
Di et al. BMC Biology          (2022) 20:213  
https://doi.org/10.1186/s12915-022-01416-x

METHODOLOGY ARTICLE

Rapid and sensitive single‑cell RNA 
sequencing with SHERRY2
Lin Di1,2,3,4†, Bo Liu5,6†, Yuzhu Lyu1, Shihui Zhao2,7, Yuhong Pang2, Chen Zhang1, Jianbin Wang8*, Hai Qi5,6*, 
Jie Shen1* and Yanyi Huang2,4,9,10*    

Abstract 

Background:  Prevalent single-cell transcriptomic profiling (scRNA-seq) methods are mainly based on the synthesis 
and enrichment of full-length double-stranded complementary DNA. These approaches are challenging to generate 
accurate quantification of transcripts when their abundance is low or their full-length amplifications are difficult.

Results:  Based on our previous finding that Tn5 transposase can directly cut-and-tag DNA/RNA hetero-duplexes, we 
present SHERRY2, a specifically optimized protocol for scRNA-seq without second-strand cDNA synthesis. SHERRY2 is 
free of pre-amplification and eliminates the sequence-dependent bias. In comparison with other widely used scRNA-
seq methods, SHERRY2 exhibits significantly higher sensitivity and accuracy even for single nuclei. Besides, SHERRY2 
is simple and robust and can be easily scaled up to high-throughput experiments. When testing single lymphocytes 
and neuron nuclei, SHERRY2 not only obtained accurate countings of transcription factors and long non-coding RNAs, 
but also provided bias-free results that enriched genes in specific cellular components or functions, which outper-
formed other protocols. With a few thousand cells sequenced by SHERRY2, we confirmed the expression and dynam-
ics of Myc in different cell types of germinal centers, which were previously only revealed by gene-specific amplifica-
tion methods.

Conclusions:  SHERRY2 is able to provide high sensitivity, high accuracy, and high throughput for those applications 
that require a high number of genes identified in each cell. It can reveal the subtle transcriptomic difference between 
cells and facilitate important biological discoveries.
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Background
Many experimental methods for transcriptome profil-
ing by next-generation sequencing (RNA-seq) have been 
developed to cover various scales of input samples, rang-
ing from bulk samples [1, 2] to single cells [3–5] or even 
subcellular components [6, 7]. High-quality single-cell 
RNA-seq (scRNA-seq) data can be used to reveal the 
kinetic details of gene expression and transitions between 
cell states or types [8–10]. Prevalent scRNA-seq methods 
mainly rely on template switching and pre-amplification 
of complementary DNA (cDNA). However, large-scale 
scRNA-seq techniques, commonly operated in micro-
droplets or wells, have relatively low sensitivity [11]. 
Single tube-based scRNA-seq approaches can typically 
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produce higher coverage for low-abundance genes, but 
they still suffer from quantification bias due to insuf-
ficient reverse transcription and GC imbalance during 
amplification. Besides, their complex experimental meth-
ods are generally unsuitable for large-scale studies.

We have reported a highly reproducible and rapid 
library preparation method for RNA-seq, SHERRY, 
which can be applied to a minute amount of RNA sam-
ples [12]. The development of SHERRY was based on the 
recent discovery that Tn5 transposase can bind and cut 
RNA/DNA hetero-duplexes directly. With slight modifi-
cations, SHERRY could also be applied to various clinical 
metatranscriptome applications, such as the identifica-
tion of SARS-CoV-2 and other pathogens [13].

Although SHERRY was applied to process single cells 
and achieved less biased quantification of gene expres-
sion in comparison with other scRNA-seq methods, 
the results still exhibited clear coverage bias toward the 
3′-ends of transcripts, relatively low sensitivity, and low 
tolerance to endogenous DNA. In this work, we pre-
sent an optimized method, SHERRY2, which addresses 
the limitations of SHERRY and is fully compatible with 
single cells and single nuclei with low RNA content. In 
comparison with prevalent RNA-seq methods, SHERRY2 
showed higher sensitivity, better concordance with ref-
erence data, greater reproducibility between replicates, 
and superior scalability, allowing the method to be used 
to process a few thousand single cells per batch and thus 
reducing the time required to conduct experiments.

Results
SHERRY2 provides high sensitivity and even coverage 
across gene bodies for scRNA‑seq
For scRNA-seq, RNA degradation and incompleteness 
of reverse transcription (RT) are two major factors that 
reduce gene detection sensitivity and coverage evenness. 
Although adding random RT primers facilitates the cov-
erage of long transcripts, it requires the removal of ribo-
somal RNA, which is incompatible with scRNA-seq [13]. 
Spiking template-switching oligonucleotides also pro-
vides more uniform coverage, but this strategy has lim-
ited detection sensitivity and specificity [12].

We altered various experimental parameters of the 
original SHERRY protocol for both bulk (Additional 
file 1: Fig. S1-S2, Additional files 2 and 3) and single-cell 
inputs (Additional file 1: Fig. S3A). To protect RNA from 
degradation, we lowered the concentration of free Mg2+, 
either by reducing the amount of total Mg2+ or add-
ing more dNTP to chelate Mg2+ ions [14], and observed 
significant improvement in the coverage evenness of 
RNA-seq. To facilitate cDNA synthesis, we screened dif-
ferent reverse transcriptases and found that SuperScript 
IV (SSIV), working at a relatively high temperature with 

a low Mg2+ concentration, could better overcome the 
secondary structure of RNA and hence simultaneously 
enhanced the sensitivity and uniformity of RNA-seq.

When RNA-seq was conducted using pictogram-level 
RNA inputs, sufficient amount of Tn5 transposome was 
important for high sensitivity, and Bst 3.0 DNA polymer-
ase filled the gap left by Tn5 tagmentation more effec-
tively than other enzymes. The protocol was insensitive 
to many experimental conditions, including the usage of 
single-strand DNA-binding proteins [15], the Tn5 inac-
tivation, the concentration of extension polymerase, and 
the usage of hot-start polymerase.

We named this optimized protocol SHERRY2. Using 
RNA extracted from HEK293T cells as input, we com-
pared the performance of SHERRY2 and the original 
SHERRY protocol. At the 10-ng level, both protocols 
identified more than 11,000 genes at saturation. At the 
100-pg level, SHERRY2 performed better than SHERRY 
and detected 5.0% more genes at 0.6 million reads (Addi-
tional file  1: Fig. S2A). In addition, SHERRY2 greatly 
diminished 3′-end coverage bias (Additional file  1: Fig. 
S2B) and increased the unique mapping rate for 10-ng 
and 100-pg inputs (Additional file  1: Fig. S2C). We also 
constructed a bias-free RNA-seq library using 200-ng 
total RNA input via the conventional fragmentation-and-
ligation method with the NEBNext E7770 kit (NEBNext). 
For 100-pg input, the gene overlap between NEBNext 
and SHERRY2 was greater than that between NEBNext 
and SHERRY (81.7% vs 78.4%) (Additional file  1: Fig. 
S2D), and the gene expression results of NEBNext and 
SHERRY2 were also more closely correlated (R = 0.70 vs 
R = 0.65) (Additional file 1: Fig. S2E).

The SHERRY2 protocol for scRNA-seq contains only 
four steps: reverse transcription, Tn5 tagmentation, 
gap-filling through extension, and PCR amplification. 
The entire SHERRY2 protocol can be completed within 
3 h, 1 h less than the original SHERRY protocol, and 
still held its competence in costs (Additional file  1: Fig. 
S3B). Other high-sensitivity scRNA-seq methods such as 
SmartSeq2 may require much more time and more steps 
to be completed [3] (Fig. 1A). The one-tube workflow of 
SHERRY2 is readily scalable to high-throughput applica-
tions. SHERRY2 was able to detect 10,024 genes (FPKM 
> 1) on average within a single HEK293T cell at 1 million 
reads. When subsampling to 0.2 million reads, SHERRY2 
still detected 8504 genes on average, which was 1622 
(23.6%) more than SHERRY and 886 (11.6%) more than 
SmartSeq2 (Fig.  1B). In addition, the reproducibility of 
SHERRY2 was significantly higher than that of SHERRY 
or SmartSeq2 (Fig.  1C) due to its simplified workflow 
and stable performance. Moreover, the evenness of gene 
body coverage for SHERRY2 was much higher than that 
of the original SHERRY protocol (0.84 vs 0.72) and was 
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comparable to that of SmartSeq2 (0.84) (Fig.  1D). The 
exonic rate of SHERRY2 was also improved in compari-
son with that of SHERRY, likely due to the higher RT effi-
ciency of the newly developed method (Fig. 1E).

Last but not least, scRNA-seq with SHERRY2 exhibited 
superior accuracy, as demonstrated by the significantly 
higher correlation between the SHERRY2 gene expres-
sion results and NEBNext libraries in comparison with 
that of SmartSeq2 (R = 0.71 vs R = 0.67) (Fig. 1F), since 
NEBNext fragmented mRNA before cDNA synthesis and 
amplified cDNA with very limited cycles which theo-
retically resulted in negligible bias at the transcriptome 
level. Especially, SHERRY2 showed high tolerance to GC 
content and was insensitive to the length of transcripts 
(Additional file 1: Fig. S4). Unlike SmartSeq2, for which 
the gene overlap and expression correlation with bulk 

RNA-seq showed clear declines when GC content was 
greater than 40%, SHERRY2 maintained these param-
eters at high and constant levels (82.6% overlap and R 
= 0.76) until the GC content reached 60%. Transcript 
length did not influence the accuracy of SHERRY2 or 
SmartSeq2, although SmartSeq2 exhibited a small degree 
of intolerance for transcripts longer than 800 bases.

scRNA‑seq for low RNA content cells
For low RNA content cells, such as immune cells [16], we 
found that removal of intergenic DNA contaminations 
by DNase treatment was especially crucial for SHERRY2 
scRNA-seq. In such cells, the open DNA regions of dis-
assembled chromatin might be favored over RNA/DNA 
hybrids during Tn5 tagmentation. When DNase was 
omitted from the SHERRY2 protocol, more than 50% of 

Fig. 1  The workflow and general performance of SHERRY2 on single-cell RNA-seq. A The workflow of SHERRY2 for scRNA-seq. Poly(A) tailed RNA is 
firstly released from single cells and reverse transcribed. The resulting RNA/cDNA hetero-duplex is then tagmented by Tn5 transposome, followed 
by gap repair and indexed PCR. Optionally, chromatin can be digested during lysis. The entire protocol is performed in one tube and takes 3 h. B 
Gene number (FPKM > 1) with SmartSeq2, SHERRY2, and SHERRY when subsampling reads to 0.1, 0.2, 0.4, 0.6, 0.8, and 1 million reads. C Pairwise 
correlation of gene expression within replicates for the three scRNA-seq protocols. The correlation R-value was calculated by a linear fitting model 
with normalized counts of overlapped genes. D Gene body coverage detected by the three scRNA-seq protocols. The gray region represents the 
standard deviation of the normalized depth among replicates. E Components of reads that were mapped to different regions of the genome using 
the three scRNA-seq protocols. The error bars show the standard deviation. F Gene expression correlation between single HEK293T cells and 200-ng 
RNA extracted from HEK293T cells. Single-cell data were acquired by the three scRNA-seq protocols. Bulk RNA results were acquired by the standard 
NEBNext protocol. The correlation R-value was calculated by a linear fitting model with normalized gene counts. The samples in B–F are single 
HEK293T cells. The p-values in B, C, and F were calculated by the Mann-Whitney U test
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reads sequenced from single mouse lymphocytes (Addi-
tional file 1: Fig. S5A) were mapped to intergenic regions, 
and only around 10% of reads were exonic reads (Fig. 2A).

Different DNases performed differently in SHERRY2 
scRNA-seq. We tested five DNases (Additional file  1: 
Fig. S6A) and found three (NEB, Ambion, and TURBO 
DNase I) that worked and inactivated at higher tempera-
tures increasing the intergenic rate unexpectedly, and 
this effect was probably due to RNA degradation at high 
temperatures with excess Mg2+ in the reaction buffer. In 
contrast, AG DNase I and gDW mix, which worked at 
room temperature, yielded ideal results.

We confirmed that all the five DNases could digest 
more than 99.5% of DNA (30 ng) by simply utilizing 
divalent ions of their respective storage buffer (Addi-
tional file 1: Fig. S6B, Additional file 4). Without adding 
extra divalent ions, the intergenic rates of single ger-
minal center (GC) B cells for all DNases were less than 
20% (Fig. 2C). Among the DNases, AG DNase I retained 
high sensitivity for gene detection, and more than 60% of 
reads were mapped to exon regions (Fig. 2D), while the 
evenness of coverage was not affected (Fig. 2E).

Next, dU-containing carrier DNA, which could not be 
amplified by dUTP-intolerant polymerase, was added to 
further improve the efficiency of tagmentation of RNA/
DNA hybrids. With carrier DNA, SHERRY2 detected 
3200 genes at saturation (0.6 million reads) for single 
GC B cells (Fig. 2F), and the number of detectable genes 
increased from 2301 to 2393 on average for single lym-
phocytes, with an exonic ratio comparable to that of 
SmartSeq2 (Fig.  2A, B). Moreover, we examined the 
genes that were only detected by one method for single 
GC B cells and found that SmartSeq2 was preferential to 
capture genes that participated in mitochondrial func-
tion (Fig.  2G). Based on these results, chromatin diges-
tion and the addition of carrier DNA were included in 
the standard SHERRY2 protocol, and the step of chroma-
tin digestion would consume another 20 min.

Selection dynamics in germinal centers profiled 
by SHERRY2
SHERRY2 can be easily scaled to thousands of single 
cells per batch, owing to its simplified procedure. The 
GC is a transient structure that supports antibody affin-
ity maturation in response to T cell-dependent anti-
gens, and it contains diverse cell types with complex 
dynamics. Histologically, the GC can be separated into 
two micro-compartments, the dark zone and the light 
zone [17, 18]. By surface phenotyping, cells in the two 
compartments can be distinguished through CXCR4, 
CD83, and CD86 markers [19–21], with light zone cells 
being CXCR4loCD83+CD86+ while dark zone cells 
CXCR4+CD83loCD86lo. GC cell cycle between the dark 

zone and light zone states. Dark zone cells are highly 
proliferative and undergo somatic hypermutation, which 
generates a range of affinities against antigens. In the light 
zone, these B cells compete with each other for survival 
factors and help signals, which are mainly derived from 
follicular helper T cells. Those B cells that have acquired 
higher-affinity B cell receptors are selected to differenti-
ate into plasma cells (PC) or memory B cells (MBC) or 
cycle back to the dark zone [18, 22–24]. Recently, a gray 
zone, consisting of CXCR4+CD83+ cells with distinct 
gene expression patterns, was discovered and found to be 
involved in GC recycling [25]. The complex spatiotem-
poral dynamics of the GC and their underlying mecha-
nisms are incompletely understood. To this end, sensitive 
scRNA-seq methods that can be used to detect gene 
expression with less bias are highly desirable.

We profiled 1248 sorted CXCR4loCD86hi GC light zone 
cells with SHERRY2, and 1231 (98.6%) high-quality cells 
were retained for downstream analysis (Additional file 1: 
Fig. S5B). The gene expression levels of Cd19, Ccnd3, Fas, 
Cd86, and Cxcr4 were consistent with flow cytometry 
gating (Additional file  1: Fig. S7A), and no batch effect 
was observed (Additional file 1: Fig. S7B).

Unsupervised clustering identified seven clusters 
(Fig. 3A), two of which belonged to the gray zone, which 
was defined by co-expression of Cxcr4 and Cd83, as 
well as the ongoing cell division (enriched Ccnb1) [25] 
(Fig.  3B). We observed the expected downregulation of 
Bcl6 and S1pr2, the signature genes of GC B cells [26, 27], 
in memory B cell precursors (MPs) and plasma cell pre-
cursors (PPs). Specifically, Ccr6 was exclusively enriched 
in MPs [28], while Irf4 was upregulated in PPs, which 
was known to be mediated by the NF-κB pathway down-
stream of Cd40 stimulation [24]. It is worth noting that 
our results exhibited such Cd40 signaling effects as well 
(Additional file  1: Fig. S7C). Besides, Icam1 and Slam1 
which were reported to be activated by Cd40 [29] were 
also observed (Additional file  1: Fig. S7D, Additional 
file 5). The relatively low expression levels of Prdm1 (not 
shown) and Gpr183 in PPs were consistent with the early 
stage of plasma cell development. In total, 1071 genes 
significantly up- or downregulated in specific clusters 
were identified.

The high sensitivity of SHERRY2 enabled the detec-
tion of Myc in 588 (47.8%) single GC light zone B cells. 
Using fluorescent protein reporting, Myc was found to 
mark light zone cells destined for dark zone re-entry 
[30], although Myc expression per se had been difficult to 
identify in specific cell types by low-sensitivity scRNA-
seq approaches [31]. Consistent with previous findings 
[25, 29], the Myc expression was significantly higher in 
PPs (Fig. 3B, Additional file 1: Fig. S7E) and active in the 
gray zone cells (Fig. 3C). Light zone-1 also had a relatively 
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higher portion of Myc+ cells, which are probably those 
destined for cyclic re-entry to the dark zone [30]. MPs 
also contained some cells that expressed Myc.

RNA velocity analysis (Fig.  3D) suggested that light 
zone-1 contained cells selected for dark zone re-entry, 
which were migrating to the gray zone and had Myc 
expression characterized by burst kinetics (Additional 
file  1: Fig. S7F). In addition, cells that appeared to have 
just entered the light zone were also identified. A few 
velocity vectors that moved to MPs were mixed in PPs, 
and these vectors were in the same direction as the 
downregulation of Myc. According to the velocity analy-
sis, the aforementioned Myc-expressing MPs seemed to 
have a tendency to cycle back to the GC, suggesting that 
some MPs with Myc upregulation have the potential to 
re-participate in GC reactions.

We then assembled the BCR sequence for each cell to 
screen the usage of the Igh variable sequences, which 
were assigned in 1101 (89.4%) cells. As expected [32], 
IGHV1-72 dominated the NP-reactive GC response, and 
the coupled light chain was mainly IgL rather than IgK 
(Additional file 1: Fig. S8A, S8B). In addition, we identi-
fied CDR1 and CDR2 regions in 269 (24.4%) and 493 
(44.8%) cells in which the Igh variable sequences were 
assigned, respectively (Additional file 1: Fig. S8C).

SHERRY2 revealed the differences in the usage fre-
quencies of exons across cell types. The usage of a par-
ticular exon (chr11: 51,601,750–51,601,890) within the 
Hnrnpab transcript (Fig.  3E), which is widely expressed 
and encodes a protein that mainly functions in process-
ing pre-mRNAs, was significantly biased among GC clus-
ters. As shown in Fig.  3F, light zone-1 cells favored the 
inclusion of this exon.
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Superior performance of SHERRY2 applied in snRNA‑seq
Single-nucleus RNA-seq (snRNA-seq) has gained 
popularity since fresh and intact single cells are  
challenging to obtain in many applications. Hence, we 
tested the performance of SHERRY2 on snRNA-seq using 
single nuclei isolated from HEK293T cells. SHERRY2 
detected 10,137 genes (RPM > 1) on average at 1 
million reads, which was 4330 (74.6%) more than  
SmartSeq2, demonstrating that SHERRY2 had superior 
sensitivity for single nuclei (Fig.  4A). SHERRY2 still 
exhibited superior accuracy as it was significantly 
more correlated with NEBNext quantification results 
in comparison with SmartSeq2 (R = 0.41 vs R = 0.39) 
(Fig. 4B).

The high accuracy and sensitivity of SHERRY2 allowed 
better distinction between HEK293T cells and their 
nuclei, which had minimal differences. We performed 
principal component analysis (PCA) using RNA-seq data 
from NEBNext, SHERRY2, and SmartSeq2 (Fig. 4C). Sin-
gle cells and nuclei prepared by SHERRY2 were much 
closer in distance to the bulk RNA results in comparison 
with those prepared with SmartSeq2. In addition, the 
expression pattern of the differential genes identified by 
SHERRY2 was more similar to that of NEBNext in com-
parison with SmartSeq2 (Additional file 1: Fig. S9).

Furthermore, we compared the performance of these 
two methods with hippocampal neurons since snRNA-
seq is a popular method for studies of brain tissue due 
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to the technical challenge of isolating intact single neu-
rons. We constructed snRNA-seq libraries of the frozen 
and freshly prepared hippocampus with SHERRY2 and 
SmartSeq2. For both samples, SHERRY2 detected sig-
nificantly more genes than SmartSeq2 (6600 vs 5331 
at 1 million reads for frozen samples, 6686 vs 5769 at 
1 million reads for fresh samples) (Fig.  4D), and still, 
Smart-seq2 tended to detect genes functionized in the 
mitochondrion (Additional file  1: Fig. S10A). Next, we 
sequenced a small number of fresh hippocampal neurons 
(176 nuclei) (Additional file 1: Fig. S10B) with SHERRY2 
and classified their cell types correctly. The nuclei were 
non-supervisedly clustered into 4 distinct groups 
(Fig. 4E), after which they were re-clustered using marker 
genes identified by sNuc-Seq [33] (Additional file 1: Fig. 
S10C). The two clustering results were highly consist-
ent. Neurons within the dentate gyrus (DG) and CA1, 
which occupy large areas of the hippocampus, could be 
assigned to cluster 0 and cluster 1, respectively, accord-
ing to the high expression of Dock10, Slc4a4, and high 
expression of Pex5l and Hs6st3 (Fig. 4F). However, CA3 
pyramidal cells were not shown in our results, probably 
due to the small number of samples. Cluster 3 that was 
featured with enriched Arx and Lhx6 could be annotated 
as GABAergic cells, which migrated from medial gan-
glionic eminence (MGE). Except for the aforementioned 
markers, the expression patterns of these three clusters 
acquired from sNuc-seq and SHERRY2 were very similar 
(Additional file 1: Fig. S10D). Cluster 2 was found to con-
sist of cells with relatively high expression of Dpp10 and 
Tshz2, inferring that it might be contamination of cortex 
neurons. Moreover, our results revealed a long non-cod-
ing RNA (lncRNA) cluster [34] containing Meg3, Rian 
(Meg8), and Mirg (Meg9), which showed higher density in 
CA1 pyramidal cells and GABAergic cells while relatively 
sparse in DG granule cells (Additional file 1: Fig. S10E).

Discussion
SHERRY2 is a major improvement of our previously 
developed SHERRY [12], a Tn5 tansposase-based RNA-
seq method that eliminates the second-strand comple-
mentary DNA synthesis. Although the original SHERRY 
protocol has shown satisfactory simplicity to construct 
RNA-seq libraries using low amount of starting mate-
rial, the coverage bias at 3′-ends of transcripts and tag-
mentation-prone DNA contaminant make it challenging 
to work with single cells. In MINERVA [13], a derivative 
of SHERRY that is specifically designed to work for the 
metatranscriptome of COVID-19 clinical samples, we 
have explored the various conditions to reduce DNA 
coverage. In SHERRY2, we further optimized the DNA 
reduction process and lead to a new protocol that can 

work for single cells and single nuclei, providing uniform 
coverage of whole transcripts and resist DNA contents.

There are three major advantages that SHERRY2 holds. 
First, SHERRY2 exhibits superior sensitivity and accu-
racy compared with SmartSeq2, a prevalent scRNA-
seq method. What is more, from sequencing data of 
single GC B cells and single neuron nuclei, we found 
that SmartSeq2 biasedly detected genes involved in 
mitochondrial components. Though more genes were 
obtained by SHERRY2, there was no specific functional 
enrichment of these genes (Fig.  2G, Additional file  1: 
Fig. S10A). Thus, SHERRY2 would have more chances 
to facilitate biological discoveries that relied on subtle 
changes. Recently, SmartSeq3 [35], the upgraded pro-
tocol of SmartSeq2, has been reported to increase gene 
detection sensitivity. We have also compared the scRNA-
seq data of HEK293T cells produced by SHERRY2 and 
SmartSeq3. SHERRY2 is able to detect over 10,000 
genes at around 1 million reads, while SmartSeq3 can-
not acquire the same number of genes even at 3-fold of 
sequencing depth (Additional file 1: Fig. S11A). Second, 
SHERRY2 retains great simplicity and expeditiousness, 
with the entire workflow taking around 3 h and with all 
reactions performed in one tube. The swift experimental 
pipeline ensures less RNA degradation, eliminates opera-
tional errors, and saves costs of supplies and labor. Third, 
SHERRY2 is highly robust and scalable. Procedural 
simplification not only reduces error cascade through 
step-wise operations, but also increases the tolerance of 
pipetting by offering easily handled volumes, leading to 
a significantly higher repeatability when in comparison 
with SmartSeq3 (Additional file  1: Fig. S11B). Besides, 
SHERRY2 contains richer information about exon junc-
tions and coding regions across full-length transcripts, 
probably because SmartSeq3 is specifically optimized to 
quantify the 5′-end of transcripts (Additional file 1: Fig. 
S11C, S11D).

SHERRY2 can be further developed to uncover more 
information from single cells. The simplicity and toler-
ance of protocol make it an ideal component to be incor-
porated into multi-omics studies. Moreover, SHERRY2 
actually contains the strand-specific information of the 
transcript since it builds libraries from RNA/DNA duplex 
directly. Therefore, SHERRY2 can be potentially modi-
fied to differentiate the transcriptional strand of DNA. In 
addition, barcoded Tn5 tagmentation [36, 37] may also 
be applied to SHERRY2 to realize assembling full-length 
RNA molecules. Interestingly, when examining reads 
generated by SHERRY2 and SmartSeq2, we find that the 
cleavage sites of Tn5 tend to exhibit different sequence 
biases on substrate DNA and RNA/DNA duplex, which 
might give hints to understand the Tn5 mechanism 
(Additional file 1: Fig. S12).
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There are a few remaining hitches of the current 
SHERRY2 protocol that need to be fixed in the future. 
The slightly unsatisfactory mapping rate may be compen-
sated by slightly more sequencing reads. Without cDNA 
enrichment, the exogenous DNA from the environment 
or reagents still can be introduced after the lysis step and 
easily tagged by Tn5, thus impairing the performance 
of RNA-seq of low RNA content single cells or nuclei. 
Besides, it is still challenging to capture the complete 
5′-end regions of transcripts for the limited processivity 
of reverse transcriptase. For example, CDR1 and CDR2 
sequences in the Igh variable regions cannot be acquired 
for all GC cells (Additional file 1: Fig. S8C).

Conclusions
We present SHERRY2, an RNA-seq method designed 
for single cells and single nuclei. SHERRY2 is based on 
the direct tagmentation function of Tn5 transposase for 
RNA/DNA hetero-duplexes and overthrows prevalent 
single-cell RNA-seq chemistries which typically require 
pre-amplification of full-length transcripts, thus greatly 
improving the sensitivity of gene detection and eliminat-
ing the sequence-dependent bias. As a result, SHERRY2 
can reveal the expression dynamics of transcription 
factors and lncRNAs, both of which typically harbor 
essential biological functions while at low abundance. 
Meanwhile, SHERRY2 maintains the simplicity of opera-
tion, with the whole process completed in one pot within 
3 h, and hence elevates the throughput to a few thousand 
single cells/nuclei per experimental batch. As the sim-
plest protocol of large-depth scRNA-seq, SHERRY2 has 
been validated in various challenging samples and can be 
seamlessly integrated into a wide range of applications.

Methods
Cell culture
HEK293T cell line was purchased from ATCC and 
incubated at 37 °C with 5% CO2 in Dulbecco’s modi-
fied Eagle medium (DMEM) (Gibco, 11965092), which 
was supplemented with 10% fetal bovine serum (FBS) 
(Gibco, 1600044) and 1% penicillin-streptomycin (Gibco, 
15140122). Cells were dissociated by 0.05% Trypsin-
EDTA (Gibco, 25300062) at 37 °C for 4 min and washed 
by DPBS (Gibco, 14190136).

For DNA or RNA extractions, we took ~ 106 suspended 
cells and followed the guideline of the PureLink Genomic 
DNA Mini Kit (Invitrogen, K182002) or RNeasy Mini 
Kit (Qiagen, 74104). The extracted RNA was further 
dealt with 20 U DNase I (NEB, M0303) for the removal 
of DNA and re-purified by the RNA Clean & Concentra-
tor-5 Kit (Zymo Research, R1015).

For single-nuclei preparation, we followed the guide-
line of the Nuclei EZ Prep Kit (Sigma, NUC-101) and 

resuspended the nuclei into DPBS. Both single cells and 
single nuclei were sorted by FACSAria SORP flow cytom-
eter (BD Biosciences).

Mice
For samples of germinal center B cells, C57BL/6 mice 
were originally from the Jackson Laboratory. Six- to 
12-week-old, age- and sex-matched mice were used for 
the experiments.

For samples of the hippocampus nuclei and lympho-
cytes, aged 2-month-old male C57BL/6 mice were used 
and obtained from Charles River Laboratories.

All mice were maintained under specific pathogen-free 
conditions and used in accordance with the governmen-
tal, Tsinghua University, and Capital Medical University 
guidelines for animal welfare.

GC light zone B cell preparation and sorting
To generate T cell-dependent GC responses in B6 mice, 
100 μg NP-KLH (Biosearch Technologies, N-5060-5) 
plus 1 μg LPS (Sigma, L6143) emulsified in 100 μl 50% 
alum (Thermo, 77161) was utilized for intraperitoneal 
immunization.

The spleens isolated from 4 mice 13 days post-immu-
nization were placed on a 70-μm cell strainer (Falcon, 
08-771-2), which was previously wetted with MACS 
buffer (1% FBS and 5mM EDTA in PBS), and minced by 
flat end of the plunger of 2-ml syringes (Becton Dick-
inson, 301940). The splenocytes were passed through 
the strainer with MACS buffer into a 50-ml tube. The 
mixed red blood cells were then lysed by ACK lysis buffer 
(Thermo, A1049201). The cell suspension was further 
incubated with biotinylated 4-hydroxy-3-iodo-5-nitro-
phenylacetyl (NIP)15-BSA (Biosearch Technologies, 
N-1027-5) for 1.5 h and enriched by anti-biotin cell isola-
tion kit (Miltenyi Biotec, 130-090-485) to get NP-reactive 
cells.

The enriched cells were blocked with 20 μg/ml 2.4G2 
antibody (BioXCell, BE0307) and subsequently stained 
with APC-Cy7 (anti-B220, BD Biosciences, 552094), 
PE-Cy7 (anti-CD95, BD Biosciences, 557653), eF450 
(anti-GL7, eBioscience, 48-5902-82), APC (anti-CD86, 
eBioscience, 17-0862-82), and PE (anti-CXCR4, BioLeg-
end, 146505). Also, 7-AAD (Biotium, 40037) was stained 
to exclude dead cells. All staining reactions were incu-
bated in MACS staining buffer (1% FBS and 5 mM EDTA 
in PBS) for 30 min on ice, followed by 3 times washings. 
As gated in Additional file  1: Fig. S5B, single GC light 
zone B cells (B220+ GL7+ Fas+ CD86+ CXCR4−) were 
sorted into lysis buffer using Aria III flow cytometer (BD 
Biosciences).
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Lymphocyte cell preparation and sorting
The retro-orbital blood was taken from the eyeball of 
ether-anesthetized mice and dipped into a K2EDTA 
tube (BD Vacutainer, 367525). PBS was added to dilute 
the blood at ~ 50%. One milliliter of diluted blood was 
transferred into a clean 15-ml tube and incubated with 
9 ml 1× red blood cell lysing solution (BD Pharm Lyse, 
555899) at room temperature for 15 min avoiding light. 
The resulting cell suspension was washed twice with PBS 
containing 1% BSA at 200 g for 5min, followed by stain-
ing with SYTOX green (Thermo, S7020) to identify intact 
cells. Single lymphocytes were sorted with FACSAria 
SORP flow cytometer according to the gates shown in 
Additional file 1: Fig. S5A.

Hippocampal nuclei preparation and sorting
The isolated hippocampus tissue was transferred into a 
dounce homogenizer (Sigma, D8938) containing 2 ml of 
EZ Lysis Buffer (Sigma, NUC-101). The tissue was care-
fully dounced for 22 times with pestle A followed by 22 
times with pestle B then transferred to a 15-ml tube. 
Next, 1 ml of EZ lysis buffer was added into the Dounce 
homogenizer to resuspend the residual nuclei then trans-
ferred to the same 15-ml tube. The samples were centri-
fuged at 300g for 5 min. The supernatant was removed, 
and the pellet was resuspended in 100 μl of ice-cold PBS 
(Gibco, 10010023) with 1% BSA (NEB, B9000S) and 20 
U RRI (Takara, 2313); 40-μm FlowMi cell strainers were 
firstly wetted with PBS and filtered the resuspended 
nuclei into 1.5-ml Eppendorf tubes. The nuclei were fur-
ther washed with PBS (1% BSA).

To enrich the neuron nuclei, a 1000-fold diluted mouse 
anti-NeuN antibody (Millipore, MAB377) was added to 
a 0.5-ml nuclei suspension and incubated with the nuclei 
at 4 °C for 30min. The nuclei were then stained with 
1000-fold diluted goat anti-mouse IgG (H&L) antibody 
(Abcam, ab150113) and washed with PBS (1% BSA). The 
whole process was on ice. As gated in Additional file  1: 
Fig. S10B, the single-neuron nuclei were sorted with 
FACSAria SORP flow cytometer.

For frozen samples, hippocampus tissues were previ-
ously flash frozen in liquid nitrogen and stored at − 80 
°C. Before single-nuclei preparation, they were thawed on 
ice totally.

DNA carrier preparation
One hundred nanograms of pTXB1 plasmids was firstly 
linearized by 10 U XbaI (NEB, R0145S) at 37 °C for 1 h 
and purified by Zymo columns. Then, we took 0.5-ng 
linearized plasmids for multiple displacement amplifica-
tion (MDA), with all dTTPs replaced by dUTPs. Specifi-
cally, the 1 μl DNA was mixed with 22 μl reaction buffer 

containing 1× phi29 reaction buffer (NEB, M0269S), 20 
μM random primers (Thermo, SO181), and 1 mM dNTP 
(NEB, N0446S, and N0459S), then they were incubated at 
98 °C for 3 min and immediately cooled down at 4 °C for 
20 min. Two microliters of phi29 DNA polymerase was 
added, and the amplification was carried out at 30 °C for 
5 h, terminated at 65 °C for 10 min. The products were 
purified by Zymo columns.

Generation of RNA‑seq library
We constructed NEBNext libraries with 200- and 10-ng 
RNA by following the guideline of the NEBNext Ultra 
II RNA Library Prep Kit for Illumina Kit (NEB, E7770). 
SmartSeq2 libraries with single cells were prepared fol-
lowing the protocol that was reported by Picelli et al. [3]. 
10X libraries of 10,000 single hippocampal nuclei were 
constructed by Chromium Single Cell 3′ Reagent Kits 
(v3.1).

For scRNA-seq library of SHERRY2, single cells were 
sorted into 96-well plates containing 2 μl lysis buffer 
which consisted of 0.5% Triton X-100 (Sigma, T9284), 
2 U SUPERaseIn RNase Inhibitor (Thermo, AM2694), 
and 0.2 U AG DNase I (Thermo, 18068015). The plates 
were immediately spun down and incubated at 20 °C for 
10 min for DNA digestion. The plates could be stored at 
− 80 °C or proceeded with the next step. Two microliters 
of inactivation buffer containing 5 μM OligodTs (T30VN, 
Sangon), 5 mM dNTPs, and 1 mM EDTA (Thermo, 
AM9260G) was then added, and the reaction was incu-
bated at 65 °C for 10 min and 72 °C for 3 min to facili-
tate RNA denaturation at the same time. Next, RT was 
performed by adding 6 μl RT mix (70U SuperScript IV 
(Thermo, 18090050), 1.7× SSIV buffer, 8.3 mM DTT, 10 
U RRI, and 1.7 M Betaine (Sigma, B0300)); incubated at 
50 °C for 50 min; and then inactivated the reverse tran-
scriptase at 80 °C for 10min. The resulting RNA/DNA 
hybrids mixed with 10-pg DNA carriers were tagmented 
by 0.05 μl TTE Mix V50 (Vazyme, TD501) at 55 °C for 
30 min, by adding 10 μl reaction mix containing 2× TD 
buffer (20 mM Tris-HCl (ROCKLAND, MB-003), 10 
mM MgCl2 (Thermo, AM9530G), 20% N,N-dimethylfor-
mamide (Sigma, D4551)), 16% PEG8000 (VWR Life Sci-
ence, 97061), 0.5 mM ATP (NEB, P0756), and 8 U RRI; 6 
U Bst 3.0 DNA polymerase (NEB, M0374M) within 1× 
Q5 high-fidelity master mix was utilized to repair the gap 
left by V50 at 72 °C for 15 min, followed by 80 °C for 5 
min to terminate the reaction. Finally, 3 μl indexed prim-
ers mix (Vazyme, TD203) and 3 μl Q5 mix were added 
to perform PCR amplification. PCR was cycled as fol-
lows: 98 °C 30s for initial denaturation; 21 cycles of 20 s 
at 98 °C, 20 s at 60°C, and 2 min at 72 °C; and 72 °C for 
5 min for the final extension. The indexed products were 
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merged and purified at 0.75× with VAHTS DNA Clean 
Beads (Vazyme, N411).

Libraries were quantified with Qubit 2.0, and their 
fragment length distributions were checked by the Frag-
ment Analyzer Automated CE System. Libraries were 
sequenced by Illumina NextSeq 500 or NovaSeq S4.

RNA‑seq data analysis
Data quality
Adaptors and poly(A/T) sequences were trimmed, and 
bases with quality less than 20 and reads shorter than 
20 bases were removed from the raw sequencing data 
by Cutadapt (v1.15) [38]. Clean reads were mapped to 
indexed genome (human: Gencode.v31, mouse: Gencode.
vM23) by STAR (2.7.1a) [39]. Only unique alignment was 
utilized for downstream analysis. The mitochondrial and 
ribosomal ratios were counted with samtools (v1.10) [40]. 
The ratios of the coding region, UTR, intron, and inter-
genic region were counted with Picard tools (v2.17.6). 
The exonic rate was defined as the sum of the coding 
region and UTR ratios. For cells, Cufflinks (v2.2.1) [41] 
with exon annotations of protein-coding genes were used 
to count the gene number (FPKM > 1). For the nuclei, 
genes (RPM > 1) were counted by featureCounts (v1.5.1) 
[42] with transcript annotations. Coverage across the 
gene body was calculated by RSeQC (v.2.6.4) [43]. The 
coverage uniformity was the integral area between the 
coverage curve and the x-axis normalized by 100.

Gene Ontology analysis
We used genes that were detected in cell A while missed 
by cell B as “study” and combined the “study” genes 
with genes detected by cell B as “background.” The 
Gene Ontology analysis was performed by GOATOOLS 
(v1.2.3) [44] and repeated between every two cells from 
different methods. GO terms (excluding electronic 
annotations) with adjusted p-value less than 0.01 were 
counted. All cells were firstly downsampled to 500K or 
1M total reads.

Clustering and marker genes
For scRNA-seq and snRNA-seq, clustering followed 
the basic tutorials of Scanpy (v1.8.1) [45]. The cell type 
annotations were through manually checking the expres-
sion of well-known marker genes. Marker genes identi-
fied by SHERRY2 should satisfy the following conditions: 
(1) adjusted p-values calculated by the Mann-Whitney U 
test were less than 1e−3, (2) fold changes were greater 
than 1.5 or less than 0.67, and (3) the average normalized 
counts of the upregulated gene in the cell type or down-
regulated gene in the rest of cell types were greater than 
0.3. For NEBNext, DESeq2 (v1.22.2) [46] was utilized 

to identify the differentially expressed genes (adjusted 
p-value < 1e−4, fold change > 2).

RNA velocity
Splicing and unsplicing mRNA were quantified by Velo-
cyto (v0.17.17) [10] with unique alignment. The gen-
erated loom file was utilized by scVelo (v0.2.4) [47] to 
profile velocity dynamics based on the clustering results 
of Scanpy.

BCR assembly
BCR sequences of each cell were assembled by MIXCR 
(v3.0.13) [48] with clean reads. The assembled BCR were 
realigned by IgBlast (v1.17.1) [49] to determine the clone 
types.

Exon usage
The frequency of exon usage in each cell was calculated 
by BRIE (v2.0.5) [50]. For each exon, cells satisfying the 
following conditions were retained: (1) counts of a gene 
which included the exon were greater than 10, (2) exon 
regions sided by the specific exon should be covered by 
greater than 50% with uniquely aligned reads, and (3) at 
least one read should detect junctions involved in this 
exon splicing events. A pairwise comparison of exon 
usage frequency was made between cell types which con-
tained greater than 10 cells using the Mann-Whitney U 
test. The exons with a p-value less than 0.05 was further 
checked in IGV viewer to check whether transcript cov-
erage was consistent with usage frequency. The passed 
ones were considered as significantly biased among cell 
types.

SmartSeq3 data reanalysis
SmartSeq3 [35] sequencing data of 117 single HEK293T 
cells was downloaded from ArrayExpress. The UMI and 
tag sequences at the 5′-end were firstly removed. Merged 
5′-end reads and internal reads were then analyzed using 
the pipeline described in the “Data quality” section.
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bulk RNA. (data values of Additional file 1: Fig. S1).

Additional file 3: Table S2.Comparison of SHERRY and SHERRY2 perfor-
mances on bulk RNA. (recording data values of Additional file 1: Fig. S2).

Additional file 4: Table S3.qPCR results of gDNA after DNase treatment. 
(recording data values of Additional file 1: Fig. S6B).

Additional file 5: Table S4.Normalized abundance of marker genes in 
each GC cell type. (recording data values of Additional file 1: Fig. S7D).

Acknowledgements
We thank Chenyang Geng and Yan Chen from the Peking University High-
throughput Sequencing Center and Biomedical Pioneering Innovation Center 
for the experimental assistance. This work was supported by the National 
Key Research and Development Program of China (2018YFA0108100 to Y.H.), 
National Natural Science Foundation of China (22050002, 21927802 to Y.H.), 
Beijing Municipal Science and Technology Commission (Z201100005320016 
to Y.H.), Beijing Advanced Innovation Center for Genomics, and Shenzhen Bay 
Laboratory.

Authors’ contributions
Y.H. and J.W. conceived the study. L.D., B.L., Y.L., S.Z., Y.P., and J.S. performed 
the experiments. L.D. performed the data analyses. C.Z. and J.S. provided the 
samples. L.D., B.L., J.W., H.Q., J.S., and Y.H. wrote the manuscript with input from 
all authors. Y.H., J.W., and H.Q. supervised all aspects of this study. All authors 
read and approved the final manuscript.

Funding
This work was supported by the National Key Research and Development Pro-
gram of China (2018YFA0108100 to Y.H.), the National Natural Science Founda-
tion of China (22050002, 21927802 to Y.H.), the Beijing Municipal Science and 
Technology Commission (Z201100005320016 to Y.H.), and the Shenzhen Bay 
Laboratory. Funding for open-access charge: Beijing Municipal Science and 
Technology Commission.

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article, its supplementary information files, and publicly available repositories. 
The sequence data reported in this study have been deposited in the NCBI 
Sequence Read Archive (assession no. PRJNA879104) [51]. Data values of 
Additional file 1: Figs. S1, S2, S6B, and S7D were provided in Addition files 
2, 3, 4, and 5 separately. The SHERRY dataset was downloaded from GSA 
(CRA002081) [12]. The SmartSeq3 dataset was downloaded from ArrayExpress 
(E-MTAB-8735) [35].

Declarations

Ethics approval and consent to participate
All mice were maintained under specific pathogen-free conditions and used 
in accordance with governmental, Tsinghua University, and Capital Medical 
University guidelines for animal welfare.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regenera-
tion and Repair, Advanced Innovation Center for Human Brain Protection, 
Capital Medical University, Beijing 100069, China. 2 Biomedical Pioneering 
Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking 
University, Beijing 100871, China. 3 School of Life Sciences, Peking University, 
Beijing 100871, China. 4 Institute for Cell Analysis, Shenzhen Bay Laboratory, 
Guangdong 528107, China. 5 Laboratory of Dynamic Immunobiology, Institute 
for Immunology, Tsinghua University, Beijing 100871, China. 6 Department 

of Basic Medical Sciences, School of Medicine, Tsinghua University, Bei-
jing 100871, China. 7 Peking University–Tsinghua University–National Institute 
of Biological Sciences Joint Graduate Program (PTN), Peking University, 
Beijing 100871, China. 8 School of Life Sciences, Beijing Advanced Innova-
tion Center for Structural Biology, Tsinghua University, Beijing 100084, China. 
9 College of Chemistry and Molecular Engineering, Beijing National Laboratory 
for Molecular Sciences, Peking University, Beijing 100871, China. 10 Peking‑Tsin-
ghua Center for Life Sciences, Peking University, Beijing 100871, China. 

Received: 6 May 2022   Accepted: 21 September 2022

References
	1.	 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and 

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 
2008;5(7):621–8.

	2.	 Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, et al. A comparison between 
ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. 
Genomics. 2010;96(5):259–65.

	3.	 Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. 
Smart-seq2 for sensitive full-length transcriptome profiling in single cells. 
Nat Methods. 2013;10(11):1096–8.

	4.	 Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, et al. 
Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. 
Nat Commun. 2018;9(1):1–8.

	5.	 Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Mas-
sively parallel digital transcriptional profiling of single cells. Nat Commun. 
2017;8(1):1–12.

	6.	 Perez JD, Tom Dieck S, Alvarez-Castelao B, Tushev G, Chan IC, Schuman 
EM. Subcellular sequencing of single neurons reveals the dendritic tran-
scriptome of GABAergic interneurons. Elife. 2021;10:e63092.

	7.	 Oguchi Y, Ozaki Y, Abdelmoez MN, Shintaku H. NanoSINC-seq dissects 
the isoform diversity in subcellular compartments of single cells. Sci Adv. 
2021;7(15):eabe0317.

	8.	 Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IW, Ng LG, et al. Dimen-
sionality reduction for visualizing single-cell data using UMAP. Nat 
Biotechnol. 2019;37(1):38–44.

	9.	 Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph 
embedding resolves complex single-cell trajectories. Nature Methods. 
2017;14(10):979-82.

	10.	 La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, 
et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8.

	11.	 Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct comparative analyses of 
10X Genomics Chromium and smart-seq2. Genomics Proteomics Bioinf. 
2021;19(2):253-66.

	12.	 Di L, Fu Y, Sun Y, Li J, Liu L, Yao J, et al. RNA sequencing by direct tagmen-
tation of RNA/DNA hybrids. Proc Natl Acad Sci. 2020;117(6):2886–93 GSA 
https://​ngdc.​cncb.​ac.​cn/​gsa/​browse/​CRA00​2081.

	13.	 Chen C, Li J, Di L, Jing Q, Du P, Song C, et al. MINERVA: a facile strategy for 
SARS-CoV-2 whole-genome deep sequencing of clinical samples. Mol 
Cell. 2020;80(6):1123–34. e4.

	14.	 Gerard GF, Collins S, Smith MD. Excess dNTPs minimize RNA hydrolysis 
during reverse transcription. Biotechniques. 2002;33(5):984–90.

	15.	 Chandler DP, Wagnon CA, Bolton H Jr. Reverse transcriptase (RT) inhibi-
tion of PCR at low concentrations of template and its implications for 
quantitative RT-PCR. Appl Environ Microbiol. 1998;64(2):669–77.

	16.	 Yamawaki TM, Lu DR, Ellwanger DC, Bhatt D, Manzanillo P, Arias V, et al. 
Systematic comparison of high-throughput single-cell RNA-seq methods 
for immune cell profiling. BMC Genomics. 2021;22(1):1–18.

	17.	 MacLennan IC. Germinal centers. Annu Rev Immunol. 1994;12(1):117–39.
	18.	 Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 

2012;30:429–57.
	19.	 Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, et al. Germinal 

center dark and light zone organization is mediated by CXCR4 and 
CXCR5. Nat Immunol. 2004;5(9):943–52.

	20.	 Caron G, Le Gallou S, Lamy T, Tarte K, Fest T. CXCR4 expression function-
ally discriminates centroblasts versus centrocytes within human germinal 
center B cells. J Immunol. 2009;182(12):7595–602.

https://ngdc.cncb.ac.cn/gsa/browse/CRA002081


Page 13 of 13Di et al. BMC Biology          (2022) 20:213 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	21.	 Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann 
M, Dustin ML, et al. Germinal center dynamics revealed by multipho-
ton microscopy with a photoactivatable fluorescent reporter. Cell. 
2010;143(4):592–605.

	22.	 Victora GD. SnapShot: the germinal center reaction. Cell. 2014;159(3):700-. 
e1.

	23.	 Mesin L, Ersching J, Victora GD. Germinal center B cell dynamics. Immu-
nity. 2016;45(3):471–82.

	24.	 De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev 
Immunol. 2015;15(3):137–48.

	25.	 Kennedy DE, Okoreeh MK, Maienschein-Cline M, Ai J, Veselits M, McLean 
KC, et al. Novel specialized cell state and spatial compartments within the 
germinal center. Nat Immunol. 2020;21(6):660–70.

	26.	 Green JA, Suzuki K, Cho B, Willison LD, Palmer D, Allen CD, et al. The 
sphingosine 1-phosphate receptor S1P 2 maintains the homeostasis of 
germinal center B cells and promotes niche confinement. Nat Immunol. 
2011;12(7):672–80.

	27.	 Huang C, Melnick A. Mechanisms of action of BCL6 during germinal 
center B cell development. Sci China Life Sci. 2015;58(12):1226–32.

	28.	 Suan D, Kräutler NJ, Maag JL, Butt D, Bourne K, Hermes JR, et al. CCR6 
defines memory B cell precursors in mouse and human germinal cent-
ers, revealing light-zone location and predominant low antigen affinity. 
Immunity. 2017;47(6):1142–53. e4.

	29.	 Ise W, Fujii K, Shiroguchi K, Ito A, Kometani K, Takeda K, et al. T follicu-
lar helper cell-germinal center B cell interaction strength regulates 
entry into plasma cell or recycling germinal center cell fate. Immunity. 
2018;48(4):702–15. e4.

	30.	 Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig 
MC, et al. c-MYC is required for germinal center selection and cyclic re-
entry. Nat Immunol. 2012;13(11):1083.

	31.	 Laidlaw BJ, Duan L, Xu Y, Vazquez SE, Cyster JG. The transcription factor 
Hhex cooperates with the corepressor Tle3 to promote memory B cell 
development. Nat Immunol. 2020;21(9):1082–93.

	32.	 Jacob J, Kelsoe G. In situ studies of the primary immune response to 
(4-hydroxy-3-nitrophenyl) acetyl. II. A common clonal origin for periarte-
riolar lymphoid sheath-associated foci and germinal centers. J Exp Med. 
1992;176(3):679–87.

	33.	 Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, 
et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult 
newborn neurons. Science. 2016;353(6302):925–8.

	34.	 Tan MC, Widagdo J, Chau YQ, Zhu T, Wong JJ-L, Cheung A, et al. The 
activity-induced long non-coding RNA Meg3 modulates AMPA recep-
tor surface expression in primary cortical neurons. Front Cell Neurosci. 
2017;11:124.

	35.	 Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J, 
Larsson AJ, et al. Single-cell RNA counting at allele and isoform resolu-
tion using Smart-seq3. Nat Biotechnol. 2020;38(6):708–14 ArrayExpress 
https://​www.​ebi.​ac.​uk/​array​expre​ss/​exper​iments/​E-​MTAB-​8735/.

	36.	 Chen H, Yao J, Fu Y, Pang Y, Wang J, Huang Y. Tagmentation on micro-
beads: restore long-range DNA sequence information using next 
generation sequencing with library prepared by surface-immobilized 
transposomes. ACS Appl Mater Interfaces. 2018;10(14):11539–45.

	37.	 Zhang F, Christiansen L, Thomas J, Pokholok D, Jackson R, Morrell N, 
et al. Haplotype phasing of whole human genomes using bead-based 
barcode partitioning in a single tube. Nat Biotechnol. 2017;35(9):852–7.

	38.	 Martin M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet J. 2011;17(1):10–2.

	39.	 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

	40.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The 
sequence alignment/map format and SAMtools. Bioinformatics. 
2009;25(16):2078–9.

	41.	 Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential 
gene and transcript expression analysis of RNA-seq experiments with 
TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78.

	42.	 Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose 
program for assigning sequence reads to genomic features. Bioinformat-
ics. 2014;30(7):923–30.

	43.	 Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. 
Bioinformatics. 2012;28(16):2184–5.

	44.	 Klopfenstein D, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, 
Naldi A, et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci 
Rep. 2018;8(1):1–17.

	45.	 Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expres-
sion data analysis. Genome Biol. 2018;19(1):1–5.

	46.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.

	47.	 Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity 
to transient cell states through dynamical modeling. Nat Biotechnol. 
2020;38(12):1408–14.

	48.	 Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putint-
seva EV, et al. MiXCR: software for comprehensive adaptive immunity 
profiling. Nat Methods. 2015;12(5):380–1.

	49.	 Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable 
domain sequence analysis tool. Nucleic Acids Res. 2013;41(W1):W34–40.

	50.	 Huang Y, Sanguinetti G. BRIE: transcriptome-wide splicing quantification 
in single cells. Genome Biol. 2017;18(1):1–11.

	51.	 Lin D. Rapid and sensitive single cell RNA sequencing with SHERRY2. NCBI 
Sequence Read Archive, PRJNA879104. 2022. https://​www.​ncbi.​nlm.​nih.​
gov/​biopr​oject/​PRJNA​879104.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8735/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA879104
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA879104

	Rapid and sensitive single-cell RNA sequencing with SHERRY2
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	SHERRY2 provides high sensitivity and even coverage across gene bodies for scRNA-seq
	scRNA-seq for low RNA content cells
	Selection dynamics in germinal centers profiled by SHERRY2
	Superior performance of SHERRY2 applied in snRNA-seq

	Discussion
	Conclusions
	Methods
	Cell culture
	Mice
	GC light zone B cell preparation and sorting
	Lymphocyte cell preparation and sorting
	Hippocampal nuclei preparation and sorting
	DNA carrier preparation
	Generation of RNA-seq library
	RNA-seq data analysis
	Data quality
	Gene Ontology analysis
	Clustering and marker genes
	RNA velocity
	BCR assembly
	Exon usage
	SmartSeq3 data reanalysis


	Acknowledgements
	References


