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Abstract 

Background:  The structural connectivity of neurons in the brain allows active neurons to impact the physiology 
of target neuron types with which they are functionally connected. While the structural connectome is at the basis 
of functional connectome, it is the functional connectivity measured through correlations between time series of 
individual neurophysiological events that underlies behavioral and mental states. However, in light of the diverse neu-
ronal cell types populating the brain and their unique connectivity properties, both neuronal activity and functional 
connectivity are heterogeneous across the brain, and the nature of their relationship is not clear. Here, we employ 
brain-wide calcium imaging at cellular resolution in larval zebrafish to understand the principles of resting state func-
tional connectivity.

Results:  We recorded the spontaneous activity of >12,000 neurons in the awake resting state forebrain. By clas-
sifying their activity (i.e., variances of ΔF/F across time) and functional connectivity into three levels (high, medium, 
low), we find that highly active neurons have low functional connections and highly connected neurons are of low 
activity. This finding holds true when neuronal activity and functional connectivity data are classified into five instead 
of three levels, and in whole brain spontaneous activity datasets. Moreover, such activity-connectivity relationship is 
not observed in randomly shuffled, noise-added, or simulated datasets, suggesting that it reflects an intrinsic brain 
network property. Intriguingly, deploying the same analytical tools on functional magnetic resonance imaging (fMRI) 
data from the resting state human brain, we uncover a similar relationship between activity (signal variance over time) 
and functional connectivity, that is, regions of high activity are non-overlapping with those of high connectivity.

Conclusions:  We found a mutually exclusive relationship between high activity (signal variance over time) and high 
functional connectivity of neurons in zebrafish and human brains. These findings reveal a previously unknown and 
evolutionarily conserved brain organizational principle, which has implications for understanding disease states and 
designing artificial neuronal networks.
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Background
The structure of the brain spans dimensions that have 
many orders of magnitudes apart, from molecules, syn-
apses, and cells to meso- and macro-scale brain sys-
tems. Such extraordinary architecture serves not only to 
process sensory information that guides motor behav-
iors, but also to generate and maintain internal states 
(e.g., emotional, motivational, and cognitive states) 
that can critically influence an organism’s response to 
environment.

Diverse approaches have been employed to under-
stand the brain’s architecture at both anatomical and 
functional levels across multiple scales in invertebrate 
and vertebrate organisms [1–9]. Viral tracing and MRI/
fMRI studies provide meso- to macro-scale descriptions 
of connectivity in mammalian brains [10–12]. A single-
cell resolution connectome of C. elegans’ 302 neurons 
is constructed at the nanometer scale using electron 
microscopy (EM) [1], but the application of EM to more 
complex brains requires enormous time and resources, 
making it best suited for small parts of brain tissues from 
one or few individuals [13–16].

While structural connectome is foundational to func-
tional connectome, it is the functional connectome that 
underlies behavioral and mental states. One effective way 
to gain insights into brain’s functional architecture is to 
record spontaneous neuronal activities brain-wide and 
analyze their activity and functional connectivity. Func-
tional connectivity measures correlations between time 
series of individual neurophysiological events [17]. Such 
connectivity may be direct, indirect through a subnet-
work [18], or via wireless neuro-modulatory communi-
cations [19]. Brain-wide functional connectivity studies 
have been mainly carried out in humans using blood-
oxygen-level-dependent (BOLD) fMRI [7] and MEG/
EEG data [20].

Recent technological advancements in neural activity 
reporters [21] and fast in vivo imaging technologies [22–
24] have made it possible to record whole brain activity 
at cellular resolution in larval zebrafish [3, 25, 26], a ver-
tebrate model organism with relatively small and trans-
parent brains. An elegant body of work has uncovered 
brain-wide dynamics underlying sensorimotor behaviors 
[3, 27–32]. Studies of spontaneous neuronal activities 
in zebrafish however have been few. Nevertheless, these 
studies, mostly focused on the larval optic tectum, have 
revealed that spontaneous activity represents “preferred” 

network states with propagating neuronal avalanches [33, 
34]. Spontaneous activity can be reorganized over devel-
opment [35] and reflects a spatial structure independent 
of and activate-able by visual inputs [36].

The dynamicity of activity and functional connectivity 
patterns in the resting state brain have long fascinated 
system neuroscientists [37]. The resting state brain activ-
ity refers to spontaneous activity without deliberately 
given stimuli. Such activity shows relatively consistent 
distributed patterns and can be used to characterize net-
work dynamics without needing an explicit task to drive 
brain activity. Analyses of cross-correlation between 
activity in different brain regions demonstrate that rest-
ing state networks (RSNs) [38] and default mode net-
works (DMNs) [39] reflect to a considerable extent the 
anatomical connectivity between the regions in a net-
work. Such intrinsic activity dynamics is shown to be dis-
rupted in neuropsychiatric disorders [40].

In this study, we exploit the resting-state brain activ-
ity data to understand how the activity of a neuron 
(or neuronal population) might predict the degree of 
its functional connections. Since neuronal activity is 
an essential drive that underlies functional connec-
tivity, we hypothesize that neurons with high activity 
will likely have high functional connectivity. To test 
this hypothesis, we applied selective-plane illumina-
tion microscopy (SPIM) [22, 41] to image individual 
neuron’s spontaneous activity across the forebrain of 
transgenic larval zebrafish expressing nuclear-targeted 
GCAMP6s. The vertebrate forebrain shares consider-
able homology in developmental ontogeny and gene 
expression domains and is functionally involved in sen-
sory, emotional, and cognitive processing [42–45]. In 
a 6-day-old larval zebrafish, the forebrain is spontane-
ously active with strong local correlations and relatively 
reduced long-range correlations with the mid- and 
hindbrain areas [26, 29]. It remains unclear how such 
spontaneous activity in the forebrain informs the 
underlying functional architecture. Employing image 
processing methods to detect individual neurons, we 
obtained time-dependent activity data for more than 
12K neurons per individual forebrain. Through image 
registration to a brain atlas [46], we assigned ana-
tomical labels to each neuron. We established meth-
ods to identify optimal thresholding values, at which 
the functional connectivity was computed. By fur-
ther classifying individual neurons into three activity 
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and connectivity groups (high, medium, and low), we 
uncovered a surprising complementary distribution of 
highly active vs. highly connected neurons. Moreover, 
we extended such analytical methods to zebrafish whole 
brain and fMRI datasets from the resting state human 
brain. Similar results like that of the zebrafish forebrain 
were obtained. Similar results were also obtained using 
different methodologies (e.g., different numbers of 
k-means clusters, thresholding vs non-thresholding in 
the analysis of functional connectivity). Furthermore, 
shuffled, noise-added, or simulated datasets showed 
different patterns of activity-connectivity relationship, 
suggesting that our observation reflects an intrinsic 
brain network property. Together, these findings reveal 
a mutually exclusive relationship between high activity 
(signal variance over time) and high functional connec-
tivity. Its plausible cause and implications are discussed 
in the “Discussion” section below.

Results
Light‑sheet imaging and image processing generate 
large‑scale single neuron activity data across the larval 
zebrafish forebrain
Using a light-sheet imaging system custom constructed 
based on the iSPIM design [41], we recorded the spon-
taneous activity of neurons in the larval zebrafish fore-
brain under awake resting state. For each individual, 
calcium imaging data were collected at ~ 2 volumes per 
second (26 Z planes with 4-μm interval per volume) for 
~15 min (n=9), and acquired images were processed 
via an image processing pipeline, resulting in a set of 
multi-dimensional data (Additional file  1 A-B, Videos 
S1). The pan-neuronally expressed calcium indicator 
GCAMP6s fused to the histone H2B protein was local-
ized to the cell nuclei. Using this feature, we segmented 
the brain into ROIs (region-of-interest): Each ROI is 
an individual neuron (Additional file  1 C). Neuronal 
activity as reflected by ΔF/F was calculated using time-
dependent baseline estimation procedure as previously 
described [47].

In any calcium imaging experiment, fluorescent signal 
changes as a measure of neuronal activation are often 
plagued with noises, either from the instrument or from 
baseline fluctuations. To differentiate genuine neuronal 
activity-related peaks from such background noises, we 
applied a method based on the Bayesian inference of two-
dimensional distribution of adjacent ΔF/F values [33]. 
This enabled us to obtain “ultra-cleaned” data at 99% 
confidence levels (Additional file  1 D). Together, these 
experiments generate large-scale single neuron activity 
data across a healthy group of individuals at the awake 
resting state (Additional file 1 E).

Brain registration enables comparison of anatomically 
identifiable neuronal activity patterns across different 
individual larval zebrafish
Since individuals differ in morphology, position orienta-
tion under the imaging microscope, and GCAMP signal 
intensity, it is difficult to directly compare their brain 
activity data even though such data are acquired under 
identical conditions to the experimenter’s knowledge. In 
order to compare data across individuals, we registered 
the imaging stacks to the Z-brain atlas [46]. The iSPIM 
imaging stacks, which are acquired at a 45-degree angle 
to the anteroposterior axis, however, cannot be directly 
registered to the Z-brain template, due to (1) a significant 
mismatch between the image directions of our stacks 
and the Z-brain template and (2) a significant difference 
between the volumes of interest (our highly sampled fore-
brain vs. the whole brain). To address this problem, we 
created an intermediate reference brain from the Z-brain 
template, by resampling the forebrain region in the direc-
tion and pixel sizes that are comparable to those of the 
iSPIM stacks (Additional file 2 A-B). For each individual, 
a densely sampled Z-stack (with 1-μm interval) was col-
lected and used for registration to the intermediate ref-
erence brain using computational morphometry toolkit 
(CMTK) [48]. An example of pre- and post-registration 
images were shown in Additional file 2 C.

We assigned the 294 anatomical masks in the Z-brain 
template to the registered iSPIM stacks by reformatting 
the coordinates for each detected neuron according to 
the registered frame. This process enabled us to identify 
anatomical labels for each neuron and the brain regions 
covered by our imaging volumes (Additional file  3). 
Taken together, these analyses generate anatomically 
identifiable neuronal activity data that can be compared 
across individuals.

Visualization of neuronal activity landscape at single‑cell 
resolution in the larval zebrafish forebrain
As a first step toward data analysis, we visualized the 
neuronal activity landscape (Fig.  1A). Each neuron’s 
level of activity was calculated based on the variances 
of ΔF/F across time. The k-means clustering, which is a 
well-known unsupervised learning algorithm [49], was 
used to group neurons based on their activity levels. To 
distinguish neurons with the highest or lowest levels of 
activity, we set the number of clusters to 3. Hence, the 
activity levels of 1, 2, and 3 denoted neuronal groups 
with high, medium, and low activity. The activity level 
before and after classification was shown for an example 
subject (Fig.  1B). More than 80% of neurons were clas-
sified as Activity Level 3 (AL-3), whereas only ~2% of 
neurons belonged to Activity Level 1 (AL-1) (Fig.  1C). 



Page 4 of 20Zarei et al. BMC Biology           (2022) 20:84 

Visualization of their anatomical distribution showed 
that AL-1 neurons were mostly located in the lateral 
region of the forebrain, whereas AL-3 neurons were 
distributed in all brain areas (Fig.  1D). Raster plots of 
individual neuronal activity time series showed that our 
method was effective in separating neurons of high vs 
low activity (Fig.  1E). Similar observations were made 
across all subjects, as reflected by the population statis-
tics (Fig. 1F) and the overlay view of AL-1 neurons from 
all subjects (Fig. 1G). Analysis of detailed anatomical dis-
tributions for AL-1 neurons showed that they are mostly 
located in the telencephalic pallium and diencephalic 
habenula (Fig.  1H). Together, these findings uncover 
highly active neurons that are located laterally in the lar-
val zebrafish forebrain.

Classification of neurons based on their degrees 
of functional connections in the larval zebrafish forebrain
The brain as a complex network involves intricate com-
munications between individual neurons. An under-
standing of their patterns of communications will likely 
inform underlying network architectures. We therefore 
classified neurons based on their degrees of functional 
connections. Here, the degree or number of connections 
between a neuron and the rest of neurons in the dataset 
is used as a measure of functional connectivity, which 
can be approximated using various statistical measures. 
One common and effective measure for estimation of 
the connectivity matrix is the Pearson correlation coef-
ficient value. We calculated the degree of connections 
for each neuron by applying optimal thresholding to the 
connectivity matrixes followed by binarization. The opti-
mal thresholding value for each subject was determined 
using the principle of small world networks that follow a 
power law distribution [50, 51] (Additional file  4). Such 
power law distribution was not observable in randomly 
shuffled data (Additional file 5), indicating its biological 
relevance. Moreover, we showed that known connections 
between olfactory epithelial and olfactory bulb neurons 
were uncovered (Additional file 6), thereby validating our 
method of detecting functional connections.

We next used the k-means algorithm to cluster neu-
rons based on their degree of functional connections 

(Fig. 2A), with the number of clusters also set to 3. The 
connectivity level before and after k-means classifica-
tion was shown for an example subject (Fig. 2B). ~8% of 
neurons belonged to connectivity level 1 (CL-1, the high 
connectivity group) whereas ~70% of neurons were clas-
sified as connectivity level 3 (CL-3, low connectivity) 
(Fig. 2C). Visualization of their anatomical distributions 
showed that the CL-1 neurons were mostly located in 
the medial area of the forebrain (Fig. 2C). Two example 
CL-1 neurons had 1814 and 1506 functional connections 
respectively, in contrast to two example CL-3 neurons 
with 10 and 19 connections, respectively, suggesting that 
our method is effective in separating neurons with high 
vs low connectivity (Fig. 2E). Consistent with the exam-
ple subject, population statistics showed that the CL-1 
neurons represent ~8% of total recorded forebrain neu-
rons (Fig.  2F) and they are in the medial region of the 
forebrain (Fig. 2G). Analysis of detailed anatomical distri-
butions for CL-1 neurons uncovered that Telencephalic 
Olig2 Cluster, Telencephalic S1181t Cluster, and Telen-
cephalic subpallial Otpb strip are among the neuronal 
groups with high degrees of functional connections in 
the zebrafish forebrain (Fig. 2H). Together, these findings 
uncover neurons with high degrees of functional con-
nectivity that are located medially/centrally in the larval 
zebrafish forebrain.

Complementary domains of high neuronal activity 
and high functional connectivity exists in the larval 
zebrafish forebrain
It was intriguing to note that highly active neurons occu-
pied regions that are complementary to those occupied by 
highly connected neurons in the larval zebrafish forebrain 
(Fig.  3A). Plotting the activity and functional connectiv-
ity values for all recorded neurons in one example subject 
showed that highly active neurons did not overlap with 
highly connected neurons (Fig.  3B). To visualize the dis-
tribution and assess statistical significance on a population 
scale, we used a bootstrapping method [52] to construct 
a graph showing the percentage of neurons with different 
levels of activity and connectivity within 95% confidence 
intervals (i.e., AL-1&CL-1, AL-1&CL-2, AL-1&CL-3, 
AL-2&CL-1, AL-2&CL-2, AL-2&CL-3, AL-3&CL-1, 

Fig. 1  Visualization of neuronal activity landscape at cellular resolution in the larval zebrafish forebrain. A Overview of the classification of individual 
ROIs (neurons) based on their level of activity. The variance of df/f of each ROI was used as a measure of its activity. The k-means algorithm was 
used to classify each ROI into 3 levels. B Sorted ROIs (left) vs. clustered ROIs (right) based on their activity level for an example subject. C Pie chart 
showing the percentage of ROIs in three activity level categories for an example subject. Less than 2% of ROIs are highly active (level I) but more 
than 80% are largely inactive. D Dorsal and lateral views of the three activity categories of ROIs’ distributions in the example subject’s forebrain. E 
Raster plot of ROIs with different levels of activity in an example subject: (left) activity level 1 and (right) activity level 3. F Percent of total recorded 
neurons in each activity level category across 9 subjects. G Overlay view of highly active neurons (level 1) in all 9 subjects shows that they are 
located in the lateral part of the forebrain. H Anatomical distribution of activity level 1 neurons sorted based on the percentage of total recorded 
neurons in each anatomical mask. The number of replicates used is 9

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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AL-3&CL-2, AL-3&CL-3). Specifically, 9 subjects were ran-
domly sampled with replacement, and this was repeated at 
least 25 times. Neurons belonging to both AL-1 and CL-1 
were undetected (Fig. 3C), confirming a mutually exclusive 
relationship between highly active and highly connected 
neurons in the larval zebrafish forebrain.

Neuronal populations of high activity versus high 
functional connectivity are largely non‑overlapping 
in the whole larval zebrafish brain
We next wondered whether our observation in the 
zebrafish forebrain is applicable to the whole brain. The 
whole brain spontaneous activity data from Chen et  al. 
[29] were analyzed. Individual neuronal activity time series 
were used to calculate each neuron’s activity and func-
tional connections (Fig. 4A). By plotting their relationship, 
we found that, like the forebrain (Fig.  3B), neurons with 
both high activity and high connectivity were non-existent 
(Fig. 4B, represented by the empty black circle). Similarly, 
on a population scale, neurons that belonged to AL-1 
(highest level of activity) and CL-1 (highest level of con-
nectivity) approached zero (Fig. 4C). These results suggest 
that neurons that are both highly active and highly con-
nected are undetectable in the whole larval zebrafish brain.

K‑means clustering of neurons into five clusters yields 
the same finding for both forebrain and whole brain data
To verify whether not detecting neurons that are both 
highly active and highly connected is due to clustering 
neurons into three clusters, we divided the data into five 
clusters and examined the relationship between activ-
ity and functional connectivity. The same trends were 
observed for both the forebrain and whole brain sponta-
neous activity data (Additional file 7), suggesting that our 
finding holds true regardless of the number of clusters 
generated by K-means analysis.

Noise‑added, shuffled, and simulated data show 
activity‑connectivity relationships that are distinct 
from the real brain data
To determine whether the lack of ROIs that are both 
highly active and highly connected is unique to the 

zebrafish brain data, or whether it is a property of any 
sets of interconnected units, we applied our analytic 
pipeline to shuffled, noise-added, or simulated data. 
Three approaches were used to generate these datasets 
(Fig. 5A): First, we added different levels of noise to our 
brain data. Second, we shuffled neuronal activity time 
series across time and space. Finally, we generated a ran-
dom covariance (i.e., connectivity) matrix and used the 
Cholesky method [53] to construct the corresponding 
activity matrix. We found that the activity-connectivity 
relationship changed drastically with increasing noises 
added to the real brain data (Fig. 5C). When the activity 
time series were shuffled in both time and space, func-
tional connections were completely lost, resulting in con-
nectivity of 0 regardless of neuronal activity (Fig.  5D). 
Finally, simulated data showed an intriguing relationship 
between activity and connectivity, such that when activ-
ity was above certain values, connectivity became very 
high, and such relationship was sensitive to noise addi-
tion (Fig.  5E). Taken together, these results suggest that 
the lack of both highly active and highly connected neu-
rons is a real attribute to the zebrafish brain.

Regions of high neuronal activity versus high func-
tional connectivity are largely non-overlapping in the 
resting state human brain.

To determine whether the observed relationship 
between activity and connectivity is an evolutionarily 
conserved phenomenon, we analyzed the resting state 
human brain functional magnetic resonance imaging 
(fMRI) data from Centre for Biomedical Research Excel-
lence (COBRE) dataset [54] (Fig. 6A). The COBRE data-
set includes the resting state fMRI data from 74 healthy 
individuals that were used in this study. The fMRI dataset 
for each subject includes volumes of blood-oxygenation-
level-dependent (BOLD) signals of 5 minutes. The BOLD 
signal reflects changes in deoxyhemoglobin driven by 
localized changes in brain blood flow and blood oxygena-
tion, which are coupled to underlying neuronal activity 
by a process termed neurovascular coupling [55]. In this 
study, we used the variances of BOLD signals over time 
as the ROI activity. This is analogous to our zebrafish cal-
cium signal data analysis, where the variances of ΔF/F 

(See figure on next page.)
Fig. 2  Classification of neurons based on their degree of functional connections. A Overview of the classification of individual ROIs (neurons) based 
on their level of functional connectivity (degree). The Pearson correlation coefficient was used to calculate the correlation matrix, which was then 
thresholded using the optimal threshold value. The k-means clustering algorithm was used to cluster ROIs based on their degree. B Sorted ROIs 
(left) vs. clustered ROIs (right) based on their functional connectivity level for an example subject. C Pie chart showing the percentage of ROIs in 
three connectivity level categories for an example subject. The ROIs with the highest level of functional connectivity is the smallest group (around 
than 8%). D Dorsal and lateral views of the three connectivity categories of ROIs’ distributions in the example subject’s forebrain. E The connectivity 
of ROIs with the connectivity levels 1 and 3 in the example subject brain. F Percent of total recorded neurons in each functional connectivity level 
across 9 subjects. G Overlay view of highly functional connected ROIs (level 1) in all 9 subjects shows that they are located in the medial part of the 
forebrain. H Anatomical distribution of connectivity level 1 neurons sorted based on the percentage of total recorded neurons in each anatomical 
mask. The number of replicates used is 9
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Fig. 2  (See legend on previous page.)
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signals over time is measured as the ROI activity. While 
each ROI in the larval zebrafish data is a single neuron, 
each ROI in the human fMRI data is a brain region. 
Brodmann areas defined by the Talairach Daemon (TD) 
system [56] were assigned to all subjects. Data pre-pro-
cessing workflow was shown in Additional file 8.

Using the strategy described above, we calculated the 
activity for each ROI, followed by applying the k-means 
algorithm to classify ROIs into three levels of activity 
(Fig. 6B and Additional file 9 A-B). Our analysis showed that 
the anterior division of inferior temporal gyrus displayed 
highest activity that was observed in more than 45% of the 
subjects (Additional file 9 C-D), whereas the hippocampus, 
pallidum, and putamen were less active in the resting state 
(Additional file  9 E and Table  S1). The default mode net-
work (DMN), which is primarily composed of the medial 
prefrontal cortex, posterior cingulate cortex/precuneus, and 
angular gyrus, is defined as having decreased activity dur-
ing task performance compared to the resting state [57]. 
However, the extent of BOLD signal fluctuations in these 
regions in comparison to other brain regions is not clear. 
Based on our calculations of variances in BOLD signals, the 
DMN was not of highest activity at the resting state, with 
the medial prefrontal cortex ranked 16, posterior cingulate 
cortex ranked 112, and angular gyrus ranked 114 out of 132 
ROIs analyzed. These observations suggest that the BOLD 
signal variances show heterogeneity in the DMN and are 
not the highest when compared to other brain regions.

We next used the Pearson correlation measure to derive 
a metric of functional connectivity between ROIs followed 
by k-means classification into three levels of connections 
(Fig. 6C and Additional file 10 A-B). Analogous to the anal-
ysis of functional connectivity in the zebrafish brain, we 
applied the thresholding value that provided the best fit to 
the power-law curve as the optimal threshold value for the 
connectivity matrix. Our analysis showed that the precen-
tral gyrus, right postcentral gyrus, and anterior division of 
Cingulate Gyrus were among the regions with high connec-
tivity in the human brain, whereas the Pallidum right fron-
tal medial cortex, subcallosal cortex, and amygdala were 
much less connected in almost all subjects in the human 
resting state dataset (Additional file 10 C-E, Table S1). Con-
sistent with previous reports that dorsal sensorimotor and 
attentional areas correlate more strongly with the global 

signal, while activity in the anterior temporal lobe corre-
lates relatively less with the global signal [58, 59], we found 
that the highly connected regions, such as the precentral 
gyrus left/right, postcentral gyrus left/right, postcentral 
gyrus left, cingulate gyrus, anterior division, and lingual 
gyrus left, were strongly correlated with the global signal 
and were also strongly correlated with one another.

Like the observations made in the larval zebrafish 
brain, highly active regions and highly functionally con-
nected regions appeared complementary and non-
overlapping in the resting state human brain (Fig.  6D). 
Plotting the activity and functional connectivity values 
for all recorded brain regions in one example subject 
(Fig. 6E) and the percentage of ROIs in each activity and 
connectivity category across subjects (Fig.  6F) further 
reinforced this notion.

To determine whether the lack of ROIs that were both 
highly active and highly connected (as shown in Fig. 6E) 
was observable at threshold levels other than the opti-
mal threshold used for deriving functional connections, 
we generated connectivity matrices of the example 
human subject using different threshold values and plot-
ted the corresponding relationship between activity and 
functional connectivity (Additional file  11). The results 
showed that, at the values much lower than the optimal 
threshold value, many low activity ROIs had inflated con-
nections and distributed toward the top left corner of the 
graph. On the other hand, at the values much higher than 
the optimal threshold value, connections between ROIs 
were lost. Therefore, our observed correlations are only 
found at the values approaching the optimal threshold. 
These observations suggest that our observed activity-
connectivity relationship (as shown in Fig.  6E) likely 
reflects a real brain property that is not observed at arbi-
trarily low or high threshold values, which has likely cap-
tured noises or abolished real connections, respectively.

Additionally, to determine whether consistent results 
can be found without using a thresholding procedure in 
deriving functional connection measures, we calculated 
functional connectivity by using the sum of correlation 
values for each ROI (Additional file 12 A). We obtained 
similar results with (left) or without (right) a threshold-
ing procedure in both zebrafish (Additional file 12 B) and 
human (Additional file 12 C) subjects.

Fig. 3  Highly active and highly connected neuronal populations occupy complementary domains in the larval zebrafish forebrain. A Overlay of 
highly active (red) and highly functional connected ROIs (individual neurons) in the larval zebrafish forebrain across 9 subjects. The highly active 
cells are in the lateral area whereas the cells with a high level of functional connectivity are located in the medial area. B Connectivity levels (Y-axis) 
of all neurons sorted based on their activity (X-axis) in an example subject. Red and blue boxes denote neurons of high activity and high functional 
connectivity, respectively. The dotted circle denotes where highly active and highly connected neurons are expected. C The population distribution 
curve of all neurons with different levels of activity and functional connectivity. Note that neurons that have high activity and high connectivity are 
non-existent. The number of replicates used is 9

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig. 4  Non-overlapping distribution of highly active and highly connected neuronal populations in the whole larval zebrafish brain. A Schematic 
diagram showing the analysis pipeline applied to the whole brain spontaneous activity data from larval zebrafish (n=10). B Connectivity levels 
(Y-axis) of all neurons sorted based on their activity (X-axis) in an example subject. Red and blue boxes denote neurons of high activity and high 
functional connectivity, respectively. The dotted circle denotes where highly active and highly connected neurons are expected. C The population 
distribution curve of all neurons with different levels of activity and functional connectivity. Note that neurons that have high activity and high 
connectivity are non-existent. The number of replicates used is 10
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Finally, to determine whether our observed activ-
ity-connectivity relationship (as shown in Fig.  6E and 
Additional file 13 A) is observable with any sets of inter-
connected units, we performed similar analysis as we 
did with the zebrafish data for the human data. We ana-
lyzed (1) human data with different levels of noises added 
(Additional file  13 B), (2) randomly shuffled data (with 
activity data shuffled in both space and time) (Additional 
file 13 C), and (3) simulated data containing similar num-
bers of ROIs to the human data (with different levels of 
noise added) (Additional file 13 D). Again, we observed 
activity-connectivity relationships that were distinct from 
the real brain data, suggesting that our findings represent 
a network property that is not observed in any intercon-
nected datasets.

Together, like in the zebrafish brain, regions with 
high functional connectivity and regions of high activ-
ity appear mutually exclusive in the resting state human 
brain.

Discussion
One major goal of neuroscience is to understand fun-
damental organizational principles of the brain. While 
functional imaging and analysis of brain networks in lar-
val zebrafish is an emerging field, numerous studies of 
resting state human brain networks have examined brain 
activity or connectivity patterns, suggesting the preva-
lence of activity-based or connectivity-based organiza-
tions [37, 60].

Despite these advances, the relationship between 
activity and functional connectivity in the brain is not 
well understood. This is an interesting and important 
question both for understanding the brain architec-
tural principles and for designing artificial neuronal 
networks. In this study, we have examined the rela-
tionship between activity and functional connectivity 
in both the larval zebrafish forebrain and whole brain 
where each ROI is an individual neuron and in the rest-
ing state human brain where each ROI is a brain region 
composed of millions of neurons. In larval zebrafish, 
activity is measured through quantifying variances of 
fluorescence signals emitted from the calcium indica-
tors (ΔF/F) over time: more frequent events of ΔF/F 
changes are used to indicate higher neuronal activity. 
In the human brain, activity is measured through the 

BOLD signals. More frequent events of BOLD sig-
nal changes are used to reflect higher neuronal activ-
ity. Functional connectivity in both the larval zebrafish 
and human brains is measured using Pearson corre-
lation; the resulting correlation matrices are further 
denoised with optimal threshold values, which are 
determined using the concept of “small-world” network 
with power law distribution. Through these analyses, 
we have uncovered a mutually exclusive relationship 
between ROIs of high activity and ROIs of high func-
tional connectivity across all zebrafish and human 
subjects, such that ROIs of both high activity and high 
functional connectivity are not detected. This shared 
property between the zebrafish and the human brains is 
not observed with noise-added, shuffled, or simulated 
datasets, nor is it sensitive to the analytic methods (e.g., 
k-means clustering numbers or calculating functional 
connectivity with or without a threshold), suggesting 
that it reflects real brain property. This is remarkable, 
given the 450 million years of evolutionary distance and 
the drastic brain size differences (100K vs. 100 billion 
neurons) between the two species.

Although the relationship between activity and func-
tional connectivity in the brain has been infrequently 
assessed, one previous study by Di et al. has examined 
the influence of the amplitude of low-frequency fluc-
tuations (ALFF) on resting-state functional connec-
tivity [61]. Di et al. evaluated the correlation between 
each ROI’s local ALFF, calculated in the low frequency 
band between 0.01 and 0.08 Hz, and its functional 
connectivity, and the correlations were thresholded at 
|r| > 0.364. The functional connectivity of several ROIs 
was found to correlate with its own regional ALFF. 
Our use of variances to infer ROI activity (covering 
a possibly broader frequency) is to a certain extent 
similar to ALFF, which measures the relative contri-
bution of low frequency fluctuations (0.01–0.08 Hz) 
and is determined as the sum of amplitudes within a 
specific low frequency range [62]. Despite this, our 
analysis involves the ranking of all ROIs based on their 
activity and connectivity, which uncovered that the 
ROIs of high activity were not the ones of high con-
nectivity. Di et  al. did not take the same approach 
but instead reported the ROIs with correlated ALFF 
and functional connectivity. Therefore, our findings 

Fig. 5  Shuffled, noise-added, and simulated data show activity-connectivity relationship that is distinct from the brain data. A Schematic showing 
the generation and analysis of noise-added, shuffled, or simulated data. B–E Different datasets with neuronal activity time series (top), cell-wise 
correlation matrix (middle), and the graphed functional connectivity and activity relationship (bottom). B Original data of an example subject. 
C Different levels of noise were added to the original data, resulting in the loss of the activity-connectivity relationship observed in the original 
brain data. Note that the Y axis range is different across the panels. D Neuronal activity time series of the original data were shuffled in both space 
and time. The activity-connectivity relationship observed in the original brain data was lost. E A simulated dataset shows the activity-connectivity 
relationship that is distinct to the brain data and is also sensitive to the levels of noise. The number of replicates used is 9

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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are different because of the different questions being 
asked, but they are not in any way inconsistent, as our 
findings do not exclude the possibility that the ROIs 
with medium/low activity and connectivity might have 
a positive correlation between the two measures.

In summary, our findings are unexpected in two 
ways. First, it is generally thought that a ROI with 
more connections likely display more activity fluc-
tuations, hence higher activity based on our calcula-
tions of variances. Instead, we found the contrary. The 
highly active ROIs have few functional connections; 
thus, to achieve high activity, they must make frequent 
communications with their connected partners. Sec-
ond, the brains of zebrafish and humans are different 
in many ways. In addition to the size and complexity, 
the resting state human brain is unlikely to be at the 
same level as the zebrafish brain, because humans are 
known to engage in many types of cognitive processes 
during “rest”. These processes include mind-wander-
ing, self-reflection, and planning. What is going on 
in the resting state zebrafish brain is unknown but is 
unlikely to be the same as those in the human brain. 
Yet, we found a lack of ROIs that are both highly active 
and highly connected in both brains.

We propose two possible models to explain why such 
exclusive relationship between high activity and high 
functional connectivity is at work in both zebrafish 
and human brains. The first model pertains to a physi-
cal constraint. Given that structural and functional 
connectivity show considerable correlation [18], it is 
possible that neurons with high levels of connections 
are physically incapable of achieving high activity. 
The second model is based on a metabolic constraint. 
ROIs with high activity are at a high metabolic cost 
[63], thereby accumulating more oxidative damage 
and prone to degeneration. To best preserve network 
integrity, it would therefore be desirable to delegate 
the tasks that require high activity to the ROIs with 
low degrees of functional connections, while maintain-
ing ROIs with high connections at low activity. Future 
experiments are necessary to test these models. With 
the accessibility of the zebrafish brain to molecular 

cellular and systems level dissections, such validations 
may be feasible in zebrafish.

Conclusions
By analyzing brain-wide calcium imaging and fMRI data, 
we found a mutually exclusive relationship between high 
activity (signal variance over time) and high functional 
connectivity of neurons in zebrafish and human brains. 
These findings reveal a previously unknown and evolu-
tionarily conserved brain organizational principle that 
have implications for understanding disease states and 
designing artificial neuronal networks.

Methods
Zebrafish strain maintenance and larval sample 
preparation
The transgenic line Tg[HuC-H2B-GCaMP6s] with nacre 
or casper background was used for breeding. Embryos 
were kept in blue egg water (2.4 g of CaSO4, 4g of instant 
ocean salts, and 600μl of 1% methylene blue in 20 l of 
milliQ water) and incubated at 28°C. On 6 days post-
fertilization (dpf), healthy larvae with high GCaMP6s 
expression were selected for imaging. Fish samples are 
held in custom-designed polydimethylsiloxane (PDMS) 
sample holders with each holder carrying up to 5 larvae. 
Each larva was half-embedded in a slot on the sample 
holder, paralyzed with 1mg/mL mivacurium chloride, 
and covered with 2% agarose gel/E3 medium solution. 
After loading the whole group of larvae to be imaged, 
the sample holders were immersed in E3 medium for 1 
h to wash off traces of mivacurium chloride. All animal 
experiments were approved by the Institutional Animal 
Care and Use Committee (IACUC) at the University of 
California, San Francisco, USA.

In vivo calcium imaging using iSPIM
An inverted SPIM (iSPIM) that is similar to a previ-
ously reported design [41] was used for imaging. The 
microscope framework was adapted from a di-SPIM 
(Applied Scientific Imaging, Inc.) [64]. The excitation 
laser (Coherent OBIS LS 488 nm) was fiber-coupled into 
the microscope, collimated, then focused by a 0.3 NA 

(See figure on next page.)
Fig. 6  Largely non-overlapping distribution of highly active and highly connected regions in the resting state human brain. A Overview of the 
classification of individual ROIs (brain regions, n=105) based on their level of activity and functional connectivity (degree). Variations of the brain 
region activity across time was used as a measure of activity and the Pearson correlation of brain regions’ activity was used a measure of functional 
connectivity (degree). The k-means clustering algorithm was employed to cluster the brain regions into three levels based on each measure. B 
Percent of total ROIs in each activity level category. C Percent of total ROIs in each functional connectivity level category. D Highly active (red) and 
highly connected regions (green) across all subjects (n=74). E Connectivity levels (Y-axis) of all brain regions sorted based on their activity (X-axis) 
in an example subject. Red and blue boxes denote regions of high activity and high functional connectivity, respectively. The dotted circle denotes 
where highly active and highly connected brain regions are expected to locate. F The population distribution curve of brain regions with different 
levels of activity and functional connectivity. Note that brain regions that have high activity and high connectivity are non-existent. The number of 
replicates used is 74
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Fig. 6  (See legend on previous page.)
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water-dipping objective (Nikon). A virtual light-sheet was 
created by deflecting the scanning mirror, illuminating a 
layer of specimen with ~7-μm thickness. Fluorescence 
from the illuminated layer was collected in an orthogonal 
direction by a 20x 1.0 NA water-dipping objective (Olym-
pus XLUMPLFLN-W), and the final image is captured by 
a scientific CMOS (sCMOS) camera (Hamamatsu Orca 
Flash 4.0, C11440). Due to the strong scattering of the 
blue-green light in deep tissues, we confined the illumi-
nation within dorsal forebrain of the larvae. The volume 
of interest was approximately 300 μm x 250 μm x 100μm 
in x,y,z directions, respectively. This volume covered the 
entire dorsal telencephalon and habenula regions. To 
resolve the dynamics of GCaMP6s, image stacks were 
acquired at 2Hz, which allowed us to resolve frequency 
components up to 1Hz based on Nyquist sampling the-
orem. Each 100-μm stack consisted of 26 slices with 4 
μm between two adjacent slices. The resting state of the 
selected volume in each larva was imaged for 15 min; in 
addition to this time lapse recording, a Z-stack with 1-μm 
step (101 slices) was acquired across the same volume as 
a reference. The raw data were submitted to the data pre-
processing pipeline for cleaning and feature extraction.

Pre‑processing of calcium imaging data
Drift correction and ROI (neuron) extraction
Raw images were organized as hyper stacks in the order 
of x-y-z-t. Each hyper stack was split into 26T-stacks at 
different z positions and drift corrected with the Stack-
Reg plugin [65]. For each drift-corrected T-stack, neu-
ronal nuclei were segmented using the Laplacian of 
gaussian blob detection algorithm blob_log in the Python 
library scikit image [66]. Since neuronal nuclei (~4μm 
in diameter) can be imaged in two or more adjacent 
planes, a redundancy detection algorithm was devel-
oped to find lateral duplications in cell extraction: if a 
nucleus is detected at the same (x; y) position in the kth 
and the (k + 1)th planes, this detection would be consid-
ered as redundant and the Z-position was considered as 
an average between zk and zk+1. In each extracted neu-
ronal nuclei, its raw fluorescence signals were calculated 
through the entire T-stack, and the relative signal inten-
sity of calcium transients, ΔF/F, was calculated using the 
method as previously described [47]. Two additional 
cleaning steps were applied to remove potential artifacts 
that were falsely recognized as neuronal nuclei by the 
blob detection algorithm: first, since GCaMP6s has back-
ground signals in the absence of action potentials, blobs 
of real neurons should have a high fluorescence baseline, 
and blobs with very low baseline (comparable to dark 
areas in the image) are excluded; second, since in reality, 
the value of ΔF/F should fall within a reasonable range, 

blobs with extraordinarily high ΔF/F values (exceeding a 
threshold during recording) were excluded.

Since activity levels vary among neurons, over the 
15-min imaging session, some neurons may exhibit high 
calcium signal peaks while others remain “silent”. Since 
the latter are not likely to contribute to downstream anal-
yses, it would be beneficial to exclude them from the very 
beginning. This requires us to (1) find a reliable method 
to identify peaks from background in a noisy timeseries; 
(2) find a measure for the activity level of each neuron, 
i.e., whether and how much does it activate during the 
imaging session; and (3) set a well-defined criterion to 
accept or reject a neuron based on its two characteristics 
above. The method we used to identify peaks and base-
lines from each ΔF/F time trace was based on the Bayes-
ian inference of two-dimensional distribution of adjacent 
ΔF/F values [33]. For each neuron i, its baseline of ΔF/F, 
μi, was calculated by averaging all the (ΔF/F)I time points 
that are identified as background,

where Si,k refers to the kth time point of (ΔF/F)i.

Image registration
Since individuals differ in morphology, placement, and 
brightness, it is difficult to directly compare their images 
even though the latter are acquired under the same con-
dition. In order to compare imaging results from different 
individuals, the images should be anatomically mapped 
to a common template image, i.e., a “reference”. A whole-
brain template, Z-brain, has been provided by Randlett 
et  al. [46] as a standard reference brain atlas for ana-
tomical and functional studies of larval zebrafish brain. 
Although the fish we experimented on were at the same 
stage as that in the Z-brain template, the iSPIM stacks 
acquired in their dorsal forebrain could not be directly 
registered to the reference due to (1) a significant mis-
match between two imaging directions and (2) a signifi-
cant difference between the volumes of interests. Since 
the dorsal forebrain region that we imaged only accounts 
for a sub-volume of the entire brain, a direct registra-
tion of the former to the latter is prone to error. To solve 
this problem, we created an intermediate reference brain 
from the Z-brain template by resampling the dorsal-
forebrain region in the direction and pixel sizes that are 
comparable to those of the iSPIM stacks. For each fish, 
its densely sampled Z-stack was registered to the inter-
mediate reference brain using computational morpho-
metry toolkit (CMTK) (http://​nitrc.​org/​proje​cts/​cmtk). 
After registering the iSPIM stacks into the intermediate 
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template, the coordinates of the extracted neurons in 
original T-stacks need to be reformatted accordingly into 
the registered frame. This step was carried out using the 
registration output and the function stream x form in 
CMTK. By comparing the reformatted coordinates with 
the 294 anatomical masks in the Z-brain template, we 
were able to identify the anatomical label of each neuron 
and the brain regions covered by our imaging volume.

Preprocessing of the resting state human brain fMRI data
We used healthy control subjects (n=74) from the COBRE16 
resting-state fMRI datasets available at http://fcon_1000.
projects.nitrc.org/indi/retro/cobre.html. The fMRI dataset 
for each subject includes blood-oxygenation level-depend-
ent (BOLD) volumes of 5 min (TR = 2 s, TE = 29 ms, FA = 
75°, 32 slices, voxel size = 3x3x4 mm3, matrix size = 64x64, 
FOV = 255 x255 mm2). The pre-processing steps included 
realignment, co-registering, and normalization. We used 
established preprocessing and analysis pipelines [67] and 
CONN software package (https://​www.​nitrc.​org/​proje​cts/​
conn) to estimate and remove noise components such as 
those from cerebrospinal fluid, white matter signals, and 
subject motion. The temporal band-pass filter (between 
0.008 and 0.09 Hz) was applied to remove frequencies 
that were not of interest in the raw data. In addition to the 
default denoising strategy, data-driven Independent Com-
ponent Analyses (ICA) denoising [68] was utilized to detect 
and remove potential noise-related temporal components.

Re‑alignment
In brief, the first-level covariate containing the 6 rigid-
body parameters was created based on the MRI data to 
estimate the subject motion. For each subject, this vari-
able was used to perform regression on the fMRI data to 
correct for motion-related effects.

To reduce the physiological noise source, a Compo-
nent-Based Noise Correction Method (CompCor) was 
used [69].

Co‑registering
The functional volumes are co-registered with the ROIs 
and structural volumes. All the Brodmann areas (ROIs) 
defined through the Talairach Daemon (TD) system [56] 
were assigned to all subjects using segmentation of struc-
tural image; gray matter, white matter, and cerebrospinal 
fluid (CSF) masks were generated. Anatomical volumes 
were co-registered to the functional and ROI volumes for 
each subject, and the volumes were transformed to the 
MNI-space.

Calculation and normalization of fMRI measures
Following re-alignment and co-registering, the Prin-
cipal Component Analysis (PCA) algorithm was used 

to extract BOLD signal components for each ROI. The 
fMRI measures were calculated using MATLAB-based 
software packages, SPM12 (http://​www.​fil.​ion.​ucl.​ac.​uk/​
spm/). All of the computed measures are normalized to 
an N (0,1) Gaussian distribution for each subject.

Data analysis
Analysis and classification of ROI activity levels
For a given ROI (i.e., individual neurons in larval 
zebrafish or individual brain regions in the human 
fMRI data), signal si represents calcium indicator fluo-
rescence changes (ΔF/F) in the zebrafish data or BOLD 
signals in the human fMRI data over time, the activity 
value aci was calculated as follows:

After obtaining each ROI activity level in the given 
time series, we used the K-means algorithm [49] to clas-
sify them into activity levels 1–3 (or 1-5). The k-means 
clustering algorithm minimizes the within-cluster 
squared Euclidean distances. Here, a one-dimensional 
activity population was partitioned into 3 sets (levels). 
The within-class cells in each level have similar activity.

Analysis and classification of ROI functional connectivity 
levels  We used Pearson correlation to measure func-
tional connectivity between ROIs. Since Pearson corre-
lation assigns a value to all ROI pairs, it is necessary to 
apply thresholding to eliminate potentially spurious con-
nections. There is no standard method to calculate the 
optimal threshold value τoptimal, and different values of τ 
are used to create the adjacency matrices. Arbitrarily cho-
sen thresholding values are often applied to raw matrixes 
[6]. As different cutoff values can directly influence net-
work properties and bias analysis results, we developed 
algorithms to calculate the optimal thresholding values 
and generate the connectivity matrix. This matrix was 
then used to calculate the functional connections (i.e., 
degrees) of each ROI, followed by K-means classification 
into three connectivity levels. The steps of calculating 
functional connections for each ROI are as follows:

1)	 Let ρ = ρij be the correlation matrix, where ρij is the 
Pearson correlation of ROIs i and j and can be calcu-
lated as follows:

2)	 Setting the threshold values:

aci = mean
(

(si −mean(si))
2
)

ρij =
cov

(

i, j
)

δiδj
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3)	 Thresholding the connectivity matrix using τk ∈ τ or 
each ρij

where ρτk =






ρ τk
ij






 is the thresholded correlation 

matrix.

4)	 Binarizing ρτk

5)	 Calculating the degrees for each ROIi, degreei = ∑jli, j , 
where li, j is the link between roii and roij.

6)	 Calculating the degree distribution of the network. 
The fraction of ROIs with the degree k is defined as 
follows:

where nk is the number of the ROIs that have degree k.

7)	 Calculating the fitting value of the degree distribu-
tion with the power-law distribution. r2 (coefficient of 
determination) was used to evaluate the closeness of 
data at each threshold value to the power-law curve.

8)	 Derive the optimal threshold value: At the optimal 
threshold value, the r2 is highest, which indicates the 
best fit of the data to the power-law curve.

The detailed steps of calculating the optimal threshold 
value of the connectivity matrix were provided in the 
Additional file 4. The average τ pwoptimalvalue of all zebrafish 
subjects in our data ranged from 0.4 to 0.6. We applied 
this algorithm to the human fMRI data and obtained 0.7 
for τ pwoptimal . Using these values, we binarized our data: 
correlations with a value less than τ pwoptimal were set to 
zero, whereas those with a value greater than τ pwoptimal 
were set to one.

To further test whether the observed power-law struc-
ture of the functional brain is relevant, we shuffled the 
data (Additional file  5) to generate random networks 
with the same numbers of nodes and edges as the orig-
inal networks and applied similar thresholding and 

τ = (τk)

τk ∈ (0, 1)

ρ τk
ij

=

{

ρij if ρij > τk
0 otherwise,

ρ τk ,b
ij

=

{

1 if ρij > τk
0 otherwise,

Pτk (k) =
nk

n
,

τ
pw
optimal ≈ arg maxr

(

r2
)

analysis of degree distributions. The random network did 
not follow a power law structure at any thresholding val-
ues tested. Together, these analyses enable us to establish 
optimal thresholding values that uncover biologically 
relevant networks. Using such matrixes, we were able to 
detect known connections between the olfactory epithe-
lia and the olfactory bulb (Additional file 6).

After obtaining each ROI’s numbers of functional 
connections in the given time series, we used the 
K-means algorithm as described above to classify them 
into connectivity levels 1–3 (or 1-5).

Analysis of  the  relationship between  activity and  func-
tional connectivity  We plotted the activity and con-
nectivity for each ROI in each individual. The input data 
are zebrafish calcium imaging data are composed of 
>12k individual neuronal activity and connectivity per 
subject (n=9 subjects); human resting-state fMRI data 
are composed of 136 brain regions’ activity and connec-
tivity per subject (n=74 subjects).

To analyze the population frequency of each class of 
ROIs (i.e., AL-1&CL-1, AL-1&CL-2, AL-1&CL-3, AL-
2&CL-1, AL-2&CL-2, AL-2&CL-3, AL-3&CL-1, AL-
3&CL-2, AL-3&CL-3) and its statistical significance, we 
used the following bootstrapping method:

1.	 Select the number of the bootstrapping iteration 
(here, 25 iterations were used).

2.	 Repeat the steps “3” to “7” 25 times for the input data.
3.	 Select a sample set with replacement from the set of 

all subjects.
4.	 Calculate activity (variances) and connectivity 

(degrees) data for each ROI from all sampled sub-
jects.

5.	 Calculate activity (variances) and connectivity 
(degrees) data for each ROI from all sampled sub-
jects.

6.	 Calculate the average ROI population size for each 
activity and connectivity level.

7.	 Calculate the mean, lower (2.5 percentile), and upper 
(97.5 percentile) point-wise confidence bands for the 
populations that are calculated in the step “6”.

Generation of shuffled data, noise‑added data, 
and simulated data
Generation of shuffled data
For the zebrafish data, a given ∆F/F  signal matrix 
DC × T  with C  rows (C  ROIs) and T columns (T time 
stamps) was used to generate a new matrix ˆDC×T  by 
random shuffling across rows and columns with the 
NumPy library of Python programming language [70]. 
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For the human data, a given BOLD signal matrix was 
used and shuffled the same as for the zebrafish data.

Generation of noise‑added data
To generate noise-added data, we first generated a noise 
matrix Ns

C×Twith normal (Gaussian) distribution and 
standard deviation (noise scale) s to produce differ-
ent levels of noise, using the NumPy library. This noise 
matrix was then added to a given ∆F/F matrix DC × T (C 
cells and T time stamps) (in the case of zebrafish data) or 
a given BOLD signal matrix (in the case of human data). 
The noise-added data DC×T  were as follows:

Interconnected network simulation and approximation 
of the correspond ROI activity using the Cholesky 
decomposition technique
This method consists of two steps: First, we generated 
a random covariance (connectivity) matrix using the 
Python scikit library [71]. In order to apply the Cholesky 
method to construct a ROI activity matrix from the con-
nectivity matrix, the starting connectivity matrix must be 
symmetric positive-definite in linear algebra [53]. Sec-
ond, we created a ROI activity matrix that matched the 
above connectivity matrix, using the Cholesky method 
(53). The connectivity matrix CCell × Cell was decomposed 
into two parts: L and LT. We then generated a ran-
dom matrix (cell x time). For any given random matrix 
XCell × Time, the simulated ROI activity time series matrix 
SCell × Time was as follows:

Data visualization
Different python libraries were used to visualize the 
results. The plotly libraries (https://​plotly.​com/​python/) 
were used to visualize the cells’ anatomical and spatial 
distributions in the calcium imaging data. We used the 
FSL (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl) to visualize the brain 
regions in the fMRI data.

Statistical analysis
Sample sizes and statistics are reported in the figure 
legends and text for each measurement. To determine 
the relationship between activity and functional con-
nectivity at individual ROI levels (Figs.  3c and 4e), we 
used bootstrap tests (with 7 iterations) to test whether 
the negative correlation between neuronal activity 
and functional connectivity is consistent across sub-
jects. For each subject, the activity (variances) and 

DC×T = DC×T + Ns
C×T

SCell×Time = LCell×CellXCell×Time,

connectivity (degrees) for each ROI were calculated. 
Individual neurons in the larval zebrafish calcium 
imaging data and individual brain regions in the human 
fMRI data were considered as ROIs. The ROIs were 
sorted based on their activity for each subject (X-axis). 
The connectivity of sorted ROIs for each subject 
(Y-axis) was then graphed. The locally weighted regres-
sion algorithm [72] was applied for each subject’s data 
to approximate the polynomial curve. Finally, the boot-
strapping method [52] was used to evaluate the inverse 
relationship between neuronal activity and functional 
connectivity. Here, random sampling with replacement 
was applied for selecting the curves fitting of individual 
subjects to evaluate the model.
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GFP: Green fluorescent protein; ISPIM: Inverted SPIM; MEG: Measures muscle 
response; PCA: Principal Component Analysis; PDMS: Polydimethylsiloxane; 
RSNs: Resting state networks; SPIM: Selective-plane illumination microscopy; 
TD: Talairach Daemon; WT: Wild type.
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