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Abstract 

Background:  Cell morphology is a complex and integrative readout, and therefore, an attractive measurement for 
assessing the effects of genetic and chemical perturbations to cells. Microscopic images provide rich information on 
cell morphology; therefore, subjective morphological features are frequently extracted from digital images. However, 
measured datasets are fundamentally noisy; thus, estimation of the true values is an ultimate goal in quantitative 
morphological phenotyping. Ideal image analyses require precision, such as proper probability distribution analyses 
to detect subtle morphological changes, recall to minimize artifacts due to experimental error, and reproducibility to 
confirm the results.

Results:  Here, we present UNIMO (UNImodal MOrphological data), a reliable pipeline for precise detection of subtle 
morphological changes by assigning unimodal probability distributions to morphological features of the budding 
yeast cells. By defining the data type, followed by validation using the model selection method, examination of 33 
probability distributions revealed nine best-fitting probability distributions. The modality of the distribution was then 
clarified for each morphological feature using a probabilistic mixture model. Using a reliable and detailed set of exper-
imental log data of wild-type morphological replicates, we considered the effects of confounding factors. As a result, 
most of the yeast morphological parameters exhibited unimodal distributions that can be used as basic tools for 
powerful downstream parametric analyses. The power of the proposed pipeline was confirmed by reanalyzing mor-
phological changes in non-essential yeast mutants and detecting 1284 more mutants with morphological defects 
compared with a conventional approach (Box–Cox transformation). Furthermore, the combined use of canonical cor-
relation analysis permitted global views on the cellular network as well as new insights into possible gene functions.

Conclusions:  Based on statistical principles, we showed that UNIMO offers better predictions of the true values of 
morphological measurements. We also demonstrated how these concepts can provide biologically important infor-
mation. This study draws attention to the necessity of employing a proper approach to do more with less.
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Background
Morphology is a basic phenotypic characteristic that 
can be affected by genetic and environmental perturba-
tions. Consequently, living organisms have their own 
morphologies that evolve through natural selection [1, 
2]. In addition to the morphology of individuals, mor-
phology can also be defined at the cellular level. Cell 
morphology is frequently related to cellular function. 
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While cell morphology reflects the behaviors and 
intercellular communication of cells in a multicellular 
organism, it is affected by the genotype and genetic net-
works in unicellular organisms [3]. Therefore, morpho-
logical phenotyping of unicellular organisms has been 
carried out to achieve a global understanding of the cell 
system as well as to answer specific questions in cell 
biology [4, 5].

Quantitative morphological phenotyping (QMP; Fig. 1) 
of cells is performed using a well-designed procedure [6–
8]. Following precise sample preparation [9], the QMP 
pipeline begins with image analysis (Fig. 1-01). Morpho-
logical information can be obtained by processing digi-
tal images of cells. Morphological features are extracted 
using various image analysis tools [10, 11]. For example, 
CellProfiler is used for analyzing images of the tissues and 
cells of humans, fruit flies, worms, and yeast [12], while 
CalMorph is used for analyzing images of Saccharomyces 
cerevisiae cells [9, 13–15]. Increased reproducibility and 
reduced artifacts are often achieved using image qual-
ity control systems associated with the image analysis 
tools [16]. After statistical modeling by transforming and 
normalizing data (Fig. 1-02), the morphological data are 
interpreted as biologically meaningful insights (Fig. 1-03) 
and shared by the community, finally inspiring collabora-
tive advancements (Fig. 1-04) [17]. Although many data 
analysis techniques have been developed, more precise 

and accurate morphological analytical methods are still 
desired for QMP.

Because biological measurements are fundamentally 
noisy, efforts have been made to estimate true values in 
quantitative biology [7, 18, 19]. The true value of a meas-
urement can be statistically estimated with an appro-
priate probability distribution, which is defined as the 
mapping between a measurable space and the unitary 
interval. Commonly used probability distributions for 
biological data are unimodal: Gaussian, reverse Gumbel, 
gamma, beta, etc; distributions for continuous variables, 
as well as binomial, beta-binomial, Poisson, hypergeo-
metric, etc.; and distributions for discrete variables [20]. 
However, it is uncertain whether real biological data, 
such as microscope images, follow a simple probability 
distribution. If a probability distribution behaves uni-
modally in the morphology space, a precise and accurate 
estimation of the true value of a morphological measure 
can be obtained (Fig. 2).

To precisely estimate the true values of morphologi-
cal data, we attempted to assign the best-fit unimodal 
probability distribution model for each morphologi-
cal measure. After appropriate probability distribution 
models were logically assigned to each of the 501 sub-
jective morphological features defined in S. cerevisiae 
[9], we validated them using the Akaike information 
criterion (AIC) [21]. We then examined the modality of 

Fig. 1  QMP pipeline. Representative workflow of the main steps for QMP. Each step represents a wide range of analytical methods and various 
approaches that might vary from study to study [16]. The underlined terms represent the main focus of this paper
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the distribution of the morphological features. We used 
existing approaches and R packages to integrate these 
sequential steps into a single logical pipeline (UNImodal 
Morphological [UNIMO)] data). Through the successful 
assignment of unimodal probability distribution models, 
we can run a powerful parametric approach, providing 
new biological information that can be masked in com-
monly used methods. Our research highlights the impor-
tance of employing proper analytical tools in phenome 
studies.

Results
Probability distribution in morphological features
The features defined in cell morphology include the size, 
density, number, length, distance, and angle (Supplemen-
tary Fig. S1A). In addition, biological features associated 
with cell morphology include comparison measurements 
obtained, for example, by calculating ratios between two 
related morphological measurements, measuring varia-
tions in cell morphology, and comparing proportions of 
specific types of cells in the population (Supplementary 
Fig. S1B). The shapes and patterns of natural organisms 
(Fig. 2A) do not always follow the complete Gaussian dis-
tribution (Fig.  2B). Therefore, to anticipate precise and 

accurate values in morphometrics, we must define the 
best probability distribution in each scale (Fig. 3).

Many types of morphological measurement data [22], 
such as cell size, brightness, and length, and gradient-
based image descriptors used in the field of computer 
vision [23], represent continuous non-negative measures 
(0 ≤ y; Fig. 3), generally showing skewed distributions. Of 
the 501 parameters used in the yeast CalMorph system, 
183 parameters are non-negative values with skewed 
shapes where gamma and Weibull distributions fit well; 
177 and 6 parameters, respectively, based on AIC model 
selection (Supplementary Fig. S2A; Supplementary Table 
S1A).

Ratio measurements, such as the axis ratio, repre-
sent the second data type, continuous bounded values 
between zero and one (0 ≤ y ≤ 1; Fig.  3), and are also 
mainly skewed-like beta distributions of the first kind 
(hereafter beta distribution). Among the CalMorph 
parameters, 37 parameters are expressed as ratios and 
can follow the beta (36 parameters) and logit-normal 
(one parameter) distributions (Supplementary Fig. S2B; 
Supplementary Table S1B).

Morphological noise can be defined by uncoupling 
the dependency between the coefficient of variation 

Fig. 2  Possible morphological features used in QMP. A Morphological phenotyping includes a wide range of research topics and, in each field, 
includes various morphometric, densitometric, and structural/spatial features. B Examples of different types of distributions (bell-shaped, skewed, 
and multimodal) that can be found in morphological measurements are shown. For accurate biological inference, these characteristics must be 
properly addressed. This figure was designed using resources from www.​freep​ik.​com

http://www.freepik.com
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(CV) and the mean values [24, 25]. Continuous posi-
tive and negative real values can be obtained (−∞ < y 
< ∞) (Fig. 3) since the data are transformed around the 
locally estimated scatterplot smoothing fitted curve at 
zero (Supplementary Fig. S3A). As a result, the noise 
values can potentially generate a Gaussian distribution. 
There are 220 noise parameters in the CalMorph system, 
and the Shapiro–Wilk normality test revealed that 209 
parameters are Gaussian distributed (P < 0.05, after Bon-
ferroni correction; Supplementary Fig. S3B; Supplemen-
tary Table S1C). Further statistical analysis with the AIC 
revealed that among the remaining 11 parameters, five 
and six parameters fit logistic and type I extreme value 
(i.e., reverse Gumbel) distributions, respectively (Supple-
mentary Fig. S2C; Supplementary Table S1C).

The proportions of discrete count data, such as the 
proportion of a specific type of cells, take finite values 
between zero and one (0 ≤ y < 1; Fig.  3). This type of 
data can follow either binomial or beta-binomial dis-
tributions, depending on the constantness of the sto-
chastic event. There are 61 proportion parameters in 
the CalMorph system. To know which distribution fits 
the morphological dataset better, we performed analy-
sis with the AIC and determined that 38 and 23 Cal-
Morph parameters follow beta-binomial and binomial 

distributions, respectively (Supplementary Fig. S2D; 
Supplementary Table S1D).

We employed the AIC to show that the reference dis-
tributions identified previously [14], including gamma, 
beta, Gaussian, and binomial distributions for 177, 36, 
209, and 23 CalMorph parameters, respectively, are bet-
ter fitted than all other distributions (Supplementary 
Table S1). Thus, by defining the data type, followed by 
validation with the model selection method, the mor-
phological parameters of CalMorph consist of four data 
types that can be defined by nine distributions, namely, 
gamma, Weibull, beta, logit-normal, Gaussian, logistic, 
reverse Gumbel, beta-binomial, and binomial distribu-
tions (Supplementary Table S1).

Data modality
The modality of the distribution refers to how many 
modes exist in the distribution. It reflects the complex-
ity of the distribution as well as the mixed populations 
generating the distribution. Therefore, a simple statistical 
approach can only be applied to the unimodal distribu-
tion [26]. To estimate the true values during QMP, uni-
modal distributions are preferable.

To clarify the modality of the distribution for each 
morphological feature, we used a reliable and detailed 

Fig. 3  Various data types used for quantitative morphological phenotyping. Morphological measures were divided into five types. Continuous 
non-negative, bounded, real, and discrete finite measures were found in population-level studies, whereas discrete infinite measures were found 
in single-cell studies. Each type has a clear definition and distinct characteristics. Example possible distributions are sorted alphabetically. Bold font 
indicates the best-fitted distributions in this study. For a detailed list, see Supplementary Table S1
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set of experimental log data of wild-type morphological 
replicates. We also used a probabilistic mixture model to 
check the modality of the predefined probability distri-
butions. We confirmed the most likely number of com-
ponents (herein, we used 1 ≤ c ≤ 10) using the Bayesian 
information criterion (BIC; Supplementary Fig. S4) and 
iterations of randomization (see Supporting Text). Each 
of the 183 non-negative CalMorph parameters was sub-
jected to gamma or Weibull mixture-model-based clus-
tering. We found that 150 parameters showed a unimodal 
distribution. Likewise, 32, 197, and 52 parameters were 
unimodal out of 37 ratio, 220 noise, and 61 proportion 

parameters, respectively. In total, 431 (86%) of the 501 
CalMorph parameters were unimodal (Fig.  4A; Supple-
mentary Table S2).

There were still 70 (14%) CalMorph parameters whose 
distributions were multimodal. Because multimodality of 
a distribution can be caused by confounding factors and 
outliers, we investigated these possibilities in detail. We 
considered a group of five confounding factors, includ-
ing a combination of different filters for microscopy and 
the image acquisition period, based on experimental 
logs (Fig. S5, inset). We introduced a generalized linear 
model (GLM), given the probability distribution for each 

Fig. 4  Modality analysis of the CalMorph morphological parameters. A Mixture-model-based clustering was used to check the modality of 501 
CalMorph parameters according to the data types of (i) non-negative, (ii) ratio, (iii) noise, and (iv) proportion measures. Using 114 replicates of 
wild-type yeast cells revealed 431 unimodal and 70 multimodal parameters. B Confounding factors due to the differences in the experimental 
conditions and outliers were further considered as multimodal behaviors. A GLM was introduced by constructing a linear model (one-way analysis 
of variance) of the confounding factors for each parameter. Outlier data points were removed after defining a threshold for each parameter 
(one-percentile rule). As a result, 490 unimodal parameters were detected



Page 6 of 13Ghanegolmohammadi et al. BMC Biology           (2022) 20:81 

parameter (Supplementary Table S1), of the confounding 
factors (Supplementary Fig. S5) and examined the mul-
timodality again. In addition, we removed outlier data 
points after defining a threshold (one-percentile rule; 
Supplementary Fig. S6). As a result, the cumulative uni-
modal parameters summed up to 180, 37, 212, and 61 for 
non-negative, ratio, noise, and proportion parameters, 
respectively (Fig. 4B), increasing the unimodal frequency 
to 97.8% (490 out of 501). Thus, most of the CalMorph 
parameters exhibited unimodal distributions that can 
be used as the basic tools for further statistical analy-
ses. Compared with the Box–Cox power transformation 
used in our previous study [9], UNIMO offers many more 
morphological parameters (Supplementary Fig. S7, Sup-
plementary Table S3).

Application of the proposed pipeline
To assess the power of the proposed UNIMO pipeline, 
we determined the number of morphologically distinct 
mutants by analyzing morphological changes of the 4708 
haploid non-essential yeast mutants [9]. Employing 490 
unimodal CalMorph parameters, we found that a total 

of 3522 mutant strains exhibited differences from wild-
type cells in at least one parameter (Fig. 5; false discovery 
rate [FDR] = 0.01; Supplementary Table S4). Compared 
with our previous analysis [9] in which we found 2390 
mutants with abnormal phenotypes, this study showed 
~1.5 times greater power (FDR = 0.01; Supplementary 
Fig. S8). We also estimated the rate of false positives, 
which confirmed that the number of abnormal mutants 
was not overestimated in this analysis. These analyses 
suggested that our approach is precise enough to capture 
subtle morphological changes.

Next, we investigated how important biological infor-
mation can be obtained by using the UNIMO pipeline in 
combination with canonical correlation analysis (CCA). 
CCA was used to explore the relationships between two 
multivariate datasets (in this case, morphological phe-
notypes and gene functions). We compressed all com-
binations of 490 CalMorph parameters and 3127 Gene 
Ontology (GO) terms into linear combinations of phe-
notypic (32 phenotype canonical variables [pCVs]) and 
gene function (32 gene canonical variables [gCVs]) fea-
tures (P < 0.05; Supplementary Fig. S9; see the “Methods” 

Fig. 5  Morphological phenotyping of yeast non-essential mutants. A Histograms showing cell sizes at the M stage (C101_C); 4708 mutants and 
109 his3 replicates are shown in black and yellow, respectively. Dashed lines indicate significant thresholds for the UNIMO (purple) and Box–Cox 
transformed (orange) methods at FDR = 0.01. Example microscopy images of yeast cells are shown: actin, cell wall, and nucleus are shown in red, 
green, and blue, respectively. White arrows point to cells detected in the M stage by CalMorph. The unit for size was the number of pixels squared; 
for details, see the CalMorph user manual. B Yeast non-essential genes important for morphology are identified by applying UNIMO and Box–Cox 
transformation
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section). We used the correlations between morpho-
logical canonical variables to construct global functional 
maps of the non-essential yeast genes. Based on the rela-
tionships, we systematically mapped 2915 non-essential 
genes belonging to 130 GO terms (Supplementary Table 
S5). We observed 44 core gene groups containing 1900 
non-essential genes with various functions, such as ion 
homeostasis (GO:0050801; 80 members), structural con-
stituents of ribosome (GO:0003735; 90 members), gener-
ation of precursor metabolites and energy (GO:0006091; 
57 members), and carboxylic acid biosynthetic processes 
(GO:0046394; 54 members); these served as hubs in the 
decentralized network and showed more significant asso-
ciations than the others (Fig. 6A and Supplementary Fig. 
S10A). When the dendrogram was constructed on the 
basis of the proportion of significant correlations, core 
gene groups were not clustered (Fig. 6B and Supplemen-
tary Fig. S10), implying that even gene groups with a 
small number of associations play important and diverse 
roles through their interconnections. Our analyses using 
UNIMO and CCA provided an overview of the func-
tional relationships between large numbers of non-essen-
tial genes based on morphological phenotypes.

We also explored the cellular pathways to evaluate the 
effect of the additional biological information obtained 
by the UNIMO pipeline. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis, using significantly abnormal mutants identified by the 
UNIMO method (n = 3522; FDR = 0.05), included more 
categories compared to the Box–Cox method (n = 2390; 
FDR = 0.05), such as metabolic pathways, autophagy 
processes, and protein processing (Supplementary Fig. 
S11 and Supplementary Table S6). This indicates the 
importance of the additional information obtained by 
UNIMO.

We mapped the newly detected cellular pathway by 
UNIMO to the global functional maps and found that 
the map contained information at multiple resolu-
tions. For instance, we mapped 32 autophagy genes 
(Group 73; Supplementary Table S5) on the functional 
map at a higher resolution (Supplementary Fig. S12A), 
which enabled the detection of common morphologi-
cal defects (Supplementary Fig. S12B). We found that 
atg17∆ cells were the most defective cells, exhibiting 
significant differences in 90 morphological parameters 
(Supplementary Table S4). Among the atg mutants 
in this group, the morphology of atg11∆ cells were 
similar to that of the ATG17 knockout cells (r = 0.48, 
two-sided t test, P < 0.01). We further investigated the 
morphological similarities between atg11∆ and atg17∆ 
mutants (Supplementary Fig. S12C) in which gene dele-
tions were characterized by altered mother cell shapes 
(C115_A, C115_A1B, C103_A, and C103_A1B), larger 

bud size (C11-2_C and C12-2_C), altered bud shape 
(C107_C), and altered nuclear morphology (D134_C, 
D185_C, and D186_C). Cell shape (C115_A; whole-cell 
axis ratio at the G1 stage) was similarly elongated in 
20 mutants (green nodes in Supplementary Fig. S12B), 
indicating that these atg mutants had common mor-
phological characteristics.

We successfully applied UNIMO to an archive mor-
phological dataset of yeast non-essential genes and 
detected subtle morphological abnormalities that were 
ignored in our previous study [9]. Visualizing the global 
functional network and pathways enrichment analysis 
also provided novel biological insights.

Discussion
The current study presents the reliable UNIMO pipe-
line for understanding the true values of morphological 
measures by assigning nine unimodal distributions to 
their probability distributions. After possible distribu-
tions were assigned to the morphological measures, the 
distribution models were validated with the AIC. We 
succeeded in preparing unimodal probability distribu-
tions for most of the yeast morphological features to 
ensure parametric analysis is applied to obtain biologi-
cally important information in the downstream analy-
ses. This was conventionally overlooked previously, 
which can actually confine the power to distinguish 
morphological variations. Multimodality may instead 
lead to misinterpretation of the observed phenomena 
and affect the reproducibility of the results at certain 
points.

Advantages of using unimodal probability distributions
Once the unimodal probability distribution models are 
defined for the morphological measures, any appropri-
ate parametric methods can be employed in the down-
stream analyses. Application of parametric approaches 
allows for sensitive morphological distinctions: we used 
a relevant approach to identify more than half of the 
essential yeast genes as morphological haploinsufficient 
genes [14]. Another advantage is that we can use the 
GLM, an extension of the normal linear model [27], for 
hypothesis testing. Furthermore, we can employ vari-
ous machine learning approaches to recognize, predict, 
understand, and obtain data/knowledge. In this way, par-
ametric approaches can be applied in the future to per-
form correlation analyses to compare morphologies [28], 
classification analyses to distinguish categories based on 
morphology [29], prediction analyses to identify similar 
morphologies [30], factor analyses to explore potential 
common factors [31], analysis of morphological diversity 
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Fig. 6  Overview of functional relationships between nonessential yeast genes. A Graphical representation of 2915 nonessential yeast genes with 
morphological defects and their functions is shown using the Spring layout. This network shows the similarities in phenotypes between pairs, 
calculated using 32 pCV scores and expressed as correlation coefficients (see the “Methods” section). Of the 130 functional groups (P < 0.05, after 
Bonferroni correction; Supplementary Table S5), 45 (orange and red dots) and 83 (turquoise and red dots) were identified as core and dense groups, 
respectively. Additionally, 44 groups (red dots) were identified as both core and dense groups. Of these 44 groups, most related GO terms belonged 
to 19 groups. Numbers in parentheses represent the number of group members. B Pairwise phenotypic correlation coefficients between functional 
gene groups. Significant correlations are shown as colored cells. Black cells indicate no significant correlation. The dendrogram was generated 
based on the proportion of significant correlations. The bar plot indicates the number of pairs with significant similarity. The 44 core and dense 
groups are shown in yellow (Supplementary Table S5)
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for breeding purposes [32, 33], and analysis of sources of 
bias in microfluidic cell culture research [34].

Various probability distributions fitted 
to the morphological data
We showed that our QMP data contained four differ-
ent data types that can well be explained by nine dis-
tributions. Defining the best probability distribution 
model is one of the most important factors in this study. 
However, we believe that the same nine probability dis-
tributions may not always be selected during QMP. For 
example, non-negative values may form heavily skewed 
probability distributions (e.g., inverse Gaussian). At the 
single-cell level, Poisson or negative-binomial distribu-
tions are commonly used for count analyses. Eventually, 
for non-negative, ratio, and proportion measures, various 
inflated distributions (zero-, one-, or both, according to 
the distribution) should also be considered to accommo-
date special cases in which there is a mixture of discrete 
values and a continuous distribution. Thus, while this 
study provides a solid foundation for phenome studies, 
researchers may need to identify the best-fitting model to 
accommodate specific morphological measures.

Unimodal distribution of the morphological measures
Data modality is another concept that we took into 
account in this study. Since simple explanations are pre-
ferred until the data justify a complex model, a unimodal 
distribution is better than a multimodal distribution a 
priori. This is the principle of Occam’s razor that entities 
should not be multiplied needlessly. But more practically, 
a unimodal probability distribution is better because 
it can be employed for parametric analysis, providing 
a simple assumption to detect significant changes and 
improve accurate interpretation of the results.

We found that most of the probability distributions of 
the yeast morphological features are unimodal. However, 
unimodal features may not be always prepared. The rea-
son why this study was successful is that many single-cell 
parameters of CalMorph exhibited unimodality [35], 
according to the automatic classification of cells based 
on the cell cycle stage [9]. We believe that an important 
benchmark is the number of unimodal, single cell param-
eters when applying UNIMO to any image processing 
tool. In the case of multimodality, we can use distinct cell 
attributes, such as the cell cycle stage [9], cell shape [16], 
and cell type [36, 37]. Furthermore, it is essential to con-
sider the effects of confounding factors. The 11 remain-
ing multimodal parameters (Supplementary Fig. S13) 
may be either unknown confounders or multimodal as a 
property of the morphological features in the first place.

Finally, to illustrate the impact of this study, we thought 
it might be possible to apply UNIMO to archived imaging 

data. However, affirming this is challenging because labs 
do not publicly share morphological measures of stand-
ard data sets with experimental logs alongside the per-
turbed cells. The Supporting Text, Supplementary Fig. 
S14, and Supplementary Table S8 elaborate on the versa-
tility of this pipeline using a hypothetical standard data 
set of morphological measures obtained by CellProfiler 
[12] and using data from [38]; Supplementary Fig. S15 
and Supplementary Table S9 show the results.

Conclusion
The estimation of true values is the ultimate goal in quan-
titative morphological analyses. Due to its simple mathe-
matical and computational specifications, biologists tend 
to first try the Gaussian distribution, although morpho-
logical features are not always normally distributed. Non-
normal data are transformed to obtain approximately 
normal distributions, but the first choice after normaliza-
tion failure is a non-parametric method. Nevertheless, to 
detect subtle differences, higher statistical power is desir-
able; therefore, the application of parametric approaches 
allows for clearer morphological distinctions. In this 
study, we demonstrated a better prediction method of 
the true values of morphological measurements using 
UNIMO. We also demonstrated how these concepts can 
provide biologically important information. Our study 
offers a framework for future phenome studies and ena-
bles further development of a typical QMP pipeline.

Methods
Selection of the probability distribution for each 
morphological measure
We determined models of the probability distributions for 
each of the 501 morphological parameters to accommodate 
the statistical model used in the GLM [20]. The AIC was 
employed to find the best-fitted model. Figure 3 and Sup-
plementary Fig. S1 present the logic behind the procedure. 
More details are also described in the Supporting Text.

Population level modality check
We used mixture-model-based clustering [39, 40] to check 
the modality of 501 CalMorph parameters according to 
predefined distributions (Supplementary Table S1). The 
BIC was used to compare the primary probability models 
that differ in the number of components (c); a mixture of 
1 ≤ c ≤ 10 distributions was tested. Supplementary Fig. 
S4 illustrates a flowchart of the modality check. Further 
explanations are provided in the Supporting Text.

Tracking morphological variations in the non‑essential 
gene mutants using the proposed pipeline
To test the effectiveness of the proposed pipeline, 
we reanalyzed morphological variations in the 4718 
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non-essential yeast gene mutants [9]. Of the 4718 
open reading frames (ORFs), 4 (YAR037W, YAR040C, 
YGL154W, and YAR043C) were deleted from the Sac-
charomyces Genome Database (SGD; https://​www.​yeast​
genome.​org/), and 6 were merged with other ORFs (Sup-
plementary Table S4). Ultimately, we compared 4708 
mutants to a dataset of haploid wild-type yeast strains 
(his3; 109 replicates [41]) using UNIMO. Models of the 
probability distributions of the 490 UNIMO parameters 
were used to accommodate the pre-defined statistical 
models (Supplementary Table S3). We calculated the P 
value as the deviation of each mutant from the wild-type 
strains based on the estimated two-tailed probability dis-
tribution using the distribution probability functions in 
the gamlss package (e.g., pGA, pBE, pNO, and pBI func-
tions). For each function, the P value was calculated from 
the mean and dispersion (if applicable; for example, bino-
mial distribution does not consider dispersion) of the 
model fitted to the wild-type population. The FDR, i.e., 
the rate of type I errors for the rejected null hypothesis 
due to multiple comparisons, was estimated using the 
q value function in the q value package [42]. Ultimately, 
we estimated the number of mutants with significant 
changes, if any, and abnormal morphology in at least one 
parameter (FDR = 0.01).

Z value transformation
To estimate Z values, after the maximum likelihood esti-
mation (MLE) had converged, morphological data were 
transformed to Z values using the Wald-test (one-sample 
two-sided test using the summary.gamlss function of the 
gamlss package), where the Z value in the ith parameter 
of the jth mutant is [20]:

Here, βij is the MLE of the jth mutant, βi0 is the MLE 
of the null distribution (109 replicates of the haploid 
wild-type yeast strains), and SEij is the standard error. For 
the beta-binomial distributed parameters (Supplemen-
tary Table S3D), if the numerator of a mutant was equal 
to estimated value from the wild-type population, the Z 
value was set to zero; otherwise, it was set to the maxi-
mum value of the other mutants.

Construction of the morphological‑functional network
Gene Ontology annotation
For the GO annotation analysis, we downloaded the basic 
version of the GO file from the GO Consortium (http://​
geneo​ntolo​gy.​org/) and gene annotations from the SGD. 
A Boolean matrix of GO terms of 3522 genes with abnor-
mal morphologies (UNIMO; FDR = 0.01) was generated 

Zij =
βij − βi0

SEij

as the functional profile (if a gene was annotated by a GO, 
the value was 1; otherwise, it was 0). We selected 3127 
GO terms, each of which was annotated for more than 
two genes (i.e., removing unique terms) and less than 200 
genes (i.e., removing global terms) in the genome with 
no identical sets of annotated genes. We excluded 577 
genes that were not annotated by the 3127 GO terms (i.e., 
removing genes with no functional reports).

Canonical correlation analysis
We used CCA to reduce the dimensions from 490 param-
eters and identify biologically important morphological 
features. For this purpose, we used the Z values of 2945 
genes as the morphometric profiles (i.e., 2945 × 490) and 
the Boolean matrix of GO terms as the functional pro-
file (i.e., 2945 × 3127). To reduce the dimensionality, we 
subjected the morphometric profiles to principal com-
ponent analysis (PCA; prcomp function of the R stats 
package). The initial 146 PCs (hereinafter referred to as 
phenotype principal components; pPCs) accounted for 
more than 95% of the data variation (i.e., the cumulative 
contribution ratio; CCR). Next, to estimate the functional 
relationships among the 2945 genes, we used the struc-
ture of 3127 GO terms. The dimensionality of the func-
tional profiles was reduced by PCA according to [43], 
with some modifications. Briefly, we applied PCA on 
the Boolean matrix of all genes (i.e., 2945 × 3127). This 
approach reduces the dimensionality while preserving 
the structure of the functional relationships among the 
genes. The first 1474 PCs (hereinafter referred to as GO 
term principal components; gPCs) explained 99% of the 
data variation, indicating that approximately 1474 gene 
functions were related to the 2945 genes.

After projection of the Z values on pPCs and a zero 
matrix on gPCs for 109 replicates of the wild-type popu-
lation, we applied CCA to 146 pPCs (CCR = 95%) and 
1474 gPCs (CCR = 99%). The significance of the canoni-
cal correlation coefficients was tested using Bartlett’s 
chi-squared test with the significance level set at P < 0.05 
[44]. Ultimately, 32 morphological features (pCVs) and 
32 gene function features (gCVs) were obtained (Supple-
mentary Fig. S9).

Pairwise canonical correlation analysis
We divided the genes into functional groups with no 
common term. The 2945 nonessential genes with at 
least one GO annotation by the 3127 GO terms were 
clustered into disjunctional functional gene groups 
using common GO annotations. The binary distance 
between each pair of genes was calculated on the basis 
of a Boolean matrix of 3127 GO terms and applied 
for hierarchical cluster analysis by the complete link-
age method (i.e., minimum ratio of the different genes 

https://www.yeastgenome.org/
https://www.yeastgenome.org/
http://geneontology.org/
http://geneontology.org/
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between clusters; hclust R function). Using “static 
branch cutting” at a height < 1, 150 gene groups were 
identified, each of which contained 1–92 genes. We 
selected groups with at least two members (130 groups). 
To assign the most appropriate GO terms to each gene 
group, enrichment of the GO terms was analyzed using 
Fisher’s exact test (P < 0.05, after Bonferroni correc-
tion). In 122 of the 130 groups, more than one GO term 
was enriched. The remaining groups were therefore 
identified as functional gene groups with no GO terms 
in common. For each of the 122 groups, the GO term 
detected using the lowest P value was selected as the 
representative function (Supplementary Table S5).

Next, we calculated pairwise correlation coefficients 
between the functional gene groups. To detect significant 
relationships between the gene groups, we performed 
pairwise CCA between arbitrary pairs of 130 gene groups 
(130C2 = 8385) using 32 pCV scores. To prevent detection 
bias, we used a smaller number of genes than the num-
ber of pCVs by reducing dimensionality of the genes after 
applying PCA to the data of nonessential genes. For pair-
wise CCA, we applied CCA to pCV scores using genes 
and/or selected PCs as variables and extracted canonical 
variables of the gene deletion mutants (mCVs) as inde-
pendent components with correlations between gene 
groups. We tested the significance of the canonical cor-
relation coefficient of the first mCV at P < 0.0005, after 
Bonferroni correction using Bartlett’s chi-squared test 
[44]. Among 8385 pairs in 130 gene groups, 472 had sig-
nificant relationships between groups.

Visualization of the phenotypic correlations
The similarity of phenotypes between pairs (among the 
2945 nonessential gene deletion mutants) was calcu-
lated using 32 pCV scores and expressed as correlation 
coefficients (r). To visualize the network of the 122 GO 
term-enriched gene groups (2890 genes) with significant 
relationships to other groups, we used the qgraph pack-
age and Spring layout [45]. We populated the matrix of 
pCV score-based correlation coefficients after zero-fill-
ing cells using the qgraph function, when no significant 
correlation was detected in mCV1 between groups or 
the absolute value of the correlation coefficient between 
genes of different groups was not the maximum.

Core gene groups
We identified core gene groups with significant correla-
tions. We divided the groups into two clusters by applying 
Poisson mixture-model-based clustering and identified 
groups having significant correlations with nine or more 
other groups as core groups (Supplementary Fig. S16A).

Dense gene groups
We identified dense gene groups, in which the genes 
were closer to each other in the correlation network. 
We divided the groups into two clusters by applying 
gamma mixture-model-based clustering to the average 
distance between arbitrary pairs of genes in the two-
dimensional network and identified the groups with 
an average distance between genes of < 0.2 as dense 
groups (Supplementary Fig. S16B).

Pathway enrichment
Functional categories of significant ORFs detected by the 
UNIMO and Box–Cox transformation methods (3522 
and 2390 ORFs, respectively) were enriched in the KEGG 
database using clusterProfiler package [46] at FDR = 0.05.
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