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Abstract 

Background:  Sequential effects of environmental stimuli are ubiquitous in most behavioral tasks involving magni‑
tude estimation, memory, decision making, and emotion. The human visual system exploits continuity in the visual 
environment, which induces two contrasting perceptual phenomena shaping visual perception. Previous work 
reported that perceptual estimation of a stimulus may be influenced either by attractive serial dependencies or 
repulsive aftereffects, with a number of experimental variables suggested as factors determining the direction and 
magnitude of sequential effects. Recent studies have theorized that these two effects concurrently arise in perceptual 
processing, but empirical evidence that directly supports this hypothesis is lacking, and it remains unclear whether 
and how attractive and repulsive sequential effects interact in a trial. Here we show that the two effects concurrently 
modulate estimation behavior in a typical sequence of perceptual tasks.

Results:  We first demonstrate that observers’ estimation error as a function of both the previous stimulus and 
response cannot be fully described by either attractive or repulsive bias but is instead well captured by a summa‑
tion of repulsion from the previous stimulus and attraction toward the previous response. We then reveal that the 
repulsive bias is centered on the observer’s sensory encoding of the previous stimulus, which is again repelled away 
from its own preceding trial, whereas the attractive bias is centered precisely on the previous response, which is the 
observer’s best prediction about the incoming stimuli.

Conclusions:  Our findings provide strong evidence that sensory encoding is shaped by dynamic tuning of the sys‑
tem to the past stimuli, inducing repulsive aftereffects, and followed by inference incorporating the prediction from 
the past estimation, leading to attractive serial dependence.

Keywords:  Vision, Perception, Perceptual bias, Sensory adaptation, Aftereffect, Serial dependence, Bayesian inference, 
Ideal observer, Encoder-decoder model
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Background
Sensory input from the natural environment is highly 
structured, and humans can learn statistical regularities 
in sensory input and exploit them to optimize perceptual 
processing [1–3]. Considerable advances have been made 
toward understanding whether and how the visual sys-
tem incorporates knowledge of environmental statistics. 

For example, knowledge about the distribution of local 
orientation in natural images can be used not only to pro-
duce an efficient representation of the incoming orienta-
tion signal but also to optimize the interpretation of that 
orientation representation [4]. The relevant environmen-
tal statistics are not limited to static distributions. Most 
everyday visual tasks require more than processing static 
images, as many visual features change continuously 
over time [5, 6]. For example, orientation signals arising 
in the natural world tend to change gradually, such that 
the local orientation at any given moment correlates with 
the orientation of the previous moment [6]. To process 
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such dynamic sensory inputs efficiently and accurately, 
the visual system should consider the temporal structure 
between successive stimuli in the environment [7].

There are two ways for the visual system to exploit 
knowledge about changing environments. First, tempo-
ral structures in sensory input provide an opportunity 
for the visual system to form an efficient representation 
of sensory information. The incoming stream of input is 
partially redundant because the current sensory input 
tends to resemble the preceding one. Therefore, the 
visual system can exploit the redundancy to enhance 
efficiency in neural coding by adaptively adjusting the 
response properties of sensory neurons according to 
the changes in input stimuli [8–16]. The perceptual con-
sequence of sensory adaptation is most clearly seen in 
repulsive aftereffects, a phenomenon in which exposure 
to a stimulus induces a repulsive bias in the perception of 
subsequent stimuli [17–21]. Second, predictions derived 
from recent sensory inputs can be used to interpret the 
encoded signals. Numerous studies have shown that the 
visual system utilizes prior knowledge about the sensory 
environment to infer the state of the world from noisy 
and incomplete sensory inputs [22–25]. In the context of 
processing dynamic sensory inputs, the current sensory 
input is integrated with predictions from the recent past 
to optimize perceptual estimation [25]. The optimal inte-
gration model provides a normative explanation for serial 
dependence in perceptual behavior [6, 7, 26, 27], a phe-
nomenon in which perceptual estimation of the current 
stimulus is attracted toward the previous stimuli [28, 29].

Both repulsive aftereffects and attractive serial 
dependence are well-known phenomena in which the 
visual system leverages information from the recent 
past to optimize the processing of incoming visual 
input. These two opposite effects, however, have been 
historically described and theorized about in isolation. 
Only recently have suggestions been made that these 
two effects may concurrently occur in perceptual pro-
cessing [30–32]. The implied picture is that one effect 
is hidden when the other becomes behaviorally observ-
able, but this theoretical consideration lacks direct 
empirical supports. Most previous studies focused on 
showing that either, but not both, of the two effects 
can be signified depending on the specifications of the 
experimental setup, such as stimulus features [33, 34], 
time interval between consecutive events [35, 36], and 
task design [31, 37, 38]. While these studies converg-
ingly showed that the sequential effect varies drasti-
cally between attraction and repulsion with only a 
small change in experimental paradigm, they do not 
empirically confirm whether and how the two effects 
with opposite behavioral consequences occur in a sin-
gle perceptual processing, which is crucial for the 

investigation of underlying mechanisms [39]. A group 
of studies showed that perceptual estimates of the cur-
rent stimulus are attracted to the immediately preced-
ing stimulus and repelled away from stimuli further 
back in the past (or vice versa) [30, 40–42]. However, 
even these studies cannot determine whether a single 
sensory event can induce both attractive and repulsive 
biases in the immediately subsequent perception.

In this study, we test a key prediction of the current 
theory about attractive and repulsive sequential effects—
that the two effects concurrently occur in perceptual 
processing [30, 32] but with different determinants [31]. 
Specifically, we reason that an observer’s current esti-
mates would be repelled away from the previous stimu-
lus, because the neural population that encodes incoming 
sensory information naturally adjusts its tuning charac-
teristics according to what was encoded at the previous 
moment. That is, we consider the previous stimulus as 
a proxy for sensory measurement made by the observer 
in the previous trial. Indeed, recent studies showed 
that neural representations of the current stimulus are 
repelled away from the previous stimulus, in spite of 
attractive biases in behavior [32, 43], raising a possibility 
that repulsive biases might be also hidden in perceptual 
reports. We also reason that, at the same time, the esti-
mates would be attracted toward the previous response, 
because the observer’s prediction that optimizes the per-
ceptual interpretation would be derived from what was 
perceived by the observer in the previous trial [6, 26]. 
In the absence of feedback, the observer does not have 
direct access to the true stimulus in the previous trial, so 
the final perception in the previous trial is the best esti-
mate the observer has about the previous stimulus. Thus, 
although it may appear trivial at first glance to determine 
whether it is a stimulus and/or response that biases the 
subsequent perception, it has important implications on 
how and why the visual system processes sensory infor-
mation according to the recent sensory events.

To test this hypothesis, we aimed to estimate the con-
current influence of the previous stimulus and response 
on current perception. In a series of trials, we asked 
subjects to view a field of moving dots and to report 
the perceived direction of motion (Fig.  1A). The sub-
jects’ responses to the direction of motion were system-
atically attracted toward the direction of motion in the 
previous trial, consistent with previous studies. Impor-
tantly, however, by representing the response error as 
a function of both the previous stimulus and response, 
we demonstrated that the estimation responses are 
repelled from the direction of motion in the previous 
trial, resembling the repulsive aftereffects, and at the 
same time attracted toward the reported direction of 
motion in the previous trial, mirroring the attractive 
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serial dependence. A preliminary version of this work 
has been presented previously [44].

Results
Processing a sequence of images involves interactions 
between the current input and past observations, and the 
repulsive aftereffect and the attractive serial dependence 
are regarded as behavioral consequences of these interac-
tions [20, 39]. We sought to investigate the determinants 
of these interactions by separately estimating the respec-
tive effects of stimulus and response on subsequent per-
ception. In a typical perceptual estimation task, however, 
the value of a given stimulus and the subjects’ response 
to it would be strongly correlated, making it challeng-
ing to distinguish which of those two is related to the 
observed bias. To effectively disentangle them, we care-
fully modulated the stimulus dynamics across subjects, 
thereby ensuring the collection of a sufficient number 
of informative trials. Specifically, subjects were divided 
into four groups of equal size and performed a motion 
direction estimation task (Fig. 1A) in which the direction 
of stimulus motion was randomly varied from the direc-
tion of motion in the previous trial following a uniform 
distribution with different ranges (±20°, ±40°, ±80°, or 
±180°). This way, we were able to secure a large num-
ber of trials in which the previous stimulus and previous 
response were relatively similar to the current stimulus. 
Considering that both attractive and repulsive sequential 
effects are tuned to similarity between successive stimuli 

[17, 28], our data would be highly informative about the 
effects of previous stimulus and previous response. In 
addition, our design also allowed us to directly test the 
effect of experimentally imposed temporal statistics on 
subjects’ estimation behavior, which will be dealt with in 
the “Discussion” section.

Attractive sequential effects in motion direction estimation
We first examined whether we successfully replicated 
previously reported serial dependence. To do this, we 
adopted the standard approach from earlier studies 
that focused on the effect of previous stimuli on current 
perception [28, 29]. First, the response error was com-
puted as the angular difference between the reported 
and presented motion directions, with positive angles 
corresponding to clockwise deviations. In doing this, 
we corrected for the well-known estimation biases 
toward or away from the cardinal axes [4, 45], which 
could have been confounded with the sequential effects 
(Additional file  1: Fig. S1). We then examined the pat-
terns of subjects’ response errors as a function of the 
relative direction of the previous stimulus to the current 
stimulus (i.e., Stimulust − 1 − Stimulust). As expected, we 
found that the estimation responses were systematically 
biased to stimuli that were previously viewed (Fig.  1B; 
see also Additional file  1: Fig. S2). We also examined 
the response error as a function of the relative direc-
tion of the previous response to the current stimu-
lus (i.e., Responset − 1 − Stimulust) and found that the 

Fig. 1  Task procedure and marginal bias plots. A Sequence of events in a trial. On each trial, subjects viewed a random-dot motion stimulus and 
reported the perceived direction of motion by extending a dark bar from the center point. They were instructed to report the direction of motion of 
dots by swiping their finger on a touchpad to extend a bar from the center of the display to the direction of their estimate and confirm that report 
with a click on the touchpad. B Bias plot marginalized on the relative direction of the previous stimulus. Response errors are expressed as a function 
of the relative direction of the previous stimulus (i.e., previous stimulus minus current stimulus). Consistent with earlier studies, estimation responses 
are systematically biased to the previous stimulus. C Bias plot marginalized on the relative direction of the previous response. Response errors are 
expressed as a function of the relative direction of the previous response (i.e., previous response minus current stimulus). For each subject, bias 
was computed by averaging the response error over a sliding window (window width: 10°, step size: 1°). Averages with less than ten trials within a 
subject were excluded before illustration. Again, estimation responses are systematically biased to the previous response. Shaded regions represent 
95% confidence intervals
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responses were again attracted toward responses that 
were recently made (Fig.  1C). These sequential effects 
were highly significant (previous stimulus: t(31) = 8.572, 
P < 0.001; previous response: t(31) = 8.317, P < 0.001), 
and their magnitudes and attraction profiles were con-
sistent with earlier reports [27, 31, 38], following a first 
derivative of Gaussian (DoG) curve (previous stimulus: 
amplitude = 2.91° [2.18 3.60], peak location = 20.28° 
[18.60 22.75]; previous response: amplitude = 4.10° 
[3.06 5.15], peak location = 22.48° [19.95 25.05]). Note 
that the observed effect of previous response is not arti-
facts unrelated to the sequential effect, as our correc-
tion procedure has effectively removed the confounding 
bias function of the current stimulus direction for each 
subject (Additional file 1: Fig. S3).

However, plotting response errors as a function of 
either previous stimulus or response direction does not 
reflect the isolated effect of the previous stimulus or 
response, since the direction of motion stimulus and 
the subjects’ corresponding response to it are strongly 
correlated: The circular correlation coefficient between 
the true and reported direction of motion had a median 
(and interquartile range) of 0.988 (0.985–0.992) across 

subjects. Therefore, it would be inappropriate to judge 
which component of the previous trial truly influenced 
the response of the current trial based only on the pat-
terns of biases marginalized over the previous stimulus 
or response (Fig. 1B, C).

Disentangling the effects of previous stimuli and responses
The subjects’ estimation behavior in the current trial 
could have been influenced by the direction of the pre-
ceding stimulus, subjects’ perceptual estimate of it, or 
both. To obtain a general insight into which aspects of the 
previous trial affected subjects’ performance and how, we 
visualized subjects’ response error in a two-dimensional 
map as a function of both previous stimulus and response 
directions (Fig.  2A; see also Additional file  1: Fig. S4). 
In this joint bias map, the x-axis represents the relative 
direction of the previous stimulus, the y-axis represents 
the relative direction of the previous response, and the 
color of each pixel represents the subjects’ response 
error. Pixels with warm colors indicate positive errors, 
and pixels with cool colors indicate negative errors. Thus, 
both warm-colored pixels with positive labels on the axis 
and cool-colored pixels with negative labels on the axis 

Fig. 2  Joint bias map and conditional bias plots. A Joint bias map. Response errors are plotted as a function of both the previous stimulus and 
response direction relative to the current stimulus. For each subject, we binned the response errors within 10° bins according to the relative 
direction of the previous stimulus and response. Group means with less than fourteen subjects’ data were excluded before illustration. The color of 
each pixel represents response error on the current trial (warm color: positive error; cool color: negative error). Positive values on the x- and y-axis 
indicate that the previous stimulus and response direction was more clockwise than the current stimulus, respectively, and positive errors indicate 
that the estimated direction was more clockwise than the true stimulus direction. Estimation responses on the current trial are systematically 
repelled away from the stimulus direction of the previous trial, while they are strongly attracted toward the response direction of the previous 
trial. NA, not available. B Bias plot conditioned on relative direction of previous response. Response errors split by relative direction of the previous 
response were plotted as a function of relative direction of the previous stimulus. Bins with less than five trials within a subject and group means 
with less than fourteen subjects’ data were excluded before illustration. As can be seen across five lines with negative slopes, estimation responses 
are negatively biased away from the previous stimulus. C Bias plot conditioned on relative direction of previous stimulus. Response errors split 
by relative direction of the previous stimulus were plotted as a function of relative direction of the previous response. Estimation responses are 
positively biased toward the previous response, as indicated by the positive slopes. Shaded regions represent 95% confidence intervals
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represent attractive biases, whereas warm-colored pixels 
with negative labels on the axis and cool-colored pixels 
with positive labels on the axis represent repulsive biases.

Visual inspection of the joint bias map reveals that it 
has a rich structure beyond the traditional view of the 
sequential effect. Specifically, it becomes immediately 
apparent from the map that the sequential effect cannot 
be fully characterized by a simple attractive or repul-
sive bias and is not solely determined by either the pre-
vious stimulus or the previous response. Instead, errors 
in direction estimates seem to be driven by both attrac-
tive and repulsive biases that depend systematically 
on both the previous stimulus and previous response, 
relative to the current stimulus. In the following, we 
further examine the characteristic features of the joint 
bias map one by one.

Our first and most crucial observation was that the 
estimation responses were systematically repelled away 
from the stimulus direction of the previous trial, while 
they were strongly attracted toward the response direc-
tion of the previous trial. Consider, for example, hori-
zontally neighboring pixels labeled as zero on the y-axis. 
Previous responses relative to the current stimulus (i.e., 
y-axis value) are fixed across these pixels, so they would 
reveal the sole effect of the previous stimulus. These pix-
els show that the response error decreases as the relative 
stimulus direction of the previous trial increases, sug-
gesting that the effect of the previous stimulus is repul-
sive. This indicates that when the random dots in the 
previous trial moved in a direction more clockwise than 
the direction of motion of the dots in the present trial, 
subjects perceived the present random dots as moving 
in the direction more counterclockwise than their true 
direction of motion. The repulsive effect of the previous 
stimulus becomes even more evident when we plot the 
response error, split by the relative direction of the previ-
ous response, as a function of the relative direction of the 
previous stimulus (Fig.  2B). This would reveal how the 
estimation responses changed with changes in the pre-
vious stimulus, with the effect of the previous response 
fixed within each line. The bias plot clearly shows nega-
tive slopes regardless of previous response directions, 
which confirms the robust repulsion away from the pre-
vious stimulus direction.

In contrast, vertically neighboring pixels that are 
labeled zero on the x-axis show that the response error 
increases as the relative response direction of the previ-
ous trial increases, suggesting that the effect of the pre-
vious response is attractive. This indicates that when 
subjects perceived and subsequently reported that the 
random dots in the previous trial had moved in the direc-
tion more clockwise than the direction of motion of dots 
in the present trial, they perceived the present random 

dots as moving in the direction more clockwise than their 
true direction of motion. Again, the attractive effect of 
the previous response becomes even more pronounced 
by plotting the response error split by the relative direc-
tion of the previous stimulus as a function of the relative 
direction of the previous response (Fig. 2C). The bias plot 
exhibited positive slopes, confirming the strong attrac-
tion toward the previous response direction.

The joint bias map (Fig.  2A) also provides us with 
an idea about how these two opposite effects interact. 
Based on the linearly increasing response errors from 
the lower right to the upper left, we can observe that 
these two sequential biases are combined in an additive 
manner. Consequently, the bias was strongest when the 
directions of the previous stimulus and response were 
opposite relative to the current stimulus, as revealed 
by the response errors on the second and fourth quad-
rants, with their magnitudes being up to 8° on average. 
In other words, the bias in estimation responses were 
strongest when the concurrent attractive and repul-
sive effects happened to work in the same clockwise or 
counterclockwise direction.

Lastly, we confirmed that it would be inappropriate to 
quantify the biases with a linear regression that uses the 
relative direction of the previous stimulus and response 
as predictors. Both repulsion away from the previous 
stimulus and attraction toward the previous response 
were observed when the previous stimulus and response 
values were similar to the current stimulus, but these 
patterns were diminished or even slightly reversed when 
they were very different, as can be seen at the extremi-
ties of the joint bias map (Fig. 2A), suggesting that linear 
regression would not be an appropriate way to quantify 
the biases.

Additivity of concurrent attractive and repulsive sequential 
effects
We used a descriptive model to simultaneously quan-
tify the attractive and repulsive biases. Based on 
existing literature, we assumed that patterns of the 
attractive and repulsive effects would each resemble the 
DoG curve and that the two effects would linearly add 
up to compose the resulting sequential biases in sub-
jects’ estimation behavior. We fitted a sum of two inde-
pendent DoG curves, each representing the bias to or 
away from the previous stimulus and bias to or away 
from the previous response, respectively. In the follow-
ing, we refer to this model as the Stimulus & Response 
model, as both the previous stimulus and previous 
response bias the current perception. We compare the 
Stimulus & Response model to alternative models in 
which either previous stimulus or previous response 
biases the current estimates (designated as the Stimulus 
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model and the Response model, respectively). We first 
produced the estimation behavior using the best-fitting 
parameters of each model and plotted joint bias maps 
to examine the model performance (Fig. 3A–C). While 
the behaviors of neither Stimulus model (Fig.  3A) nor 
Response model (Fig. 3B) properly emulated the human 
data (Fig. 2A), the Stimulus & Response model success-
fully predicted the pattern of biases observed in the 
empirical data (Fig.  3C). Models were also quantita-
tively compared using the Akaike information criterion 
(AIC) to account for differences in model complexity, 
with data reported as the mean AIC difference from the 
best-fitting model followed by a bootstrapped 95% con-
fidence interval in brackets. The Stimulus & Response 
model outperformed the Stimulus model (AIC differ-
ence = 125.7 [79.9 239.1]) and the Response model 
(AIC difference = 35.2 [24.1 52.3]; Fig. 3D).

We did not constrain the direction of the biases in these 
models to be attractive or repulsive. Nevertheless, the fit-
ting results of the Stimulus & Response model revealed 
that the previous stimulus repelled the subsequent 
responses, while the previous response attracted them 
(previous stimulus: amplitude = −4.88° [−5.89 −3.90], 
t(31) = 14.991, P < 0.001; previous response: 7.95° [6.81 

9.01], t(31) = 27.090, P < 0.001; Fig. 4A; see also Additional 
file  1: Fig. S5), consistent with our visual inspection of 
the joint bias map. Note that the absolute magnitudes of 
both attractive and repulsive biases are considerably larger 
than those observed in the marginal bias plots (Fig.  1B, 
C), as well as the typical sequential biases reported in the 
literature. The attraction toward the previous response 
was significantly larger in absolute magnitude than the 
repulsion away from the previous stimulus (difference: 
3.11° [1.64 4.35], t(31) = 6.241, P < 0.001), accounting for 
the net attractive bias observed in the marginal bias plots 
of our data (Fig 1B, C) and in earlier studies. In addi-
tion, the repulsion away from the previous stimulus was 
more broadly tuned than attraction toward the previous 
response (previous stimulus: peak location = 38.45° [34.61 
45.65]; previous response: 28.92° [26.75 32.06]; difference: 
9.53° [5.35 16.34], t(31) = 8.799, P < 0.001; Fig. 4B), which 
explains the small repulsive bias often observed in earlier 
studies when successive stimuli were markedly different [6, 
35, 38, 46, 47]. Overall, our results show that the observed 
patterns of sequential effects in the joint bias map can be 
well described by the linear sum of two curves characteriz-
ing the attraction toward the previous response and repul-
sion away from the previous stimulus.

Fig. 3  Model comparison. A Prediction from a single DoG function of relative direction of the previous stimulus (Stimulus model). Color 
conventions are as described in Fig. 2A, and pixels are shown for only those available in Fig. 2A. B Prediction from a single DoG function of relative 
direction of the previous response (Response model). C Prediction from the linear sum of two independent DoG functions, each representing bias 
to (or away from) the previous stimulus and bias to (or away from) the previous response (Stimulus & Response model). Characteristic patterns of 
the joint bias map are in excellent agreement with empirical data shown in Fig. 2A. D Model comparison using Akaike information criterion (AIC). 
Small dots represent individual subject differences in AIC values between each model and the Stimulus & Response model. Large circles and error 
bars represent mean and bootstrapped 95% confidence interval. Positive numbers represent a worse fit than the Stimulus & Response model. The 
Stimulus & Response model fits the best
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Estimating the centers of biases
We constrained the Stimulus & Response model in such 
a way that the centers of the two bias curves are located 
at the previous stimulus or response. The rationale was 
that the previous stimulus is a proxy for the tuning state 
of the neural population in the encoding stage, which 
may induce repulsion, and the previous response is a 
proxy for the prediction from the past estimation, which 
may induce attraction. However, it is an open question 
whether the previous stimulus and response are indeed 
the centers of the biases. More specifically, while we used 
the previous stimulus as a proxy for the latent sensory 
measurement in the previous trial, the previous sensory 
measurement itself could have been repelled away from 
its own preceding trial, deviating from the previous stim-
ulus. In contrast, the previous response, which we used 
as a proxy for the final percept in the previous trial, is 
not likely to systematically deviate from the percept. The 
percept itself is biased due to the accumulated effects 
from the past trials; however, the response, we assume, 
is an unbiased manifestation of the percept with additive 
noise. Therefore, it is plausible that sensory encoding is 
affected by not only the previous stimulus but also the 
stimulus before the previous stimulus, while the predic-
tion from the past estimation is indeed centered at the 

previous response that reflects the observer’s best esti-
mate of the previous stimulus, equivalent to the best pre-
dictor for the incoming input in our task.

To estimate the centers of biases, we fitted a new 
model: a sum of two independent DoG curves, each rep-
resenting attractive (i.e., aattraction > 0) and repulsive (i.e., 
arepulsion < 0) biases, respectively, without predetermining 
the centers of the curves. Specifically, the centers of the 
attraction and repulsion curves were each parameterized 
as a combination of the previous stimulus and previous 
response, βResponset − 1 + (1 − β)Stimulust − 1. Note that 
the centers of the two curves are parametrized identically 
without any presumption. For each curve, if β is one, the 
current response is biased by the previous response, and 
if β is zero, the current response is biased by the previous 
stimulus. More generally, the beta parameters represent 
the center of the corresponding bias curves on a normal-
ized scale in which the previous stimulus is zero and the 
previous response is one. We refer to this model as the 
Attraction & Repulsion model. We fitted the model to 
data as for the Stimulus & Response model, but with two 
βs, each for attraction (βattraction) and repulsion (βrepulsion) 
curves, as additional free parameters (see Methods). For 
the attraction curve, we found that βattraction was signifi-
cantly larger than zero (1.02 [0.89 1.13], t(31) = 58.149, 
P < 0.001) and tightly clustered around one (Fig.  5A, 
orange circle). This provides additional support for the 
attraction toward the previous response and not toward 
the previous stimulus (or a combination of the two). We 
also found that, for the repulsion curve, βrepulsion is vastly 
different from one (t(31) = 107.887, P < 0.001), suggesting 
that the current response is not repelled from the previ-
ous response. However, the estimated βrepulsion was not 
exactly clustered around zero, either. Instead, βrepulsion 
was significantly negative across subjects (−0.85 [−1.26 
−0.53], t(31) = 51.567, P < 0.001; Fig. 5A, light blue cir-
cle), indicating that the center of the repulsion curve 
was located near the previous stimulus but shifted in the 
direction opposite to the previous response.

We propose that the systematic deviation of βrepulsion 
from the previous stimulus indicates that the center of 
repulsion is determined by “sensory measurement” of 
the previous stimulus rather than the previous stimulus 
itself. The sensory measurement is defined as the latent 
value that represents the measured sensory input, which 
is affected by the repulsive bias in encoding but has not 
yet been affected by the attractive bias in decoding. The 
sensory measurement on a given trial can be systemati-
cally related to the response error on the trial. Consider 
a case in which the current response is located clock-
wise relative to the current stimulus. It is likely that the 
previous stimulus is also located clockwise relative to 
the current stimulus because the response is biased, on 

Fig. 4  Quantifying the two opposite biases. A Estimated bias 
magnitudes in the Stimulus & Response model. Bias is negative 
for the previous stimulus and positive for the previous response, 
meaning that the estimation responses were repelled away from 
the previous stimulus and attracted toward the previous response. 
Both biases are highly significant, with the bias to the previous 
response being significantly larger in absolute magnitude than the 
bias away from the previous stimulus. B Estimated peak locations 
of the bias curves in the Stimulus & Response model. Bias away 
from the previous stimulus is more broadly tuned than the bias to 
the previous response. Bars represent the posterior estimate of the 
population mean, error bars represent 95% credible intervals, and 
dots connected with thin lines represent the parameter estimates for 
individual subjects. ***P < 0.001
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average, to the previous stimulus. Consequently, the sen-
sory measurement of the current stimulus would system-
atically deviate from the current stimulus in a direction 
away from the current response, as we observed in the 
analysis (Fig. 5A).

According to our proposal, the magnitude of the attrac-
tive bias should have no meaningful relationship with the 
center of the attractive bias, whereas the magnitude of 
the repulsive bias should directly affect the previous sen-
sory measurement, and thus the center of the repulsive 
bias, across individual subjects. To test this prediction, 
we compared the magnitudes of attractive and repul-
sive biases for each subject to the shifts in the center of 
the corresponding biases. As expected, we found no sta-
tistically significant relationship between the center and 
magnitude of the attractive bias (𝜌 = 0.149, P = 0.702; 
Fig.  5B). Crucially, we found that the individual differ-
ences in the center of the repulsion curve (βrepulsion) were 
correlated with the magnitude of the repulsive bias. Sub-
jects whose repulsion away from the previous stimulus 
was the strongest tended to have largest shift in the center 
of the repulsive bias (𝜌 = 0.633, P = 0.002; Fig. 5C). These 
results bear out the qualitative prediction of our hypoth-
esis that the center of the repulsion systematically deviates 
from the previous stimulus because the previous sensory 
measurement, which was repelled away from its own pre-
ceding trial, is the center of repulsion in the current trial.

Discussion
Our natural environment is abundant with statistical 
regularities, a typical one being that the environment 
is stable over time [5, 6]. If it is scorching hot today, 

no one would expect heavy snow the next day. It is no 
surprise that an observer utilizes such environmen-
tal stability to improve their perceptual performance. 
However, there is a certain irony in this situation [48], 
because an ideal observer should not only ensure that 
sensory neurons adapt to the changes in input stimuli, 
repelling the current perception, but also perform 
probabilistic inference based on predictions from 
past observations, attracting the current perception 
toward the recent history. These two have been widely 
suggested as underlying mechanisms of the repulsive 
aftereffects and attractive serial dependence, but it 
remains unclear whether and how these two opposite 
effects interact in the perceptual process [39]. Here, 
we studied the concurrent attractive and repulsive 
sequential effects in visual perception to determine 
how these competing demands are resolved during 
visual processing. Specifically, we showed that the pre-
vious stimulus repels the current response, the previ-
ous response attracts the current response, and these 
two biases add up to shape a unique pattern in estima-
tion behavior. We also directly estimated the centers of 
the biases and confirmed that whereas the attraction 
bias is centered precisely at the previous percept, the 
repulsion bias is centered at the sensory measurement 
of the previous stimulus. We believe that the concur-
rent attractive and repulsive sequential effects could 
be present in many other data in literature (see also 
ref. [49]), as the overall attraction bias found in our 
study mirrors several previous reports showing similar 
attractive biases in numerous perceptual and cognitive 
domains.

Fig. 5  Estimating the centers of biases. A Estimated center of the attraction and repulsion biases in the Attraction & Repulsion model. Circles 
represent the posterior estimate of the population mean, and error bars represent 95% credible intervals. Beta coefficient zero indicates that the 
bias is toward (or away from) the previous stimulus, and one indicates that the bias is toward (or away from) the previous response. Center of 
attraction is located precisely on the previous response, while center of repulsion is located near the previous stimulus but shifted in a direction 
away from the previous response. B, C Relationship between the center and magnitude of the bias. Points represent parameter estimates for 
individual subjects, and line is linear regression
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Concurrency and additivity of attractive and repulsive 
biases
The current results further develop our understanding 
of sequential effects in three main ways. First, this study 
dissociated the attractive and repulsive effects with the 
same task throughout the experiment and without further 
manipulation in experimental procedures and provided 
a clear picture of the concurrency of the two opposite 
biases. Although suggestions have been made on the pos-
sibility that the two opposite biases coexist [30–32], their 
nature and origin remained topics of debate, partly due 
to a lack of direct empirical support. Notably, if repulsion 
away from the previous stimulus and attraction toward 
the previous response occur at the same time, then the 
bias would be exceedingly strong when the directions of 
the previous stimulus and response are opposite relative 
to the current stimulus. This is exactly what we found 
(Fig.  2A). Second, we empirically demonstrated that the 
effects of stimulus and response of the preceding trial are 
largely additive in the perception of the current trial. We 
fitted the linear sum of two curves representing biases 
to (or away from) the previous stimulus and previous 
response, respectively, and found that it could capture 
the unique pattern in the subjects’ sequential estimation 
(Fig. 3C). Third, we revealed that the repulsive bias, which 
has been largely considered as determined by the previ-
ous stimulus, is actually centered on the sensory measure-
ment of the previous stimulus (Fig. 5), confirming that the 
repulsive bias occurs during stimulus encoding.

Rapid adaptation to visual stimulus
Our results support the idea that the visual system adapts 
to changes in briefly presented stimuli, resulting in a repul-
sive bias away from the previous stimulus. Sensory adap-
tation and repulsive aftereffects have historically been 
studied in the context of prolonged stimulus exposure, 
but increasing evidence also suggests a more rapid form of 
adaptation. Such adaptation is known to occur rapidly fol-
lowing a stimulus exposure as brief as a few hundred, or 
even tens, of milliseconds [10, 12, 13, 50, 51] and persist 
over dozens of seconds despite the presentation of several 
intervening stimuli [52], inducing robust repulsive biases 
in subsequent behavioral reports [31, 33–38, 40, 51, 53, 54] 
over a prolonged timescale [30, 41, 42]. A recent neuroim-
aging study also found that sensory representations in the 
visual cortex were significantly and substantially repelled 
from the previous stimulus even when stimuli were pre-
sented only for a second, and successive stimuli were 
separated by at least ten seconds [32]. Our findings are 
consistent with all these documentations, which together 
confirm that the visual system translates input stimuli 
into sensory representations in an efficient way, inducing 

a repulsive bias in subsequent perception, even when the 
stimuli are only briefly presented.

Characteristics of attractive bias
The attractive bias toward the previous response does 
not necessarily imply that subjects merely reproduced 
their previous motor commands. Several studies have 
experimentally precluded the effect of motor replication 
and observed an attractive bias even when reproduc-
ing the previous motor command would not result in 
such attraction [7, 28, 55–57]. For example, when sub-
jects were asked to make a flipped version of orientation 
response that is vertically symmetric to the stimulus ori-
entation on every second trial, they still systematically 
biased their responses toward the previous stimulus, 
and not toward the previous motor response, suggesting 
that the bias was introduced before the motor process 
[55]. Recent neurophysiological studies also denied the 
effect of motor replication by showing that the biases are 
already present in neural representations in the visual 
cortex [58] even without an explicit task [59]. There-
fore, care must be taken when interpreting the attractive 
biases to the previous responses reported in this study. 
Our proposal is that the previous response, to which the 
observer’s current estimation responses are attracted, is 
the observer’s best estimate of the stimulus in the previ-
ous trial. Our sensors can only provide noisy measure-
ments of a given stimulus, so the visual system does not 
have direct access to the true stimulus value. Instead, the 
system infers the stimulus value from the sensory meas-
urement and creates a perceptual estimate that some-
times deviates on average from the true stimulus value, 
as in our experiment. Because it is the final estimate 
from which the visual system predicts the subsequent 
stimulus, it is natural for the system to bias its cur-
rent estimate toward the previous estimate, rather than 
toward the previous stimulus [6, 26].

Recent studies suggested that not perceptual but later 
decisional stages bias behavior toward recent perceptual 
history [31, 38]. This perspective remains a subject of 
debate, as other studies have shown that attractive serial 
dependence acts directly on sensory levels [57, 59, 60]. In 
our study, the final outcome of the perceptual process-
ing (i.e., the percept) is not conceptually equivalent to a 
perceptual decision. Indeed, the visual system is capable 
of reconstructing the surrounding visual environment 
without making implicit or explicit decisions. We rather 
consider the final percept as what is decoded from the 
sensory signals encoded by the system. That being said, 
our study does not exclude the possibility that attractive 
serial dependence operates on multiple levels includ-
ing perception [28, 57, 59, 60], memory [35, 61–63], and 
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decision [31, 38], with additional influence from factors 
such as attention [28, 46] and confidence [42, 47].

Computational basis of concurrent repulsive and attractive 
biases
We now consider a generative computational model to 
confirm that the proposed conceptual framework can be 
instantiated in a plausible encoding-decoding system. 
We assume that direction estimates are the outcome 
of a perceptual encoding-decoding process, beginning 
with sensory input to a population of direction-selective 
neurons with independent Poisson spike count variabil-
ity. The sensory input and uncertainty associated with it 
are naturally encoded in the population activity of these 
neurons in the form of the likelihood function [64–67]. 
The encoding stage of the model was further character-
ized by the adaptation of these neurons to the direction 
of the preceding motion. Motivated by a vast amount of 
neurophysiological evidence [16–21], we assume that 
the primary effect of sensory adaptation is a reduction 
in the response gain of neurons selective to the direc-
tion of preceding motion (Fig.  6A). The simulation of 
this encoder model confirms that such changes in the 
neural coding result in repulsive shifts of the average 
likelihood function away from the preceding motion 
direction (Fig.  6B). Due to sensory noise and adapta-
tion, the sensory measurement of the preceding motion 
direction may differ from the true direction of the pre-
ceding motion (Fig.  5). To this end, we also considered 
an alternative scenario in which the neurons adapt to 
the sensory measurement (i.e., gain reduction of a neu-
ron according to its spike count in the previous trial), 
rather than the true stimulus value, and confirmed that 
the likelihood function is still, on average, repelled away 
from the preceding motion direction. It is worth noting 
that adaptation schemes need not be restricted to gain 
reduction but can be easily generalized to other changes 
in the tuning mechanism which are known to generate 
similar repulsive effects [68–70].

Next, we assumed that the model observer uses knowl-
edge about the dynamics of the stimulus to convert its 
belief about the stimulus value in the previous trial into 
a prediction about the stimulus value in the subsequent 
trial [25, 71]. Motivated by previous work [6], we mod-
eled knowledge about the changes in stimuli within a 
given time interval (i.e., propagation noise) as a mixture 
of uniform and von Mises distributions with zero mean. 
The model observer convolved this distribution with pos-
terior belief on the previous stimulus to make predictions 
about the current stimulus, which is then combined with 
the new sensory information to produce a posterior belief 
on the current stimulus based on the past and current 
sensory information (Fig.  6C). This computation follows 

a long history of research that models perceptual and sen-
sorimotor behavior as recursive Bayesian inference, such 
as Kalman filters [7, 72–77]. We simulated the model 
observer’s estimation responses to the sequence of stimuli 
that our subjects encountered, assuming a squared-error 
loss function and no motor noise. The results showed that 
our model observer produced a joint bias map (Fig. 6D) 
that was close to that of the human subjects (Fig. 2A). The 
estimation responses of the model observer were repelled 
away from the previous stimulus because adaptation 
shifted the likelihood function and attracted toward the 
previous response because the prediction was made from 
the observer’s belief in the previous trial. The fact that 
this observer model can approximate the bias behavior of 
human observers, in line with existing models that share 
common features [31, 32], implies that human estimation 
behavior can be understood by adaptive encoding and 
decoding processes.

Neural substrate of adaptive coding and dynamic Bayesian 
inference
In this work, perceptual processing is characterized by 
a mapping from input stimulus to sensory measure-
ment and from sensory measurement to percept. The 
sensory measurement can be readily identified with 
activity of direction selective neurons in the primary 
visual cortex and the middle temporal (MT) area [78]. 
The stochastic nature of spiking activity in these neu-
rons could provide the means to implicitly encode sen-
sory likelihoods [64, 66, 67], and sensory adaptation 
has long been observed in the activity of these neurons 
[17, 68]. For the percept, it would seem reasonable to 
appeal to activity at, or beyond, MT, as its activity has 
been strongly linked to the conscious perception of 
global motion [78–80]. Beyond MT, the lateral intra-
parietal (LIP) area receives direct inputs from MT, and 
the participation of its neurons in integration of visual 
motion signals and decisions about motion direction 
has been studied quite extensively [81, 82].

How exactly these cortical circuits may realize 
Bayesian inference are not yet fully identified [83], but 
mounting evidence points to the probabilistic popula-
tion codes [66, 84]. It has been shown that task-related 
firing rates of single neurons before the presentation 
of sensory information are modulated by prior expec-
tations [85–88], and firing rates after the presentation 
of sensory information reflect posterior estimate of 
behaviorally relevant variables [87, 89, 90]. Although 
these observations have been mostly focused on Bayes-
ian computations with non-dynamic generative models, 
other studies have also proposed how cortical circuits 
would support dynamic Bayesian inference with inter-
nal propagation noise models, such as Kalman filters 
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[91, 92], and empirically observed such neural imple-
mentations in the posterior parietal cortex [93].

An alternative view suggests that a heterogeneous 
neural population embedding representations of prior 
knowledge within them facilitates a direct transforma-
tion of sensory input into posterior estimates [94–97]. 
This view is compatible with recent behavioral studies 
that showed that recent perceptual history constructs 
priors at a later stage in perceptual processing [60, 98] 
but interacts directly with early sensory signals, pre-
ceding illusory effects driven by spatial context [60]. 
In line with these observations, while priors generated 
from recent history are represented at higher-level 
areas such as the posterior parietal cortex [85], they 
seem to be fed back to early sensory areas to directly 
influence cortical representations of incoming sensory 
information [58].

Timescales of the attractive and repulsive effects
We believe our results can provide a unified framework 
for interpreting the existing literature. For example, sev-
eral studies have reported that the magnitude of attrac-
tive bias increases with increasing time delay between 
stimulus presentation and response [35, 38]. These 
stronger attractive biases may be attributed to more 
uncertain sensory information corrupted by higher 
memory noise, while the magnitude of repulsion remains 

relatively the same, since the time delay took place after 
the sensory encoding and thus would have not affected 
the repulsive bias. In the extreme case where there is no 
time delay between the stimulus and response (and thus 
minimal memory noise), the net bias becomes repulsive 
[35] as the magnitude of attraction becomes smaller than 
that of repulsion. Several studies have shown that estima-
tion responses are attracted to immediately preceding 
stimuli and are repelled away from stimuli from many tri-
als back [30, 41, 42]. This time, both attraction and repul-
sion are likely to be affected by the timescale of the trial 
history. The relative speeds of decay may be each meas-
ured by increasing propagation noise with longer time-
scales [6] and smaller gain reduction of sensory neurons 
by stimuli from many trials back compared to the imme-
diately preceding one [52], respectively.

Comparison to attraction and repulsion in non‑dynamic 
stimuli
Our proposed model is comparable to the efficient 
encoding and optimal decoding theory for feature esti-
mation under a static environmental distribution [4]. This 
theory proposes that the visual system efficiently encodes 
incoming information, allocating more neural resources 
to the representation of more probable stimulus values, 
which typically causes a bias away from the mean of 
the distribution. The system then decodes the sensory 

Fig. 6  Generative model. A Tuning curves of direction selective neurons after adaptation at 180° (black arrow). Adaptation was modeled as a 
reduction of the response gain in neurons selective to the adapter direction. B Population likelihood. Likelihoods were computed assuming 
independent Poisson spike count variability and averaged over 1,000 presentations of the stimulus direction θt, each following a presentation of the 
adapter direction as in A. Due to adaptation, the likelihoods are on average shifted away from the adapter direction. Shaded regions represent ±1 
SD. C Recurrent Bayesian inference. The model first convolves posterior belief on the previous stimulus p(θt − 1| r1 : t − 1) with the propagation noise 
distribution p(θt| θt − 1), to predict the current stimulus θt based on the past sensory responses r1 : t − 1. The model then combines this prediction 
p(θt| r1 : t − 1) with the new sensory information p(rt| θt), to produce posterior belief on the current stimulus p(θt| r1 : t). D Model simulation. Simulation 
data were analyzed and plotted as in Fig. 2A. The model successfully generated the characteristic features of the human estimation behavior
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representations in an optimal manner by combining the 
representation with prior knowledge about the stimulus 
distribution, which typically results in a bias toward the 
mean of the distribution. The relative magnitudes of these 
opposite effects determine the net bias in perceptual esti-
mates. However, even in that work, there is no behavio-
ral data that show both attractive and repulsive effects at 
the same time. A notable difference between the model 
for stationary environments and our proposed model for 
changing environments is that sensory adaptation for 
efficient coding, which is supposed to cause repulsive 
bias, is described as adapting to the preceding stimulus, 
as evidenced by the joint bias map and conditional bias 
plot (Fig.  2A, C). Consequently, it becomes possible to 
separately estimate the attractive bias, which is centered 
around the previous response, and repulsive bias, which 
is centered near the previous stimulus (Fig. 4).

Sensitivity to temporal statistics
For the Bayesian observer to be truly optimal, it is neces-
sary for the observer to maintain priors that approximate 
the true stimulus statistics of the external world [99]. 
Can we learn novel temporal statistics that might differ 
from natural statistics and update priors accordingly? In 
this study, we divided subjects into groups with differ-
ent propagation noise distributions (range: ±20°, ±40°, 
±80°, or ±180°), which allowed us to test the effect of 
experimentally imposed temporal statistics on estima-
tion behavior. If subjects learn new temporal statistics, 
then the magnitude of the biases would depend on those 
temporal statistics, with smaller propagation noise lead-
ing to stronger sequential effects. The best-fitting param-
eters of the Stimulus & Response model showed that 
there was a significant effect of propagation noise level 
on the strength of repulsive bias away from the previous 
stimulus (P < 0.001; Kruskal–Wallis test), but no statis-
tical significance was found in the attractive bias to the 
previous response (P = 0.125; Additional file 1: Fig. S6). 
The fitting results of the Attraction & Repulsion model 
showed similar patterns (P < 0.001 and P = 0.816, respec-
tively). The observed difference in repulsive biases could 
be because the accumulated effect from past trials is 
stronger when similar stimuli are presented repeatedly. 
For the non-significant difference in attractive biases, pri-
ors specifying the statistical characteristics of the natural 
environment are often thought to be hard-wired through 
processes of evolution and development and are dif-
ficult to update [100]. In the case of temporal statistics, 
subjects can adapt their internal models of the temporal 
statistics to the stimulus set they have encountered but 
still retain priors on positive temporal correlation within 
the stimulus set [7]. In addition, it was recently suggested 
that the visual system might even sidestep the need to 

learn the temporal statistics by using a mixture of recent 
stimuli [101]. Future work is required to fully character-
ize whether and how priors on the temporal statistics of 
the natural environment can be overridden by experi-
mentally imposed statistics [102].

Conclusions
In summary, we demonstrated that the perceived direc-
tion of motion in the current trial depends on both the 
perceived and presented direction of motion in the pre-
vious trial, but in opposite directions. Subjects’ estimates 
of the direction of motion were repelled away from stim-
uli that had recently been seen, while they were attracted 
toward responses that had recently been made. We 
found that the rich pattern of the sequential effects can 
be well described by the linear sum of two curves, each 
representing bias away from the sensory measurement 
of the previous stimulus and bias toward the previous 
percept. This suggests that the mechanisms underly-
ing the generation of attractive and repulsive sequential 
biases are largely independent of each other. Our find-
ings suggest that the visual system adaptively encodes 
and decodes incoming sensory information by referring 
to the recent history of changing environments to opti-
mize visual processing.

Methods
Subjects
Thirty-two subjects (16 females, aged 18–29 years) par-
ticipated in the experiment. They were naïve to the 
purpose of the experiment and had not participated in 
similar experiments. We required subjects to have nor-
mal or corrected-to-normal vision and obtained written 
informed consent from all subjects prior to their par-
ticipation. All procedures were approved by the Ulsan 
National Institute of Science and Technology Institu-
tional Review Board.

Procedure
Figure 1A illustrates the sequence of events in each trial. 
The subjects viewed the stimuli binocularly from a dis-
tance of 137 cm in a dark room, resting their head on 
a chinrest. Each trial began with the presentation of a 
fixation point. The subjects were instructed to fixate on 
the fixation point during the presentation of the motion 
stimulus. After 0.5 s, the motion stimulus was presented 
for another 0.5 s, followed by a 1.5-s delay during which 
only the fixation point was on the screen. After the delay, 
a circular ring appeared, and the subjects reported the 
perceived direction of motion by swiping a finger on a 
touchpad to extend a dark bar from the fixation point in 
the direction of motion that they had perceived and ter-
minated the trial by clicking on the touchpad. Response 
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time was not limited, and subjects made a response 
within 1.10 ± 0.05 s (mean ± SEM across subjects). Tri-
als were separated with a 1.5-s inter-trial interval during 
which the screen was blank. After each block, the sub-
jects received numerical feedback regarding their mean 
absolute response error.

In the first trial of each bock, the direction of stimulus 
motion was randomly chosen from 0 to 360°. After that, 
the direction of motion in the current trial was solely 
determined with respect to the direction of motion in the 
immediately preceding trial. Specifically, subjects were 
randomly divided into four groups of equal size in which 
the direction of stimulus motion was randomly varied 
from the direction of motion in the previous trial follow-
ing discrete uniform distribution with different ranges 
(±20°, ±40°, ±80°, or ±180°, in steps of 10°; Additional 
file 1: Fig. S4D). The number of trials subjects completed 
in each block was set to be similar across groups (the 
±20° group: 5 relative directions × 20 repetitions + 1 
first trial = 101 trials; the ±40° group: 9 × 11 + 1 = 100 
trials; the ±80° group: 17 × 6 + 1 = 103 trials; the ±180° 
group: 36 × 3 + 1 = 109 trials). Each session consisted of 
five blocks, lasting up to 60 min. After one practice ses-
sion, all subjects went through fifteen blocks over three 
sessions on consecutive days. As a result, all subjects 
completed at least 1500 trials in total.

Stimuli
Stimuli were generated using MATLAB and the Psy-
chophysics Toolbox [103] and were displayed by a DLP 
projector (1920×1080; 120 Hz). All stimuli were pre-
sented at the center of a dark gray background of 20 
cd/m2. The fixation point was a white circular point 
(diameter: 0.4°; luminance: 80 cd/m2). A gap of 1° 
between the fixation point and motion stimulus helped 
the subjects maintain fixation. The motion stimulus 
was a field of moving dots (diameter: 0.1°; luminance: 
80 cd/m2) contained within a 5-degree circular aper-
ture centered on the fixation point. The dots were 
plotted in three interleaved sets of equal size. Each set 
was plotted in one of three successive video frames and 
was shown for a single frame. Three frames later, ran-
domly chosen 40% of dots from that set moved coher-
ently in a designated direction at a speed of 4°/s; the 
remainder of the dots were replotted at random loca-
tions within the aperture. Dots that moved outside the 
aperture were placed on the opposite side of the aper-
ture. Together, the three sets produced an average dot 
density of 48 dots/(deg2s). The presentation of a black 
circular ring (diameter: 6.6°; width: 0.15°; luminance: 
15 cd/m2) centered on the fixation cued subjects to 
report their estimate, which they did by swiping their 
finger on a touchpad to extend and align a black bar 

(width: 0.15°) to the direction of their estimate and 
then clicking on the touchpad to confirm.

Data preprocessing
All analyses were performed using MATLAB and the 
CircStat Toolbox [104]. In the first step of data analy-
sis, we corrected for an individual subject’s idiosyncratic 
estimation bias to or away from the cardinal axes [4, 45], 
which is unrelated to sequential effects. The bias correc-
tion involved inference of a best-fitting function capturing 
the systematic shape of the estimation biases. Since this 
bias function is known to take a sinusoidal form [4], ear-
lier studies corrected for the bias by fitting each subject’s 
response errors with a sinusoidal or a polynomial function 
of stimulus orientation/direction [6, 31, 105]. However, as 
has been recently shown [45], the patterns of the direc-
tion estimation bias in our data varied considerably across 
subjects: some of our subjects’ estimation responses were 
strongly biased to or away from the cardinal axes, while 
the others’ bias function could not be easily captured by a 
standard sinusoidal model (Additional file 1: Fig. S1A–C). 
Capturing these bias functions was necessary because the 
estimation bias that depends exclusively on the current 
stimulus direction could confound the observations of bias 
toward the previous response, no matter how much idi-
osyncratic the bias functions are.

We compare the performance of three regression mod-
els in capturing the systematic shape of the estimation 
bias: a tenth-degree polynomial regression model, a vari-
ant of a sinusoidal model, and a Gaussian process (GP) 
regression model. The sinusoidal variant that takes into 
account the asymmetry of biases near the horizontal and 
vertical axes [106] is given by

where y is the response error, x is the current stimulus 
direction relative to the vertical axis, β0 is the general clock-
wise or counterclockwise bias, a determines the maximum 
bias, and v determines how much stronger biases to or 
away from the vertical axis are than biases to or away from 
the horizontal axis (−1 ≤ v ≤ 1). To effectively capture idi-
osyncratic bias functions that do not exhibit strong perio-
dicities (Additional file 1: Fig. S1B, C), we also considered 
a GP regression [107, 108]. A GP regression model is a 
nonparametric probabilistic model often used to infer the 
underlying function from noisy observations without mak-
ing assumptions about the specific shape of the function 
(e.g., refs. [109, 110]). Here, the bias function of the current 
stimulus direction was not restricted to a particular param-
eterized family. Instead, we searched the function space by 
assuming that the bias function follows the Gaussian pro-
cess. Specifically, the response error was modeled as:

(1)y = β0 + a sgn(x) sin 4|x| − sin−1(v) + v
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where y is the response error, β0 is the general clockwise 
or counterclockwise bias, and x is the current stimulus 
direction. The joint distribution of the latent variables 
f = (f(x1), …, f(xN))T across N trials was modeled as an 
N-dimensional Gaussian distribution:

The entries of the covariance matrix K were deter-
mined by the squared exponential kernel function k(x, x′), 
which specifies the covariance of the two latent variables 
f(xi) and f(xj) as:

where σf is the signal standard deviation, and σl is the 
characteristic length scale that determines the smooth-
ness of the function. For each subject, these three regres-
sion models were each fit to raw data excluding outliers 
of 2.5 SD from the mean response error. We found that 
the GP regression performed best, as indicated by Fried-
man test (P < 0.001) and post hoc Tukey test (GP versus 
sinusoid: P < 0.001; GP versus polynomial: P = 0.001) on 
the root mean square of residuals. Based on these results, 
we used the GP regression to correct for the systematic 
estimation bias that depends exclusively on the current 
stimulus direction. We subtracted the bias estimated by 
the regression model from the response errors (along 
with the associated responses) and took the residual 
response errors (and residual responses; Additional file 1: 
Fig. S1D–F).

To confirm that our correction method successfully 
removed artifactual sequential effects, we shuffled the 
order of the trials within each block and then fit the 
Response model (see below) to each subject’s response 
errors with or without applying the bias correction. This 
way, any sequential effect of the previous responses was 
removed, and only artifacts caused by the direction esti-
mation bias alone remained [31]. As expected, we found 
a small but significant artifactual sequential effect after 
shuffling and not applying the bias correction (0.67° [0.08 
1.28], t(31) = 3.093, P = 0.004; Additional file 1: Fig. S3A). 
By contrast, when we applied the bias correction, no 
significant sequential effect emerged from the shuffling 
procedure (−0.11° [−0.38 0.15], t(31) = 1.098, P = 0.281; 
Additional file  1: Fig. S3B), with significant difference 
between the artifactual sequential effects in the uncor-
rected and corrected responses (t(31) = 4.592, P < 0.001; 
Additional file 1: Fig. S3C). Having established that our 
GP regression successfully remove the confounding 
bias, we used the residual response errors from the GP 

(2)y = β0 + f (x)

(3)f ∼ Normal(0,K)

(4)Kij = k
(

xi, xj
)

= σ 2
f exp

(

−
(

xi − xj
)2

2σ 2
l

)

regression in the remaining analyses. For comparison, 
we also present results without applying the bias correc-
tion in Additional file 1: Fig. S7.

After removing the confounding bias in the raw 
data, we excluded the first trial of every block, since 
it does not have any preceding trial to induce sequen-
tial effects. We further excluded trials with response 
error more than 2.5 SD away from the subject’s mean 
response error and the subsequent trials on which sub-
jects could have been affected by those preceding tri-
als with outlying responses. In total, 4.58% of the trials 
were excluded due to this outlier correction, and the 
resulting root mean squared response error was 8.15 ± 
0.31° (mean ± SEM across subjects).

Descriptive models
The subjects’ dependencies on the direction of the previ-
ous stimulus and/or previous response in estimating the 
direction of the current stimulus were quantified by fit-
ting the first derivative of a Gaussian (DoG) curve(s) to 
their response errors [28]. The DoG curve is given by

where y is the response error, a is the amplitude of the 
curve peaks, w determines the width of the curve, and 
c is a constant, 

√
2/e−0.5 . The input to the function, x, 

was either the relative direction of the previous stimu-
lus (i.e., Stimulust − 1 − Stimulust, with index t for trial; 
Stimulus model) or relative direction of the previ-
ous response (i.e., Responset − 1 − Stimulust; Response 
model). To effectively capture the characteristic pattern 
in the estimation data (Fig. 2), we fitted a linear sum of 
two independent DoG curves, one receiving as input the 
relative direction of the previous stimulus, and the other 
receiving the relative direction of the previous response 
(Stimulus & Response model). To explore the possibil-
ity that the centers of biases are not exactly located on 
the previous stimulus or previous response, we fitted 
another linear sum of two independent DoG curves, 
one with a positive amplitude (i.e., aattraction > 0), and the 
other with a negative amplitude (i.e., arepulsion < 0; Attrac-
tion and Repulsion model). Crucially, the inputs to the 
curves, xattraction and xrepulsion, were each set to be a com-
bination of the previous stimulus and previous response, 
relative to the current stimulus: i.e., βattractionResponse
t − 1 + (1 − βattraction)Stimulust − 1 − Stimulust and  βrepulsi

onResponset − 1 + (1 − βrepulsion)Stimulust − 1 − Stimulust, 
respectively. Here, βattraction and βrepulsion are free param-
eters that determine the center of the corresponding bias 
curves. For example, for the attraction curve, if βattraction 
is one, xattraction is reduced to Responset − 1 − Stimulust, 
and the current response is attracted toward the 

(5)y = xawc exp
(

−(wx)2
)

,
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previous response. If βattraction is zero, xattraction is reduced 
to Stimulust − 1 − Stimulust, and the current response is 
attracted toward the previous stimulus. Similarly, for the 
repulsion curve, if βrepulsion is one, the current response is 
repelled away from the previous response, and if βrepulsion 
is zero, the current response is repelled away from the 
previous stimulus. More generally, the beta parameters 
can be interpreted as the center of the corresponding 
bias curves in the stimulus space normalized such that 
the previous stimulus is zero and the previous response 
is one.

All parameters were estimated using a hierarchical 
Bayesian approach that uses the aggregated information 
from the entire population sample to inform and constrain 
the parameter estimates for each individual [111]. Specifi-
cally, we assumed a hierarchical prior on parameters, in 
which the parameters for each individual were drawn from 
independent Gaussian or von Mises distributions charac-
terizing the population distributions of the model param-
eters. At the trial level, the response error was modeled 
following a von Mises distribution

with indices i for individual subject and t for trial (specifi-
cally for the description of the hierarchical Bayesian model, 
we use parenthesis for indices corresponding to specifica-
tions of the hierarchical level). The mean of the von Mises 
distribution, μ(i, t), was determined by a DoG curve or a lin-
ear sum of two DoG curves depending on the model (see 
above). At the individual level, the model parameters were 
constrained by population-level parameters. Specifically, 
all parameters at the individual level were parameterized 
using Gaussian or von Mises distributions.

where l = 1/
√
2w directly represents the peak location of 

the DoG curve. The noise standard deviation σ(i) was further 
restricted to positive values. Specifically for the Attraction 
& Repulsion model, the amplitude parameters aattraction and 
arepulsion were further restricted to positive and negative val-
ues. At the population level, priors on the mean of the pop-
ulation distributions were set to broad distributions with 
ranges large enough to cover all practically plausible values.

(6)y(i,t) ∼ von Mises

(

µ(i,t), 1/σ
2
(i)

)

,

(7)

β(i) ∼ Normal

(

µβ , σ
2
β

)

a(i) ∼ von Mises
(

µa, 1/σ
2
a

)

l(i) ∼ von Mises
(

µl , 1/σ
2
l

)

σ(i) ∼ von Mises
(

µlσ , 1/σ
2
σ

)

(8)

µβ ∼ Normal
(

0.5, 0.52
)

µa ∼ Uniform (−∞,∞)

µl ∼ Normal (5, 90)
µσ ∼ Normal (0,∞)

Note that the priors on μβ favored neither previous stim-
ulus (i.e., β = 0) nor previous response (i.e., β = 1) as the 
center of the bias (i.e., neutral priors). Again, specifically for 
the Attraction & Repulsion model, the population mean 
of amplitude parameters, µaattraction and µarepulsion , were 
restricted to positive and negative values, respectively.

Priors on the standard deviation of the population dis-
tributions were set to gamma distributions

with their shape parameter s and rate parameter r are 
set so that their mode and standard deviation would be 
approximately a half and twice the standard deviation of 
the individual-level parameters, respectively, making the 
hyper-priors vague on the scale of the data [111]. Based 
on earlier reports, we assumed that the standard devia-
tion of the amplitude, peak location, and noise stand-
ard deviation across individual subjects would be 1°, 5°, 
and 2°, respectively, and parametrized the hyper-priors 
accordingly. For the beta parameters in the Attraction & 
Repulsion model, we naively assumed that the standard 
deviation across individual subjects would be 0.15.

We used a Markov chain Monte Carlo (MCMC) tech-
nique, specifically a Metropolis-Hastings algorithm, to 
compute the posterior probability density of the param-
eters. Initial values of the individual-level parameters 
were set to amplitude = 0°, peak location = 30°, and 
noise standard deviation = 10°. For the Attraction & 
Repulsion model, in which amplitude parameters aat-

traction and arepulsion were constrained to be positive and 
negative, respectively, we set them to be ±5°, consider-
ing the fitting results of the Stimulus & Response model. 
Initial values of the beta parameters βattraction and βrepulsion 
were set to 0.5, favoring neither previous stimulus (i.e., β 
= 0) nor previous response (i.e., β = 1) as the center of 
the bias. Initial values of the population mean were set to 
be the same with the individual-level parameters, and ini-
tial values of the population standard deviation of ampli-
tude, peak location, noise standard deviation, and beta 
parameters were set to 1°, 5°, 2°, and 0.15, respectively. 
We used four independent chains in parallel, each with 
an independent random number generator, and used 
the first one million iterations for each chain as a burn-
in period, thereby minimizing the influence of the initial 
values of the model parameters. After the burn-in period, 
the subsequent one million new samples from each chain 
were used to estimate the posterior probability density 

(9)
µaattraction ∼ Uniform(0,∞)

µarepulsion ∼ Uniform(−∞, 0)

(10)

σβ ∼ Gamma
(

sβ , rβ
)

σa ∼ Gamma (sa, ra)
σl ∼ Gamma (sl , rl)
σσ ∼ Gamma (sσ , rσ )
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function. We further thinned the samples by selecting 
every 1000 samples in the chain, resulting in a final set of 
4000 samples for each parameter and reducing autocor-
relations in the samples to near zero. Convergence of the 
chains was confirmed by visual inspection of trace plots 
and Gelman–Rubin tests [112]. All parameters in the 
models had R̂ < 1.1, suggesting that all chains successfully 
converged to the target posterior distribution.

For the statistical significance of the model parameters, 
we report the mode and 95% credible interval of the pos-
terior distribution of the population-level mean param-
eters, along with the results of a classical one-sample t 
test on the individual-level parameter estimates after 
testing for normality using a Kolmogorov–Smirnov test. 
Similarly, to statistically compare the model parameters, 
we report the mode and 95% credible interval of the 
posterior distribution of the difference between popu-
lation-level mean parameters, along with the results of 
a paired-sample t test on the individual-level parameter 
estimates.

Model predictions shown in Fig.  3A–C are the point 
estimate of the response error made with the population-
level parameter estimates for each model. We used AIC 
for model comparison. To report the AIC, we computed 
the AIC for each model and each individual using the 
individual-level parameter estimates and then averaged 
the AIC difference from the best-fitting model (i.e., the 
one with the highest mean AIC values) across subjects. 
The confidence interval for the mean AIC difference was 
computed by bootstrapping using the bias-corrected and 
accelerated percentile method (10000 samples).

Observer model
We begin with a conventional encoding model for a pop-
ulation of N = 20 sensory neurons responding to a stim-
ulus direction θ. We assumed that the number of spikes 
emitted in a given time interval by the ith neuron is a 
sample from an independent Poisson process, with the 
mean rate determined by its tuning curve (von Mises dis-
tribution). Given these assumptions, the encoding model 
is specified as the probability of observing a particular 
population response r = (r1, …, rN)T for a given stimulus 
direction θ:

where fi(θ) = g0 exp(κ cos(θ − θi)) is the tuning curve of 
the ith neuron with a response gain g0 = 4, a concentra-
tion parameter κ ≈ 3.65 (analogous to a Gaussian func-
tion with a 30° standard deviation), and the preferred 
direction θi. Notably, from the perspective of the encoder 

(11)p(r|θ) =
N
∏

i=1

fi(θ)
ri e−fi(θ)

ri!

that generates a noisy sensory response r in response to 
an unknown θ, this relationship becomes a function of θ 
with a fixed r, which is known as the likelihood function.

Sensory coding is not invariant to the temporal con-
text, but is adaptive to the recently encountered stim-
ulus. Based on neurophysiological studies, we assume 
that the primary effect of adaptation is a change in the 
response gain gi of neuron i, such that those neurons 
most responsive to the adapter reduce their gain the 
most [16–21]. Specifically, we assume that the amount 
of gain reduction in the ith neuron is a von Mises func-
tion of the difference between the adapter direction and 
the preferred direction of that neuron [69]

where αadapt is an adaptation ratio specifying maximal 
suppression, and κadapt is a concentration parameter that 
determines the spatial extent of response suppression in 
the direction domain. For the model simulation, the gain 
reduction due to adaptation was modulated by αadapt = 
0.35 and κadapt = 8.2. The encoding model after adapta-
tion is illustrated in Fig. 6B.

One concern that can be raised here is that sensory neu-
rons should adapt to the sensory measurement rather than 
the physical stimulus because the neurons would not have 
direct access to the true stimulus value. To this end, we also 
tested an alternative mechanism in which the response 
gain of a neuron was reduced according to the number of 
spikes emitted by the neuron in response to the adaptor:

where the role of αadapt is qualitatively similar to that 
in Eq. (12). We confirmed that changing the adapta-
tion scheme from Eq. (12) to Eq. (13) does not change 
the simulation results: the average likelihood function is 
shifted away from the adaptor direction.

Next, we proceed with the notion that the natu-
ral environment is stable over time, and the model 
observer incorporates such temporal statistics by per-
forming recursive Bayesian inference (Fig.  6C). Spe-
cifically, the model observer knows that in the natural 
environment, the stimulus variable θ propagates from 
θt − 1 to θt in a given time interval, following a probabil-
ity distribution called the propagation noise distribu-
tion. Motivated by previous work [6], the propagation 
noise was modeled as a weighted average of von Mises 
and uniform distributions

(12)
gi = g0

(

1− αadapt exp
(

κadapt cos
(

θi − θadapt
)))

(13)gi = g0
1

(1+ ri)
αadapt

(14)

p
(
�t |�t−1

)
= psame
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(
�prop cos

(
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) +

(
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where I0(∙) is the modified Bessel function of the order 
of 0. We set psame = 0.9 and κprop = 14.6, such that the 
resulting distribution closely approximates the empiri-
cal observations [6]. For an observer who has already 
inferred the previous stimulus and knows that the stimu-
lus value would change following the propagation noise 
distribution, it is reasonable to predict the current stimu-
lus by convolving the distribution of knowledge about the 
previous stimulus, p(θt − 1| r1 : t − 1), with the distribution of 
changes that can occur between consecutive time points, 
p(θt| θt − 1), as follows:

Finally, to infer the (unknown) stimulus value θt, the 
observer combines prediction from the past sensory 
responses (Eq. (15)) with the current sensory likelihood 
(Eq. (11)), according to Bayes’ rule:

This final distribution characterizes the model observ-
er’s posterior belief on the current stimulus, based on all 
the information available to the model observer at time t, 
including information obtained from both past and cur-
rent sensory responses. We assume a squared-error loss 
function (or L2 norm), which is equivalent to computing 
the posterior mean [113].

The model observer’s final estimate of the stimulus 
direction, θ̂t(r1:t) , is a function of sensory response r over 
all past and current trials, which makes the marginaliza-
tion over the latent variable r particularly demanding. 
Specifically, to compute the distribution of estimates 
p
(

θ̂t(r1:t)|θ1:t
)

 on a given trial, one would have to mar-
ginalize over all possible combinations of r1 : t in response 
to a stimulus sequence θ1 : t, which grows exponentially 
with the number of trials. Therefore, we simulated the 
estimation behavior of the model observer using parame-
ters fitted by hand to human data and demonstrate that 
the model can generate the characteristic pattern inher-
ent in human estimation data. Direction estimates of the 
model observer were obtained using the same sequence 
of stimuli that our subjects encountered, assuming no 
motor noise. We analyzed the simulation data as we did 
with the empirical data, except for the cardinal bias cor-
rection. The results are shown in Fig. 6D.

Abbreviations
AIC: Akaike information criterion; DoG: Derivative of Gaussian; GP: Gaussian 
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(15)p(θt |r1:t−1) =
∫
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