anaerobic-diverse microbiome (CST IV)
upon persistent hrHPV infection. Whether hrHPV infec-
tions result in a different CST or a CST IV microbiome
is more permissive for hrHPV persistence is still un-
known. Changes in vaginal pH have been associated with
the microbial composition, particularly with depletion of
Lactobacillus species and the enhancement of facultative
anaerobic bacteria such as G. vaginalis, D. micraerophi-
lus, A. vaginae, Megasphaera spp., and Prevotella spp.
(CST IV) [5, 72, 73]. Interestingly, Mitra et al. recently
described that CST IV is highly associated with hrHPV-
induced high-grade cervical intraepithelial neoplasia
[15]. Since we also observe this association in our cohort
of samples, it corroborates and validates the findings ob-
tained with CiRNAseq. On the other hand, the role of
individual species in the alteration of the microbiome
still remains unclear. Recent studies suggest that G. vagi-
nalis drives the vaginal dysbiosis in hrHPV-infected
women and exhibits an immunosuppressive role in the
vagina, which could explain the higher abundance of G.
vaginalis in hrHPV-positive women described in our
study [2, 64]. Therefore, identifying individual species
within the CVM may elucidate the roles of particular
bacteria in the microbiome and provide alternative treat-
ment strategies to prevent disease [74]. Furthermore, un-
derstanding the CVM change at this taxonomic rank
may lead to identifying microbiome profiles that could
act as predictive biomarkers for women at risk of devel-
oping cervical cancer [15, 16, 18, 63, 75]. Additional
studies with a larger cohort of samples are needed to
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clarify whether the species or CST described in the
current study possess such function and explain how
they would associate with the effect of hrHPV infections.
Using CiRNAseq, we also determined that hrHPV-

positive women with CIN2+ have a more diverse CVM
than hrHPV-negative women. In addition, our data sug-
gest that several Lactobacillus species colonize hrHPV-
negative women, and thus, they are more diverse at the
species level than at the genus level, as previously reported
[76]. Interestingly, we observed that L. acidophilus was
highly abundant in hrHPV-negative women considered
healthy, which could be attributed to the vaginal acidic
conditions suitable for growth and its well-known anti-
microbial activities [77, 78]. Additionally, we found higher
levels of L. iners within the CVM of hrHPV-positive
women. This finding is in line with previous research
reporting that L. iners may not be as protective as other
Lactobacillus species because particular L. iners strains
have been associated with vaginal dysbiosis [3, 14]. Some
studies suggest that D-lactate, produced by L. crispatus
and not L. iners, enhances the trapping of HIV in the cer-
vicovaginal mucus [11, 79]. By this mechanism, L. crispa-
tus, but not L. iners, could also protect the basal
epithelium from infection with hrHPV. Furthermore, the
lower abundance of L. iners in smears from women with
hrHPV-induced high-grade lesions could also be attrib-
uted to changes in the vaginal pH and a decline in the
metabolic activities of L. iners [70, 73]. As far as we know,
this is the first study to report a higher abundance of L.
acidophilus in hrHPV-negative women and a lower abun-
dance of L. iners in hrHPV-positive women with high-
grade cervical intraepithelial neoplasia. Further studies are
needed to investigate how the relative abundances of both
L. acidophilus and L. iners species associate to hrHPV-
induced malignancy [80].
The strengths of this study and CiRNAseq tech-

nique are the improvements to CVM profiling by tar-
geting and combining multiple VRs and achieving
higher taxonomic resolution. Potential limitations are
our cohort size and the absence of testing CiRNAseq
with well-defined and a high-complexity mock micro-
bial community samples as controls [81]. Additionally,
due to the use of a reference database with known
microbial species, the method could have missed spe-
cies that are not currently identified or suffered muta-
tions [82, 83]. Moreover, designed probes may not
hybridize to the template that carries a mismatch
(e.g., diversity within species), which is why we have
on average a set of six smMIPs to target and anno-
tate one specific microbe. Worth mentioning, even
though our set of 30 smMIPs can target 434 mi-
crobes, microbial species that use one smMIP for
identification (e.g., viruses) were not included in our
final CVMP neither annotated in this study. However,

since one of the benefits is the straightforward design
of smMIPs, we could add species-specific smMIPs to
our pool to broaden the list of detectable species.

Conclusions
In summary, CiRNAseq is a highly promising technology
with the resolution and specificity for high-throughput se-
quencing, which makes it an interesting tool for uncovering
the role of the CVM in health and disease. This study ana-
lyzed two outermost groups: hrHPV-negative women with
no cervical lesions and hrHPV-positive women with associ-
ated high-grade cervical lesions. An obvious question is
how the CVM behaves in hrHPV-positive women with no
cervical lesions, low-grade cervical lesions, high-grade cer-
vical lesions, and cancer, and such studies are on the way.
Moreover, if there are “protective” or “pathogenic” species
or CST associated with particular outcomes of hrHPV in-
fections is still unresolved [84]. Future studies using CiR-
NAseq should allow us to evaluate the CST shift and the
consequent alteration of the microbial diversity and high-
resolution composition. Whether hrHPV virus or microbial
species drive the CST shift is an exciting question to solve
in the next studies. Nevertheless, since the microbiome de-
pends on several factors such as hrHPV, the hrHPV geno-
type, the vaginal environment, and the host immune
system, it is plausible that it may be more than one feature
driving these microbial changes. Notably, CiRNAseq not
only accomplishes quantitative microbiome profiling on the
species level, but also achieves detection of viral RNAs and
host gene expression products, which may allow investiga-
tions of host-microbiome interactions in a single test [35].
Overall, our work indicates that by distinguishing bacteria
in high-resolution using CiRNAseq, we could further
understand the association of the CVM and hrHPV infec-
tions and elucidate their potential role on cervical lesions'
progression to cancer.
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Additional file 2. List of smMIPs and sequences used for CiRNAseq
profiling of the cervicovaginal microbiome (.pdf). List of designed 30
smMIPs with ligation and extension arms that target 434 relevant
microbes in the cervicovaginal microbiome at the DNA and RNA levels
using CiRNAseq.

Additional file 3. Cervicovaginal microbiome panel (.xlsx). First sheet.
CVMP: list of 321 microbes profiled by CiRNAseq. Second sheet. CVMP –
with isolates: list of 321 microbes including bacteria isolates. Third sheet.
Common genera with 16S rRNA-seq: list of 38 genera analyzed to com-
pare 16S rRNA-seq and CiRNAseq.

Additional file 4. Supplementary Table 1. Bacterial species used for
in vitro experiments. MMB: Department of Medical Microbiology,
Radboudumc.

Additional file 5 Supplementary Table 2. E. coli growth experiment. T:
time; TP: time point of analyses; OD: optical density; RNAc: RNA
concentration in ng/uL; URC: unique read counts; R1: replicate 1; R2:
replicate 2; URCm: mean of URC from R1 and R2.

Additional file 6 Supplementary Figure 1. In silico validation of
CiRNAseq specificity towards cervicovaginal microbial species. CiRNAseq
targets multiple 16S rRNA gene VRs e.g. V5 – V9 for microbiome profiling.
For reads assigning and species annotation, the method has a threshold
of 95% of similarity between sequences and reference ROIs (A).
Phylogenetic analyses of the 16S RNA gene for the species Anaerococcus
vaginalis, Anaerococcus tetradius, Peptostreptococcus anaerobius,
Gardnerella vaginalis, and Prevotella buccalis shows the similarity between
the 16S rRNA genomes (B). Alignment analyses of the ROIs from the
closest related species to the least related species, according to (B),
demonstrate the specificity of CiRNAseq. For sequencing A. vaginalis and
A. tetradius the technique uses the same set of five smMIPs, but two out
of five ROIs exhibit <95% sequence similarity and thus do not fulfill the
threshold for reads assigning (C). For A. tetradius and P. anaerobius, the
technique uses the same four smMIPs, with their respective ROIs showing
<90% sequence similarity (D). For P. anaerobius and G. vaginalis, the
technique uses the same two smMIPs, with their ROIs having <85%
sequence similarity (E). For G. vaginalis and P. buccalis, CiRNAseq employs
the same two smMIPs, with their ROIs holding <75% sequence similarity
(F). Marks (*) indicate smMIPs and ROIs that are dissimilar per bacterium
and therefore were not included in the analyses. Unique smMIPs within
the set per species increase the specificity and sensitivity of CiRNAseq for
CVM profiling.

Additional file 7 Dataset File 1. In vitro experiment (.xlsx). First sheet.
Part A: mixed bacteria and negative control. Second sheet. Part B: mixed
Prevotella spp., Lactobacillus spp., and negative control. Values represent
the percentage (%) of reactive smMIPs in each species.

Additional file 8. Raw data File 1. In vitro experiment A (.xlsx). Raw data
from SeqNext following CiRNAseq for the in vitro experiment, part A.
Values represent URC.

Additional file 9. In silico alignment analyses (.pdf). Results obtained
with Clustal Omega v1.2.4 for Supplementary Figures 1 and 3.

Additional file 10. Raw data File 2. In vitro experiment B (.xlsx). Raw
data from SeqNext following CiRNAseq for the in vitro experiment, part
B. Values represent URC.

Additional file 11 Supplementary Figure 2. E. coli growth experiment. A
Two replicates of the samples subjected to CiRNAseq shows the
reproducibility of the technique by the number of unique read counts
(URC) obtained in each replicate. B Mean of the replicates’ URC. C OD
and RNA concentrations analyzed in time points five (growth), eight
(autoclaved), and nine (antibiotic) were comparable with each other.
However, as expected, the E. coli growth sample from time point eight
had no URC after autoclavation, while the sample treated with cefoxitin
had low URC, suggesting inhibition of bacterial metabolic activities. OD
and RNA concentrations were measured before autoclavation and
antibiotic treatment. T: time in hours; OD: optical density; URC: unique
read counts; ng/μL: RNA concentration. *, p <0.05; **, p <0.01; ***, p <
0.001; ****, p <0.0001; NS, not significant.

Additional file 12 Supplementary Figure 3. CiRNAseq specificity towards
Bifidobacterium and Gardnerella species. 16S rRNA-seq targets two variable

regions (VRs) of the 16S rRNA gene using a forward and a reverse primer
(e.g., V3 and V4). Alternatively, CiRNAseq targets five VRs of the 16S sub-
unit using five singular smMIPs to differentiate species of B.longum and
G. vaginalis. There is a high percentage of similarity (>90%) when com-
paring the V3-V4 regions of B. longum and G. vaginalis, which, if it is not
appropriately amplified, could result in misidentification. In contrast, the
CiRNAseq ROIs for both species have different levels of identity. Two out
of five ROIs also possess a high percentage of similarity (>90%), with both
amplifying the V7 and V8 VRs, and needed to identify these microbes at
the family level. The rest remaining three out of five ROIs share less than
45% of similarity, which endorses the resolution and specificity of CiRNA-
seq in detecting both species. The color red represents similarity in se-
quences, while the color black represents no similarity.

Additional file 13. Raw data File 3. 16S rRNA-seq (.txt). Raw data from
QIIME following microbiome profiling of ten cervical smears using 16S
rRNA-seq. Corresponding IDs (manuscript ID = raw data ID): SN1A = KA1,
SN2A = S2, SN3A = S5, SN4A = KA6, SN5A = S7, SN6A = S8, SN7A = S9.

Additional file 14. Raw data File 4. CiRNAseq (.xlsx). Raw data from
SeqNext following microbiome profiling of eight cervical smears using
CiRNAseq. The first seven sheets represent the seven samples included in
the final analyses. The last sheet shows the sample with <1000 URC and
excluded from the calculations. Values represent URC.

Additional file 15. Dataset File 2. 16S rRNA-seq vs CiRNAseq (.csv). Rela-
tive abundances for the 38 genera analyzed in seven cervical smears pro-
filed with both 16S rRNA-seq and CiRNAseq.

Additional file 16 Supplementary Figure 4. Pearson’s correlation for
Lactobacillus, Gardnerella, Atopobium and Megasphaera. Pearson’s positive
correlation obtained from comparing the detection of Lactobacillus (A) (r
= 0.9605, p = 0.0006), Gardnerella (B) (r = 0.9384, p = 0.0018), Atopobium
(C) (r = 0.9255, p = 0.0028), and Megasphaera (r = 0.8344, p = 0.0196)
using both CiRNAseq and 16S rRNA-seq corroborates the specificity and
sensitivity of CiRNAseq.

Additional file 17. Dataset File 3. CiRNAseq resolution (.csv). List of all
species detected with CiRNAseq in the same seven cervical smears that
were initially compared to 16S rRNA-seq. Species annotation is indicated
by 1. No annotation is indicated by 0.

Additional file 18. Raw data File 5. hrHPV cohort (.xlsx). Raw data from
SeqNext following microbiome profiling of 92 cervical smears using
CiRNAseq. Values represent URC.

Additional file 19. Dataset File 4. hrHPV cohort (.csv). Cohort of 46
hrHPV negative samples and 46 hrHPV positive samples (CIN2+), for
which the microbiomes were profiled using CiRNAseq. Species
annotation was performed with a custom R script. The CVMP includes
bacterial isolates. Values represent URC.

Additional file 20. Loading scores from PCA analysis (.csv). PCA loading
scores showing that anaerobic bacteria have the higher correlation with
PC1.

Additional file 21 Supplementary Figure 5. Average analysis of hrHPV
cohort. Average analysis of hrHPV negative versus hrHPV positive with
CIN2+ demonstrates a strong association of absence and presence of
particular microbes. L. acidophilus, L. jensenii and L. crispatus were highly
present in hrHPV negative women, but the microbiome seemingly
changes to a diverse-anaerobic microbiota in hrHPV positive women with
CIN2+.

Additional file 22 Supplementary Figure 6. LefSe analysis: relative
abundances association with hrHPV status. Relative abundance counts of
G. vaginalis (A), M. genomosp type 1 (B), S. amnii (C), S. sanguinegens (D),
P. anaerobius (E), D. micraerophilus (F), A. vaginae (G), P. amnii (H), and P.
buccalis (I) were found significantly over-represented in hrHPV positive
women whereas Lactobacillus acidophilus (J) was enriched in hrHPV nega-
tive women.
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