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Abstract 

Background:  A comprehensive analysis of gene expression profiling across tissues can provide necessary informa-
tion for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis 
and generated a high-resolution atlas of the transcriptome in beef cattle.

Results:  Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types 
of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approxi-
mately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We 
detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeep-
ing genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network 
analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs 
mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific 
physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared 
to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed 
genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production 
and health traits.

Conclusions:  We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing 
valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute 
to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle 
also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically 
important traits.

Keywords:  Gene expression, Housekeeping genes, Co-expression network, Tissue-specific genes, Differentially 
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Background
As one of the most important farm animals, cattle is a sig-
nificant source of milk, meat, and hides and contributes 
to human diets and agricultural economics [1]. Advanced 
technologies have promoted the genetic improvement of 
both beef and dairy cattle by effectively utilizing genomic 
information [2]. A better understanding of the func-
tional components is the main strategy to explore the 
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genetic basis of important traits and improve the accu-
racy of genomic prediction in farm animals [3–5]. Many 
studies have been carried out to explore gene expression 
atlas and genome annotations in various mammals, espe-
cially for humans, mice, and other model animals [6–9]. 
For example, the Function Annotation of the Mamma-
lian Genome (FANTOM) Consortium [10] and Ency-
clopedia of DNA Elements (ENCODE) project [11] were 
proposed to help elucidate various human disease genes 
and identify functional elements in the human genome 
sequence. Several International Consortium projects, 
including Genotype-Tissue Expression (GTEx) [12] and 
International Human Epigenome Consortium (IHEC) 
[13], were launched to identify the relationship between 
genetic variation and gene expression in human tissues 
and to interpret epigenetic control of cell states relevant 
for human health and disease. Moreover, to create a 
comprehensive framework for biological system analy-
sis on farm animals and improve functional annotation 
of animal genomes, the FAANG (Functional Annotation 
of ANimal Genomes) Consortium was organized to gen-
erate a comprehensive genome-wide data sets on RNA 
expression, DNA methylation, and chromatin modifica-
tion, as well as chromatin accessibility and interactions 
[14]. Recently, the transcriptome analyses from long-read 
sequencing technology (e.g., Pacific Biosciences Iso-Seq, 
Oxford Nanopore technology) can help to improve the 
annotation of the transcriptome in farm animals [15, 16].

A high-quality reference genome with enhanced 
assembly accuracy can provide precise genome sequence 
information to improve the gene annotations and other 
genomic features [17]. In cattle, the latest reference 
genome ARS-UCD1.2 increased the overall continu-
ity of the genome by reducing gaps and inversions using 
long-read sequence assembly methods when compared 
to UMD3.1 [15]. Thus, it can improve the genome anno-
tation by utilizing the representation of low abundance 
and tissue-specific transcripts based on available public 
and the newly sequenced Iso-Seq datasets [17]. Previous 
studies presented a comprehensive transcriptome survey 
based on ninety-five samples from three growth stages 
and one cell line [18] and identified a subset of functional 
enrichment of enhancer regions [19]. These effects pro-
moted the establishment of a Bovine Genome Database 
(BGD) [20] and facilitated the deposition, curation, anno-
tation, and integrated analysis of genomic data for global 
research communities [21, 22].

Investigating the expression pattern of genes in differ-
ent tissues can help elucidate an organism’s evolutionary 
mechanisms and biological functions [23]. Especially, 
different expression patterns across tissues could offer 
valuable insights into understanding the genetic basis 
underlying the breed formation in cattle (e.g., beef 

and dairy cattle). Previous transcriptome studies have 
reported the gene expression atlas for multiple domes-
tic animals, including cattle, pigs, goats, sheep, and 
water buffalo [18, 24–27]. Differentially expressed genes 
(DEGs) or core driver genes were identified as potential 
candidates, which were involved in important functions, 
including growth and development [28, 29], meat quality 
[30, 31], wool follicle [32, 33], and disease-resistance [34, 
35]. Meanwhile, organ and tissue-specific gene expres-
sion patterns were also studied in farm animals [18, 36–
38], and these analyses further facilitated the elucidation 
of the relationship between gene expression, tissue, and 
organ. However, most bovine studies were carried out in 
dairy cattle [39, 40], while a few studies were reported in 
beef cattle, and many of them with a limited number of 
tissue types and outdated sequencing platforms. There-
fore, functional annotation based on improved assembly 
and comparative analysis of tissue-specific expression 
patterns using a large scale of gene expression atlas are 
urgently needed in beef cattle.

In this study, we performed a comprehensive transcrip-
tome analysis on 51 types of bovine tissues (heart, liver, 
spleen, brain, muscle, adipose, cartilage, gland, etc.) from 
adult beef cattle. We investigated housekeeping genes 
(HKGs), tissue-specific genes (TSGs), and co-expression 
hub genes (HUBGs), and analyzed their expression regu-
lation patterns. Moreover, we explored candidate DEGs 
and their functional pathways related to important traits 
between beef and dairy cattle. Our study provides a valu-
able resource to improve the genome annotation of the 
current reference genome for cattle, and these findings 
can further contribute to a better understanding of the 
genetic basis underlying the complex traits in farm ani-
mals during breed formation.

Results
Summary statistics of sequencing dataset
We generated a large-scale gene expression profile cov-
ering 51 types of tissues from three adult male Chinese 
Simmental beef cattle. The tissue types for our data-
set were illustrated in Fig.  1, which represents major 
organ systems (i.e., circulatory system, digestive sys-
tem, endocrine system, immune system, muscular sys-
tem, nervous system, reproductive system, respiratory 
system, skeletal system, and urinary system). A detailed 
list of tissues and corresponding organ systems was 
presented in (Additional file  1: Table  S1). We adopted 
a uniform library building strategy (in Methods) for 
tissue samples to reduce the influence of library batch 
effect on expression level. Our study generated approx-
imately 7 billion raw paired-end reads (~1151 GB), with 
an average of 56 million reads per sample. After strict 
quality control (see the “Methods” section), a total of 
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Fig. 1  Global framework of the current study. We used 51 tissues from male Chinese Simmental beef cattle to study the expression specificity 
patterns through multifaceted analyses (tissue-specific expression, differentially expressed gene analysis, co-expression analysis, expression pattern 
analysis, housekeeping gene expression, etc.). Then, we performed conservation analysis and RT-qPCR validation for several identified candidate 
genes. The panel at the top shows the tissue samples. Tissues belonging to the same organ system are labeled with the same color
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1066 GB of high-quality data was kept for subsequent 
analysis. Based on the latest released reference genome 
(ARS-UCD1.2), the high-quality sequencing data were 
mapped using the HISAT2 software with the default 
setting [41]. The average reads mapping rate was 
~94.76% (ranging from 86.97 to 96.90%) among 135 
bovine tissue samples. Detailed mapping information 
and summary statistics for each sample were shown in 
(Additional file 1: Table S2).

Annotation of the bovine genes using transcriptome atlas
The genome annotation with improved assembly can 
help us understand genes involved in biological path-
ways and the regulatory relationship of expression 
processes [3]. To further assess the abundance of tran-
scripts across tissues, we first estimated the number of 
transcripts (requiring FPKM > 1) in each sample (rang-
ing from 11,540 to 30,028). Of these, around 65.4% to 
71.9% were annotated as protein-coding genes (n = 
8299 to 19,649) (Additional file 1: Table S3). The count 
variations of transcripts and annotated protein-coding 
genes across tissues may be related to tissue-specific 
gene expression patterns.

To identify novel transcripts, we merged all assem-
bled transcripts across samples and compared the 
merged assembled transcript with bovine reference 
annotation (ARS-UCD1.2) using the GFFCOMPARE 
program. We then determined the counts of com-
pletely assembled transcripts and partially matched the 
reference annotated transcripts. Our results showed 
that the total number of query mRNA transcripts was 
185,955 (165,276 multi-exon transcripts), while the 
number of matched reference mRNA transcripts was 
82,206 (73,049 multi-exon transcripts) (Additional 
file  1: Table  S4). In addition, we explored the match 
patterns between the assembled transcripts and refer-
ence annotated transcripts based on the “class code” as 
described by [42]. Our results revealed that the propor-
tion of transcripts matching precisely with the introns 
(codes as “=”) from the two annotation files was up to 
44.19%, and the number of potential novel isoforms 
(coded as “j”) was 78,032 (41.96%). However, the pre-
dicted transcript within the reference transcript (codes 
as “c”) was 0 (Additional file 1: Table S5). Our findings 
also revealed different matching patterns of transcripts 
in diverse tissues compared to reference genome anno-
tation. Due to the incomplete and complexity of tran-
scriptome annotation in domestic animals [17, 43], 
further experimental validations were required to con-
firm whether they are novel transcripts or assembly 
artifacts [42].

Gene expression profile across tissues
To explore the diversity and biological logical cluster-
ing across bovine tissues, we retained 12,588 genes 
expressed in at least two sample replicates of each tis-
sue and converted FPKM values using log-transfor-
mation (log2 (FPKM+1)). Using principal component 
analysis (PCA), we observed that tissues with simi-
lar physiological functions were more likely to cluster 
together, which was consistent with the previous analy-
sis of the BRENDA database [44] (Fig. 2a). For instance, 
medulla oblongata, hypothalamus, pineal body, cer-
ebrum, and cerebellum tissues, belonging to the central 
nervous systems were clustered together. For adipose-
related tissues, we observed that mesentery fat, heart 
fat, kidney fat, and subcutaneous fat were grouped 
together. Moreover, we observed that the hierarchical 
clustering and correlation between the bovine tissues 
agreed with the result of PCA analysis (e.g., the diges-
tive system was composed of two branches, the front 
stomach, abomasum, and intestine) (Fig.  2b). These 
results also implied that the changes in gene expression 
profiles among various tissues might be involved with 
tissue differentiation.

Housekeeping gene expression patterns across bovine 
tissues
We defined HKGs as constitutively expressed genes, 
which were expressed in all tissues to maintain basic 
necessary biological processes and cell functions (e.g., 
cellular transport and cell cycle) [45]. Totally, we identi-
fied 2654 genes constitutively expressed across 51 tissues. 
Additionally, we quantified the expression variability of 
these genes between tissues using the coefficient of vari-
ation (CV). As expected, we observed that CV values of 
HKGs were smaller when compared with the full gene 
set, which may indicate the expression of HKGs tends to 
be constant among tissues (Additional file 2: Fig. S1).

On the other side, we did observe that the expression 
levels of HKGs varied among tissues (Fig. 3a). Based on 
the CV, we further classified HKGs into three groups 
with low, medium, and high expression variability using 
thresholds of 0.35 (first quartile) and 0.66 (third quar-
tile) (Fig.  3b). Gene Ontology (GO) enrichment analy-
sis showed that genes with low and medium expression 
variability were mainly involved in maintaining the basic 
biological activities of organisms (e.g., cell-cell adhesion 
(GO:0098609), translational initiation (GO:0006413) and 
mitochondrial translation (GO:0032543)). In contrast, 
genes with high expression variations were involved in 
energy metabolism (e.g., mitochondrial electron trans-
port, ubiquinol to cytochrome c (GO:0006122), aerobic 
respiration (GO:0009060)) (Fig. 3c).
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Out of 223 HKGs with low expression variability, we fil-
tered out 96.02% of them with low expression (1 < FPKM 
≤ 10) or medium expression (10 < FPKM ≤ 50). Finally, 
we obtained 32 HKGs with high expression levels and low 
expression variability across tissues, which may serve as 
valuable experimental controls in gene expression experi-
ments (Additional file  3:Table  S6, Additional file  4: Fig. 
S2). Remarkably, we found that several other commonly 
used or commercially available HKGs were not presented 
in the list of 32 HKGs (Additional file  4: Fig. S3). For 
example, a commonly used HKG ACTB [46] was actually 
not constantly expressed in most of the bovine tissues.

To understand the potential contribution of 2654 
HKGs identified from bovine tissues, we performed a 
correlation analysis between pairwise tissues using Pear-
son correlation (Fig. 3d). Our results showed that tissues 
with similar physiological functions have higher cor-
relation coefficients and these tissues were mainly  clus-
tered together, and these results were in line with results 
obtained from the full gene list (Fig. 2b). Interestingly, the 
testis tissue was grouped into a single branch, and this 
finding may indicate different expression patterns and 
functional specificity of HKGs in bovine testis compared 
to other tissues.

Tissue‑specific expression patterns in bovine organ 
systems
Using stringent criteria as described by a previous 
study [47], we identified 477 TSG, together with 10,814 

tissue-specific transcripts (TSTs). Among tissues, we 
detected the largest (n = 51) TSGs in the prostate (Addi-
tional file 5: Table S7), followed by 46 TSGs in longissi-
mus dorsi. The number of TSGs in other tissues ranges 
from 0 to 39. We partitioned the 51 tissues into ten organ 
system categories to estimate important lineage-related 
genes during tissue development. Notably, we observed 
that the reproductive system had the most tissue-
specific genes (i.e., 113) and the number of TSGs in all 
other organ systems ranges from 18 to 94 (Fig.  4a). We 
obtained a serial of highly expressed TSGs in each organ 
systems category. For instance, MYL3 was the gene with 
the highest expression in the circulatory system, while 
LOC100847998 and NNAT showed the highest expres-
sion in the digestive and endocrine systems, respectively 
(Fig.  4b). Tissue-specific expression analyses of other 
organ system categories were shown in (Additional file 6: 
Fig. S4). Moreover, we performed the protein interac-
tion network analysis of TSGs in different organ systems 
based on the STRING database [48]. Our results showed 
that TSGs exhibited a co-expression regulation pat-
tern and the top TSGs displayed higher expression lev-
els when compared with other genes in the organ system 
(Fig. 4c). The functional annotation and pathway enrich-
ment analyses of TSGs using KOBAS (v2.0) for differ-
ent organ systems further support the known biological 
functions of tissues, which agreed with many previous 
studies [49–51] (Fig.  4d, Additional file  6: Fig. S5). For 
instance, the TSGs related to the circulatory system were 

Fig. 2  Gene expression profile among 51 tissue types. a Principal component analysis for all tissue types based on corrected expression data 
through log2 (FPKM+1). Tissues are colored according to organ systems as the same as in Fig. 1. b Unbiased hierarchical clustering heat map based 
on Pearson’s correlation coefficient for all genes. Color intensity indicates the correlation between tissues, red indicates high correlation (1), and blue 
indicates low correlation (0.5)
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significantly enriched in heart development (corrected 
P value = 4.23e−06) and cardiac chamber development 
(corrected P value = 6.80e−08), the digestive system for 
catalytic activity (corrected P value = 1.24e−02) and lipid 
transport (corrected P value = 1.59e−02), the endocrine 
system for regulation of hormone levels (corrected P 
value = 1.63e−03) and hormone metabolic process (cor-
rected P value = 3.69e−03) (Additional file 7: Table S8).

The digestive system
The specialized digestive system consisting of the diges-
tive tract and digestive glands enables ruminant ani-
mals like cattle to efficiently digest roughage. As it 
was described in Fig.  2b, the bovine digestive tract was 
divided into anterior (esophagus, rumen, reticulum, 
omasum) and posterior (abomasum, duodenum, jeju-
num, ileum, cecum, colon, rectum) clusters based on 

tissue-specific expression patterns. We identified 5, 10, 
and 5 gene set specific to the anterior, posterior of the 
digestive tract and digestive glands, respectively (Addi-
tional file  5:Table  S7). We found that the functional 
annotation of digestive system tissue-specific genes 
also corresponds to its known tissue-related biology. 
The digestive system anterior TSGs (like FAM83D and 
GALNT6) were mainly involved in the nutrients catabolic 
process and microtubule binding. In addition, TSGs (e.g., 
CYP4V2) in liver tissue were involved in the metabolism 
of nutrients (i.e., lipid transport, fatty acid oxidation, and 
amino acid metabolism).

The central nervous system
Remarkably, we identified a total of 48 TSGs (ranging 
from 3 to 20) in brain tissues (the central system) for 
each tissue. The identified expression pattern suggested 
that the pineal gland was separated from other brain 

Fig. 3  The expression pattern and hierarchical clustering of 2654 HKGs across 51 bovine tissues. a Clustering of expression patterns of 
housekeeping genes. Color intensity represents expression level estimated through log10 normalized FPKM. Red indicates high expression and blue 
indicates low expression. b The HKGs are variably expressed and only 8.52% are constantly expressed HKGs. Among those constant HK genes, only 
3.98% are highly expressed with FPKM larger than 50. c Functional annotation of low variable expression, medium variable expression, and high 
variable expression of HKGs. d Hierarchical clustering heatmap based on Pearson’s correlation coefficient for HKGs. The red color represents high 
correlation and the blue color represents low correlation



Page 7 of 19Zhang et al. BMC Biology           (2022) 20:79 	

tissues (Additional file 8: Fig. S6), indicating the diverse 
functions among the brain tissues. Notably, the TSG 
expression levels were also variable among brain tissues, 
confirming their tissue-specific expression patterns. For 
instance, several TSGs were identified in the cerebel-
lum (CBLN3), cerebrum (NSMF, VSTM2L, and ENC1), 
hypothalamus (Map2k7), and pineal gland (i.e., ROM1, 
UNC119, GNB3, and GNG13).

Co‑expression gene network analysis and HUBGs
We constructed networks based on weighted gene co-
expression network analysis (WGCNA) to explore the 
biological relationships and potential functions of core 
driver genes across tissues. In the current study, a total 
of 8357 filtered genes (FPKM > 1) were used for subse-
quent analyses. Gene-based expression matrix clusters 
were generated to illustrate the relationships between 
samples. To avoid the influence of low-quality samples, 
we only kept the samples in cluster 1 with 47 samples for 

co-expression network analysis (Additional file 8: Fig. S7). 
A soft thresholding value β was of 4 selected when the R2 
= 0.85, based on the criteria outlined by Zhang et al. [52]. 
(Additional file 8: Fig. S8). The estimated k was highly cor-
related with p(k) (R2 = 0.82), indicating that the selected 
β value can effectively establish a scale-free network 
(Additional file  8: Fig. S9). We calculated the dissimilar-
ity of the genes based on the converted topological matrix 
and generated hierarchical clustering (Fig. 5a). Using co-
expression network analysis, we obtained 24 modules 
based on bovine transcript atlas (the number of genes for 
each module ranged from 68 to 1710) (Additional file 9: 
Table S9). To obtain tissue-specific modules, we assessed 
the association between 24 modules and 47 tissues. Under 
the criteria of the correlation coefficient (r > 0.65) and P 
value (P < 1.0e−4), we identified 15 tissue-specific mod-
ules (Additional file 9: Table S10). For instance, the light 
yellow module and the pink module have high correlation 
coefficients with seminal vesicle glands (r = 0.96, P value 

Fig. 4  Tissue-specific expression patterns between system categories. a Distribution of the number of tissue-specific genes in all system categories. 
b Examples of TSG in the circulatory system (MYL3), the digestive system (LOC100847998) and the endocrine system (NNAT). The x-axis represents 
tissue labeled with the same colors as in Fig. 1 and the y-axis is the FPKM value. c Network topology analysis of 477 TSGs based on the String 
database. Each node represents a tissue-specific protein-coding gene. The size of the node indicates the level of expression of tissue-specific 
protein-coding genes. The node colors represent ten system categories, and the gray means that the gene comes from the STRING database. The 
edges represent the co-expression relationship between tissue-specific protein-coding genes. d Functional annotation and enrichment distribution 
of tissue-specific gene sets in the system. The x-axis represents -log10 (P value) and the y-axis represents GO term
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= 2.00e−27) and longissimus dorsi (r = 0.96, P value = 
1.00e−25), respectively (Fig.  5b). The turquoise module 
with the largest gene count (1710) was closely related to 
testis (r = 0.87, P value = 1.00e−15). We also observed 
that the functional annotations of genes in tissue-specific 
modules correspond to tissue function. For instance, 
genes within the red module (cerebellum) and magenta 
modules (medulla oblongata) were involved in the mor-
phological development of neurons and axons. The dark 
green module corresponds to the liver, and the genes with 
this module were found to be enriched in small molecule 
metabolism and the oxidation-reduction process. The 
pink module was related to muscle and involved in energy 
metabolism processes and cardiac muscle contraction 
(Additional file 9: Table S11). We then calculated the net-
work connectivity (kTotal) and within module connectiv-
ity (kWithin) for each gene (Additional file 9: Table S12). 

The genes in the module with the highest connectivity 
(top 5%) were selected as HUBGs. We finally identified 
a total of 237 HUBGs in 47 bovine tissues (Additional 
file 9: Table S13). We observed HUBGs of tissue-specific 
modules in the network diagram (e.g., cerebellum-red 
module, muscle-pink module, liver-dark green mod-
ule) (Fig.  5c–e). Notably, we also found that a subset 
of HUBGs in the module also showed tissue-specific 
expression. For instance, seven genes (GATA2, PLA2G7, 
SLCO2A1, CCL2, RNF113A, SMARCA1, and FAM84A) in 
the light yellow module (seminal vesicle gland), and eight-
een genes (BIN1, DUSP15, ENO3, FEM1A, LOC616200, 
GYS1, GYS1, KEAP1, PARVB, PLPP7, PPP1R1A, RTN2, 
SLC16A5, SNTA1, TCAP, TMEM38A, and ZNF358) in 
the pink module (longissimus dorsi).

To explore master regulators of genes in co-expressed 
networks, we performed transcription factor (TF) anal-
ysis on 237 genes in the dark green module and 355 

Fig. 5  Clustered network graph of the transcriptome in bovine tissues. a Functional modules are represented in different colors. Each major branch 
represents a color-coded module that contains a group of highly connected genes. b Heatmap between 24 modules and 47 tissues. Boxes display 
Pearson correlation coefficients and their associated P values. Red indicates that the given tissue has a strong positive correlation relative to all other 
tissues. Green indicates that the given tissue has a strong negative correlation relative to other tissues. c, d, and e represents the cerebellum-red 
module, the muscle-pink module, and the liver-dark green module, respectively. Hub genes were marked with yellow. The size of each node 
represents the within module connectivity of the node to adjacent genes



Page 9 of 19Zhang et al. BMC Biology           (2022) 20:79 	

genes in the pink module. For the dark green module, 
we identified 11 TFs including HNF4G (normalized 
enrichment score (NES) = 6.296), SREBF1 (NES=6.290), 
HNF4A (NES=5.208), SREBF2 (NES=4.169), 
HDAC2 (NES=3.843), EP300 (NES=3.639), CEBPB 
(NES=3.581), ZEB1 (NES=3.486), SP4 (NES=3.434), 
GLIS1 (NES=3.402), and FOXA2 (NES=3.12) (Addi-
tional file  10: Fig. S10). For the pink module, 5 TFs, 
including HCFC1 (NES=3.930), PBX3 (NES=3.538), 
NFKB1 (NES=3.342), JUND (NES=3.224), and KLF3 
(NES=3.126), were detected in our analyses (Additional 
file 11: Table S14).

Conservation of HKGs, TSGs, and HUBGs across species
To evaluate the extent of conservation for HKGs, TSGs, 
and HUBGs, we assessed the number of orthologs of 
bovine genes in multiple eukaryotic species to investi-
gate functional conservation across species [53] (Addi-
tional file 11: Table S15). Using NCBI HomoloGene, we 
observed that HKGs, TSGs, and HUBGs were more likely 
to be orthologs in other species based on Student’s t-test 
(P = 1.49e−03, P = 3.40e−04 and P = 3.07e−04, respec-
tively). However, few orthologs genes were identified for 
HKGs, TSGs, and HUBGs as the evolutionary distance 
between bovine and these eight species increase. Com-
pared to vertebrates, the ortholog ratios of HKGs, TSGs, 
and HUBGs in invertebrates (i.e., worm, fly, and yeasts) 
were lower. Moreover, we observed that the ortholog 
proportion of HKGs was higher than that of TSGs. Our 
analysis showed that most HKGs in cattle were con-
served, which were mainly involved in fundamental cell 
survival compared with TSGs contributing to tissue-spe-
cific differentiation [54]. To determine whether the HKG 
expression pattern was conserved across species, we esti-
mated the normalization average expression level and CV 
of bovine HKGs orthologs and compared with those of 
humans, mice, rats, and dogs as described by [47]. Our 
analyses showed that the expression level of bovine HKG 
was stable with the smallest CV value, and the P value 
was 1.49e−3 cross species using Student’s t test (Addi-
tional file  11: Table  S16). These findings suggested that 
the expression patterns of HKGs were conserved among 
them. Our results also confirmed that the HKGs were 
more ancient than TSGs and HUBGs with tissues spe-
cific expression patterns [45].

Comparative analysis of differentially expressed genes 
expression patterns between cattle breed (beef vs. dairy 
cattle)
The diverse phenotypes between beef and dairy cat-
tle imply the potential difference of genetic basis under 
selection (meat vs. milk purpose) during the breed for-
mation. Here, we evaluated transcriptome changes using 

RNA-seq on the six primary bovine tissues (i.e., brain, 
heart, liver, lung, muscle, and testis) of beef and dairy cat-
tle [4] and investigated the differentially expressed genes 
and gene expression profiles among tissue categories 
(Fig. 6a). We observed that the number of DEGs among 
tissues ranges from 209 in lung tissue (109 upregulated 
and 100 downregulated genes) to 521 in testis tissue 
(356 upregulated and 165 downregulated genes). For 
muscle tissue, we found 403 DGEs, including 214 up-
regulated and 189 down-regulated genes (Additional 
file  11: Table  S17). To better understand tissue-specific 
DEGs, we performed comparative analyses of DEGs 
among the six tissues (Fig. 6b). Our results showed that 
36 DEGs were shared by the six tissues. In addition, the 
testis has the most tissue-specific DEGs (290). To further 
explore the biological expression patterns of tissue-spe-
cific DEGs, we calculated the correlation coefficient and 
assessed the clusters pattern between tissues. Remark-
ably, our results showed that samples from the same 
tissues of beef and dairy cattle were clustered together 
based on the differential gene expression profile (Fig. 6c). 
We found that samples from heart and muscle tissues 
were clustered together in our analyses, and this may 
imply muscle tissue may have similar expression patterns 
within heart tissues for both beef and dairy cattle.

To assess the functional contribution of DEGs for impor-
tant traits in cattle, we performed functional enrichment 
analysis using DAVID Bioinformatics Resources 6.8 [55]. 
DEGs identified across tissues were enriched in molecular 
function (MF) GO terms including a structural constituent 
of ribosome (GO:0003735), NADH dehydrogenase (ubiqui-
none) activity (GO:0008137); biological process (BP) terms 
including translation (GO:0006412), hydrogen ion trans-
membrane transport (GO:1902600), and cellular compo-
nent (CC) terms includes respiratory chain (GO:0070469), 
cytosolic small/large ribosomal subunit (GO:0022627, 
GO:0022625) (Additional file 11:Table S18).

DEGs annotated in muscle may probably indicate their 
specific functions contributing to production traits in beef 
cattle. Remarkably, we identified several candidate DEGs 
(e.g., upregulated genes like TPM1, TPM3, COX4I1, COX5A, 
and NDUFA4, with approximately 3- to 6-fold expression 
increases in beef cattle) related to muscle differentiation 
and development, including the structural constituent of 
muscle (GO:0008307) and cytochrome-c oxidase activity 
(GO:0004129) (Fig. 6d). Several genes with oxidative phos-
phorylation (bta00190) were highly expressed in the liver of 
beef cattle compared to dairy cattle, with approximately 3- to 
32-fold expression increases for SDHA, cytochrome C oxi-
dase members (COX7A2, COX7B), and NADH dehydroge-
nase family members (NDUFAB1, NDUFB9, and NDUFC1). 
Moreover, several DEGs identified in the liver were enriched 
in pathways related to digestion and metabolism diseases, 
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including primary bile acid biosynthesis (bta00120), fatty 
acid metabolism (bta01212), and non-alcoholic fatty liver 
disease (NAFLD) (bta04932) (Additional file  12: Fig. S11). 
Notably, we obtained 67 and 323 DEGs which were HKGs 
and TSGs, respectively. Functional enrichment results 
showed that TSGs were enriched in metabolic pathways, 
including fructose and mannose metabolism, galactose 
metabolism, and pentose phosphate pathway, while HKGs 
were enriched in ribosome and proteasome.

Validating expression profiles with known tissue‑specific 
genes across bovine tissues
To verify the expression accuracy of TSGs identified 
from RNA-seq, we performed RT-qPCR on four tissues 

(muscle, liver, brain, and abomasum) from the same 
beef cattle. Twelve tissue-specific genes were randomly 
selected, including two muscle-specific genes (ALDOA, 
HSPB7), four liver-specific genes (CYP4V2, ETNK2, 
HSD17B11, SC5D), three brain-specific genes (ENC1, 
NSMF, VSTM2L), and three abomasum-specific genes 
(CA9, KRT18, MUC5AC). RT-qPCR primers using the 
Primer Premier 5 for all genes were presented in (Addi-
tional file 13:Table S19).

Our results revealed that the expression of ALDOA and 
HSPB7 in muscle was significantly higher than the other 
three tissues (Additional file  14: Fig. S12). Our results 
also showed that CYP4V2, ETNK2, HSD17B11, and 
SC5D were highly expressed in liver tissue, ENC1, NSMF, 

Fig. 6  Different gene expression patterns between beef and dairy. a Overview of tissues collected from adult beef and dairy cattle for RNA-seq. 
b Venn diagram shows the shared and unique differentially expressed genes among heart, muscle, liver, lung, brain, and testis tissues between 
beef and dairy cattle. c. Symmetric heatmap generated based on the Spearman correlation coefficients of all differentially expressed genes in all 
paired wise tissues. d GO function annotation of DEGs in muscle tissue. BP represents biological process, CC represents cellular component, and MF 
represents molecular function
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VSTM2L, were highly expressed in brain tissue, and CA9, 
KRT18, and MUC5AC genes were highly expressed in 
abomasum tissue. Moreover, we observed high concord-
ances (R2 = 0.68~0.94) between RT-qPCR and RNA-seq 
(Additional file  14: Fig. S13). Therefore, our RT-qPCR 
results further confirmed tissue-specific expression of 
TSGs identified from RNA-seq.

Discussion
Bovine transcript atlas in beef cattle
A comprehensive survey of transcript abundance among 
tissues can provide valuable insights into elucidating biol-
ogy function and regulation mechanisms of genetic vari-
ants that underlie complex traits [4, 56]. Previous studies 
using gene expression analysis suggested transcriptome 
changes from various tissues contribute to phenotypic 
diversity among species [57]. Gene expression differ-
ences underlying the important traits may also be associ-
ated with domestication and breed formation [58] (e.g., 
meat quality [30] and milk production [59]). However, 
transcriptome atlas analysis was limited by tissue types 
and sequencing platforms, which reduces the sensitiv-
ity to low-expressed transcripts. In mice and humans, 
more attention has been paid to investigate transcrip-
tome changes from large-scale tissues for basic biologi-
cal development at the whole genome level [60, 61]. For 
cattle, several studies have been conducted by focusing 
on gene expression changes among muscle [62], adipose 
[63], and rumen [64] tissues at different developmen-
tal stages or under specific conditions. Despite the first 
Bovine Gene Atlas had been reported using ninety-five 
samples with different tissue types and cell lines [18], 
this study was generated from digital gene expression tag 
sequences, which may fail to capture expression infor-
mation from transcripts lacking DpnII sites. Subsequent 
studies based on tissue atlas have been reported on dairy 
cattle [4]; however, systematic analysis of tissue atlas for 
beef cattle was not fully addressed. In this study, we gen-
erated for the first time transcriptional atlas in beef cattle, 
which contains 135 samples with fifty-one tissue types 
representing ten organ systems (e.g., circulatory system, 
digestive system). By using a comprehensive survey of 
the transcriptome profiles and the comparative analysis 
of expression changes across multiple tissues, our results 
contributed to an in-depth understanding of the influ-
ence of gene expression variations from multiple tissues 
on phenotypic diversity.

Cattle have a complicated digestive system as com-
pared to other mammals; thus, it was noted that some 
tissues (alimentary canal, including the rectum, cecum, 
colon, ileum, duodenum, jejunum, and abomasum) were 
tightly clustered, while other digestive tissues (esopha-
gus, rumen, reticulum, omasum) were dispersed. This 

finding may be explained by the functional complexity 
and diversity of different tissues in the bovine gastroin-
testinal tract (GI tract). As for other bovine tissue types, 
we observed exocrine gland, endocrine gland, and deputy 
gonad were not well clustered, which may indicate their 
complex gene expression changes in different physiologi-
cal functions.

Constitutively expressed across tissues
Housekeeping genes were defined as those genes which 
were widely expressed across tissues, which can compre-
hensively represent the minimum set of genes required 
for the maintenance of basal cellular functions, and effec-
tively be used as internal controls for experimental stud-
ies [65]. In the current study, we identified a total of 2654 
housekeeping genes and 223 of them were constitutively 
expressed. In particular, 32 HKGs showing high express 
levels may be considered as feasible candidates for valu-
able experimental controls. In our study, the commonly 
used HKGs were expressed in all types of bovine tissues 
showing various expression levels, which was consistent 
with previous reports [66, 67]. We also obtained a list of 
HKGs involved in maintaining basic cell functions and 
energy metabolism (e.g., cell-cell adhesion, translational 
initiation, and aerobic respiration).

Tissue‑specific expression of diverse organ systems
Understanding the TSGs representing specific physi-
ological processes can help enhance the understand-
ing of the genetic and biological processes of complex 
traits [4]. We totally identified 477 TSGs from 51 types 
of tissues representing ten organ systems [47] (Additional 
file  5:Table  S7). Functional enrichment analysis showed 
that TSGs mainly were related to the specific physiologi-
cal functions of organ system categories. For the digestive 
system, FAM83D was overexpressed in the front stom-
ach tissue, and this gene was related to regulating the 
regrowth of microtubules in a cell and serves as a poten-
tial therapeutic target for the treatment of diseases (gas-
tric cancer) [68]. Remarkably, GALNT6, which targets 
different proteins in cell adhesion and differentiation, 
was reported to be involved in oncogenic transformation 
[69]. CYP4V2, as a causative gene for Bietti’s Crystalline 
Dystrophy, belongs to the cytochrome P450 superfamily 
and encodes fatty acid ω-hydroxylase for both saturated 
and unsaturated fatty acids [70]. For brain, CBLN3 was 
specifically expressed in the cerebellum and may play a 
critical function as a secreted isoform complex [71]. The 
cerebrum TSGs (i.e., NSMF, VSTM2L, and ENC1) were 
mainly involved in the nervous system development. 
For example, ENC1, a member of the ectodermal neural 
cortex (ENC) gene family, has been reported to regu-
late neurogenesis [72]. The function of hypothalamus 
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TSGs was related to the physiological activities of viscera 
organs, including the response to heat and osmotic stress. 
Map2k7 can regulate functional plasticity and cognition 
in the hypothalamus by encoding the JNK activator [73]. 
The pineal gland TSGs contribute to visual perception 
(ROM1 and UNC119) [74] and circadian entrainment 
(GNB3 and GNG13) [75].

Remarkably, several recent studies showed the top tis-
sue-specific genes in the brain (GRM5), liver (SLC22A9), 
white blood cell (FCRL3), uterus (TDGF1), testis 
(TRIM69), lactating mammary gland (CSN1S1, CSN1S2, 
CSN3, GLYCAM1), longissimus muscle, and adipose 
tissue (ACACA​, FASN, SCD1) in cattle [4, 18, 76]. How-
ever, these tissue-specific genes were not detected in 
the current study. This may be explained by the fact that 
different populations and approaches were used for the 
identification of tissue-specific genes. In contrast, we 
identified several TSGs which have been detected in pig, 
human, and mouse species [77–81], including MYL3, 
TNNI3, MUC5AC, MGP, and SCGB3A2 (Additional 
file  15: Table  S20). Therefore, we think that these genes 
are highly conserved across species, which may indicate 
their potential functions that emerge in particular tissues 
or organs.

HUB genes for important biology functions
Co-expression network analysis is an effective strategy 
to explore the gene connections based on the transcrip-
tional expression. Using WGCNA [82], we divided the 
filtered 8357 genes into 24 co-expressed gene modules 
and explored the relationships between 15 modules and 
tissues based on r > 0.65 and P < 1.0e−4. It was noted 
that the cerebellum tissue corresponds to the red module 
(r = 0.73 and P = 6.00e−09). The hub genes in the red 
module (NSG1, CHN1, VAMP1) were mainly involved 
in the morphological development of neurons. NSG1 
gene was a somatodendritic endosomal membrane pro-
tein, which was also highly expressed in neurons [83], 
and functionally regulates the binding of AMPA receptor 
and neurotensin receptor [84]. The liver corresponds to 
the dark green module with 12 core genes (e.g., SHMT1, 
HSD17B11, ETNK2). As a serine hydroxy-methyltrans-
ferase, SHMT1 was involved in regulating a key reaction 
in folate-mediated one-carbon metabolism [85]. ETNK2, 
encoding a soluble protein with ethanolamine-specific 
kinase activity, was found to be highly expressed in the 
liver in our analysis. The inactivated ETNK2 can reduce 
the rate of exogenous ethanolamine synthesis of phos-
phatidylethanolamine in liver cells [86]. Longissimus 
dorsi tissue with 18 core genes (e.g., ENO3, TMEM38A, 
TCAP) was related to the pink module. ENO3 was 
regulated by intron muscle-specific enhancers, and 
this gene can play a parole effect when converting 

2-phosphoglycerate into phosphoenolpyruvate in the gly-
colytic pathway [87]. TMEM38A was a specific gene for 
muscle differentiation, and this gene can be induced in 
the periphery of the nucleus [88]. As a key regulator of 
muscle growth, TCAP was reported to regulate muscle 
proliferation and differentiation [89]. Knockout of TCAP 
may damage the normal growth of muscle cells [90]. TFs 
were involved in gene regulation along with HUBGs 
identified in co-expression analyses. For example, KLF3 
and NFKB1 identified in the pink module (which was 
enriched in the muscle) may be involved in the growth 
and development of muscle [91] and skeletal muscle cell 
differentiation [92]. FOXA2 enriched in a liver acts as a 
master controller in bile acid homeostasis and bile duct 
development [93]. HNF4A as a member of the transcrip-
tional regulators of the HNF4 family enriched in the liver 
was critical for bile acid homeostasis and bile duct devel-
opment [94].

Conservative analysis of HKGs, TSGs, and HUBs 
across species
Previous studies suggested that analysis of orthologous 
genes can enable the exploration of biological functions 
among species [95–97]. In this study, we performed the 
comparative analysis of cattle HKGs, TSGs, and HUBs 
using NCBI HomoloGene [53] database across eight spe-
cies (see the “Methods” section). We found that fewer 
ortholog genes (from HKGs, TSGs, and HUBs) were 
identified in other species with the increase of the evolu-
tionary distance. We also observed that HKGs were more 
conserved among eight species than TSGs and HUBGs, 
which confirmed the results of previous studies [47]. In 
addition, we compared the expression patterns of HKGs, 
TSGs, and HUBs with other mammals (i.e., human, 
mouse, rat, and dog). Notably, we found that the expres-
sion patterns of HKGs were more conserved among 
them. Our results indicated that HKGs were mainly 
involved in regulating gene expression and maintaining 
basic cell activities, while TSGs and some tissue-specific 
HUBGs were likely to be generated later during evolution 
when compared to HKGs, and mainly contributing to tis-
sues-specificity across species [45].

Tissue‑specific expression between beef and dairy cattle
Analysis of the transcriptional difference is an effec-
tive strategy to identify breed-specific causal variations 
related to economic traits (e.g., meat, milk, cashmere) 
in farm animals [63, 98, 99]. Our study enables us to 
formulate functional hypotheses on the genetic archi-
tecture of tissue-specific gene regulation underlying 
important traits under distinct selection during breed 
formation. Notably, we identified several candidate 
DEGs (e.g., up-regulated genes including TPM1, TPM3, 



Page 13 of 19Zhang et al. BMC Biology           (2022) 20:79 	

COX4I1, COX5A, and NDUFA4 and down-regulated 
genes including SYNM, TCAP, JPH1, DAG1, COX1, and 
COX2) related to muscle differentiation and develop-
ment between beef and dairy cattle. For instance, TPM 
encodes an α-helical coiled-coil protein dimer that regu-
lates muscle contraction by the maintenance of thin fila-
ment length [100], and this gene was highly expressed 
in beef cattle as compared to dairy cattle. As members 
of the TPM gene family, TPM1 and TPM3, regulate the 
fast and slow fibers in skeletal muscle tissue, respectively 
[101]. COX4I1, a cytochrome c oxidase subunit IV iso-
form 2, was responsible for regulating the role of oxida-
tive phosphorylation in skeletal muscle adaptation to 
exercise [102]. The products of COX5A and NDUFA4 
regulate the function of the mitochondrial electron trans-
port chain, which plays a vital role in energy metabolism 
[103]. SYNM encodes an intermediate filament protein, 
which is a typical marker of the smooth muscle cell. The 
down-regulation of its expression may be functionally 
related to smooth muscle cell activation in response to 
vascular injury [104]. As a core driver gene, TCAP may 
affect muscle proliferation and differentiation by regulat-
ing myosin [90]. For skeletal muscle, the muscle-specific 
gene JPH1 was reported to be involved in the excitatory 
contraction mechanism and maintaining the stability 
of newly synthesized JPHs [105]. In addition, we identi-
fied several TSGs enriched in pathways related to diges-
tive and metabolic functions in liver tissue. For example, 
up-regulated DEGs SCP2 and down-regulated DEGs 
(ACOX2 and HSD3B7) were linked to a primary bile 
acid biosynthesis. The highly expressed gene SCP2 can 
increase intracellular sterol carrier protein expression 
and regulate bile acid synthesis [106]. In energy metab-
olism, several up-regulated genes (COX7A2, COX7B, 
NDUFAB1, NDUFB9, NDUFC1, and SDHA) and down-
regulated genes (COX2 and UQCRQ) were enriched in 
the oxidative phosphorylation pathway. Cytochrome C 
oxidase (COX) family members COX7A2 and COX7B 
regulate the assembly and activation of COX and the 
activation of mitochondria during oxidative phosphoryl-
ation [107]. Two up-regulated genes (ACADM, ACAT1) 
and two down-regulated genes (FADS2, HSD17B12) were 
enriched in fatty acid metabolism. ACADM, encoding a 
medium-chain acyl-CoA dehydrogenase, plays an essen-
tial role in fatty acid oxidation [108].

Moreover, many studies showed that expression levels 
of FADS2 were positively correlated with non-alcoholic 
fatty liver disease, and down-regulated FADS2 may con-
tribute to the maintaining the activity of delta-6 desatu-
rase to ensure liver digestive function [109]. Overall, the 
identified DEGs in multiple core tissues between beef 
and dairy cattle should enable our understanding of their 
transcriptional regulation on development and functional 

differentiation of tissue. In addition, our study further 
supports tissue-specific regulatory patterns which are 
consistent with the action of natural selection across spe-
cies, as described in passerine birds [110], primates [111], 
and high-altitude vertebrates [112], and help to under-
stand the genomic variation and their regulations in 
diverse breeds that may reflect differences in production 
traits [4, 27, 113].

Conclusions
Our study provides the most extensive transcriptome 
collection of core tissues representing all major organ 
systems from adult beef cattle to date. A comprehensive 
analysis of gene expression profiling across tissues can 
provide necessary information for an in-depth under-
standing of biological functions. We generated a large-
scale gene expression profile across primary tissues in 
beef cattle, providing valuable information for enhancing 
genome assembly and annotation. HKGs and TSGs fur-
ther contribute to better understanding the biology and 
evolution of multiple tissues in cattle. Identification of 
DGEs between two breeds (beef vs. dairy purposes) also 
fills in the knowledge gaps about differential transcrip-
tome regulation of bovine tissues underlying important 
economic traits.

Methods
Bovine tissue samples
Three male Chinese Simmental beef cattle were origi-
nated from Hubei Shayang Hanjiang Cattle Develop-
ment Co., Ltd., Hubei province, China. After weaning, 
these calves were fattened under the same feeding and 
management conditions until two years of age. We col-
lected tissue samples under the approval of the Science 
Research Department of the Institute of Animal Science, 
Chinese Academy of Agricultural Sciences under proto-
col IAS2020-33. A total of 135 tissue samples from the 
major organ systems (e.g., the digestive system, immune 
system) were divided into 51 tissue types in biological 
replicates. Samples were saved by RNAlater (Qiagen) and 
snap-frozen in liquid nitrogen. Details of samples were 
included in Additional file 1: Table S1. We retrieved the 
dataset of dairy cattle tissue samples from the publication 
[4].

Library preparation and sequencing
Total RNA was extracted from 135 tissues samples 
using  Trizol method, and RNA was  subjected to quality 
control  by the NanoDrop® 2000 (Thermo, CA, USA) and 
treated with DNase I (RNase-free) following the manu-
facturer’s instructions. RNA purity and integrity were 
assessed by agarose gel electrophoresis. RNA concentration 
was measured using a Qubit RNA BR Assay Kit (Q10210; 
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Thermo Fisher Scientific, Carlsbad, CA, USA) and RNA 
integrity was detected by the Agilent Bioanalyzer 2100 
system (Agilent Technologies, Santa Clara, CA, USA). A 
total amount of 5 μg RNA per sample was used for RNA-
seq library preparation. mRNA libraries were generated by 
Novogene Co., Ltd. using the Illumina TruSeq Stranded 
library protocols and sequenced on the Illumina HiSeq 
2500 sequencing platform (Illumina, San Diego, CA, USA). 
Briefly, Poly-(A) mRNA was isolated from total RNA using 
Oligo-(dT) magnetic beads and then fragmented in frag-
mentation buffer. First-strand cDNA was synthesized using 
a six-base random primer. Double-stranded (ds) cDNA was 
then synthesized using buffer solution, dNTPs, RNaseH, 
DNA polymerase I, and RNase H. The library fragments 
were purified with AMPure XP beads (Beckman Coulter, 
Beverly, MA, USA) to generate cDNA fragments prefer-
entially 250–300 bp in length. To ensure the quality of the 
library, PCR products were purified (AMPure XP beads) 
and quality was assessed on the Agilent Bioanalyzer 2100 
system. The cBot Cluster Generation System using TruSeq 
PE Cluster Kit v4-cBot-HS (Illumina) was used to cluster 
the index-coded samples. Then the unform library prepara-
tions were sequenced on an Illumina Hiseq-PE150 platform.

Transcriptional sequencing and processing
The raw data (short reads) of transcriptional sequencing 
for the bovine tissues were processed with FASTP (0.21.0) 
[114], HISAT2 (v.2.1.0) [42] and STRINGTIE (v.2.1.1) 
[115]. Clean reads were obtained by removing reads 
containing adapter, reads containing ploy-N (N≥10%), 
and low-quality reads (Q≤5) using FASTP software with 
default parameters [114]. The GC content of the clean 
data was assessed. The clean data with high quality was 
used in all following analyses. The index of the ARS-
UCD1.2 reference genome was built using the HISAT2-
build software. Clean data for each sample were mapped 
to the reference genome using HISAT2. Samtools (v.1.9) 
was used to sort and convert the SAM files to BAM for-
mat [116]. The transcripts and genes for each sample were 
assembled and quantified by STRINGTIE (v.2.1.1). After 
assembling each dataset, all transcripts were merged into 
a unique transcriptome by STRINGTIE’s merge function, 
including all transcripts included in the annotation and 
the novel transcripts. The transcript abundances and gene 
expression levels were estimated based on read counts and 
fragments per kilobase of transcript per million mapped 
reads (FPKM), respectively. Finally, the GFFCOMPARE 
v.1 utility was used to compare predicted transcripts pro-
duced by STRINGTIE with the ARS-UCD1.2.

Gene expression pattern across tissues
To investigate gene expression patterns of 51 bovine tis-
sue types, we first retained the gene expression in at least 

two replicate samples and then calculated the mean of 
gene expression values in replicate samples (two replicate 
samples of 12 tissues and three replicate samples of 36 
tissues). The expression level of each gene was converted 
using log-transformation (log2 (FPKM+1)), and the tis-
sues clusters were visualized using PCA. In addition, 
hierarchical clustering was generated using Pheatmap 
package (v.1.0.12).

Housing‑keeping genes categorization
We strictly defined HKGs as genes showing constitutive 
expression in all most tissues [45]. To study the expres-
sion changes of each HKG in the bovine expression pro-
file, we used the CV to evaluate the degree of variation for 
each gene [66]. In brief, CV was defined as the ratio of the 
standard deviation to the mean. The calculation formula 
was as follows. CV = σ/μ, where CV represents the vari-
ation degree for genes between tissues; σ represents the 
standard deviation; μ represents the mean. We used the 
quartile of the total distribution of CV values to divide 
the HKGs into lowly variable expression (CV ≤ first 
quartile), mediumly variable expression (first quartile < 
CV < third quartile), and highly variable expression (CV 
≥ third quartile). To explore the functional differences of 
HKGs with low, medium, and high expression variability, 
we performed GO enrichment analysis on HKGs [55]. 
We defined constantly expression genes within lowly 
variable expression HKGs, whose FPKM value fulfills the 
log2 (FPKMmax/FPKMmin) < 2. Moreover, HKGs with 
average expression FPKM > 50 in all bovine tissues were 
determined as candidate reference HKGs. The hierarchi-
cal clustering map of HKGs was drawn using the Pheat-
map package based on Pearson’s correlation coefficient.

Tissue‑specific gene detection
For the detection of TSGs, we used more stringent stand-
ards as previously described [47]. In brief, TSGs were 
defined that the gene with expression level (FPKM) in 
the tissue according to criteria: (1) the FPKM value of the 
candidate gene in one tissue was more than three times 
that of other tissue, (2) the FPKM value of candidate gene 
target tissue was greater than 50% of the average expres-
sion level in all other tissues, and (3) the expression level 
of candidate genes was at the top 25% of all genes in 
each tissue. We classified 51 bovine tissues into 10 organ 
systems based on biological categories as described by 
Harhay et al. [18]. Functional annotation and enrichment 
analysis were based on KOBAS 2.0 [117]. The Pheatmap 
package was used to calculate Pearson’s correlation coef-
ficient and generate a hierarchical clustering map for 477 
TSGs identified in 51 bovine tissue types. In addition, the 
protein interaction network of TSGs in different organ 
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systems was generated using the STRING database [48], 
and the network was visualized using Cytoscape software 
(v.3.7.1) [118].

Gene network cluster analysis and construction
The co-expression network analysis of the gene expres-
sion was performed using a weighted gene co-expres-
sion network analysis (WGCNA) package (v.1.69) in 
R programming [82]. Briefly, we first constructed an 
expression matrix of 8,357 genes (FPKM > 1) using 
51 bovine tissues. The cluster analysis on all tissues 
uses the hclust function with the average agglomera-
tion method. The soft threshold (β) was determined 
based on scale-free distribution. The step-by-step 
and the dynamic cutting methods were used to con-
struct the gene network and module detection. The 
parameters were the minimum module size of 30 and 
mergeCutHeight 0.25. PCA was performed on the 
expression matrix of genes in each module to obtain 
module eigengene (ME). To investigate the relation-
ship between the modules and tissues, we constructed 
a design matrix X, and each row and each column cor-
responded to a sample (the diagonal was 1, the non-
diagonal was 0). The correlation coefficient between 
the matrix X and the module ME was calculated using 
the Pearson correlation coefficient. The module with a 
correlation coefficient larger than 0.65 was considered 
as the tissue-specific module. Moreover, functional 
enrichment analyses for tissue-specific module genes 
were performed using DAVID with FDR multiple cor-
rection [55]. The network connectivity (kTotal) and 
the connectivity within the module (kWithin) were 
estimated, and genes at the top 5% of kWithin were 
selected as the HUBGs. The HUBG network in the tis-
sue-specific module was constructed using Cytoscape 
(v.3.7.1). Moreover, co-expressed genes in the most cor-
related modules for liver and muscle tissues were used 
to predict TFs using iRegulon tool (v.1.3) [119], and the 
results of TFs prediction were obtained from the 20kb 
upstream of the transcription start site. The regula-
tion network of TFs involved with co-expressed genes 
was constructed using Cytoscape (v.3.7.1). Normalized 
enrichment scores (NES) were used as estimators of 
regulation relative activity.

Conservation model and expression analysis across species
To investigate functional conservation of identified genes 
in bovine atlas across species, we explored orthologs of 
bovine genes in other eukaryotic using NCBI homolo-
gous database [53]. We mapped the full gene sets, HKGs, 
TSGs, and HUBGs in the bovine gene expression atlas to 
humans, mice, rats, dogs, chickens, fly (D. melanogaster), 

worms (C. elegans), and yeast (S. cerevisiae) species to 
obtain orthologous genes. Student’s t test was applied to 
estimate the correlation between the orthologous genes 
of HKGs, TSGs, HUBGs, and full gene sets.

Differential gene expression patterns between beef 
and dairy cattle
To evaluate differential expression patterns between 
beef and dairy cattle, we retrieved the dairy cattle data, 
including brain, heart, liver, lung, muscle, and testis, from 
a previous publication [4]. To adjust the batch effect of 
mRNA data across studies, we considered genes with 
FPKM larger than one in three biological replicates as 
candidate genes and identified the orthologous genes of 
beef and dairy cattle based on the Ensemble database 
(http://​asia.​ensem​bl.​org/). We used the TMM (trimmed 
mean of M values) normalization implemented in the 
edgeR package [120] to eliminate the difference between 
sequencing libraries. Scale factors were used to measure 
the differences between tissues and breeds. To identify 
DEGs between beef and dairy cattle, we considered genes 
with an absolute log2 (fold change) (log2FC) > 1 and False 
Discovery Rate (FDR) adjusted P value < 0.005 as candi-
dates. Intersection sets of DEGs between six tissues were 
visualized using UpSetR package [121]. The Pheatmap 
package (v.1.0.12) was used to calculate the correlation 
coefficient and construct tissue clustering based on the 
DEGs. We finally performed a functional enrichment 
analysis of DEGs using DAVID [55].

Real‑time quantitative PCR (RT‑qPCR) analysis of TSGs
To validate TSGs, we randomly selected 12 TSGs for RT-
qPCR analyses with QuantStudio 7 Flex real-time PCR 
System (Life Technologies, Carlsbad, CA, USA). Total 
RNA from muscle, liver, brain, and abomasum samples 
were extracted  using  Trizol method. The cDNA was 
synthesized by reverse TSGs using Prime Script™ RT 
Reagent kit with gDNA Eraser (Takara, Dalian, China). 
RT-qPCR primers for all genes were designed using the 
Primer Premier 5 and synthesized by Sangon Biotech 
(Sangon, Shanghai, China). The 10-μL RT-qPCR reaction 
contained 0.5 μL cDNA, 0.4 μL of each primer (F/R), 5 μL 
2 × KAPA SYBR® FAST (KAPABiosystems, Wilmington, 
MA, USA), 0.2 μL Rox Low, 3.5 μL H2O. The amplifica-
tion cycle was as follows: initial denaturation for 3 min at 
95 °C for 1 cycle, followed by 40 cycles at 95 °C for 2 s and 
60 °C for 20 s. The 2−ΔΔCt method was used to transform 
Ct values, and the results were estimated by Student’s t 
test. For validation, three samples were used for qPCR 
experiments, and each sample had three technical repli-
cates. The GAPDH was used as an endogenous control to 
normalize gene expression levels.

http://asia.ensembl.org/
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