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Abstract 

Background:  Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules 
that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome 
remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional net‑
works that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, 
analyses of early temporal events driving this symbiosis have only captured correlative relationships between regula‑
tors and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the 
model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules.

Results:  We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. 
truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic 
pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated 
ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most signifi‑
cantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), 
ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), 
emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 
reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between leg‑
umes and rhizobia.

Conclusions:  Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the 
gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified 
provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to 
establish that symbiosis naturally.
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Introduction
Legumes such as Medicago truncatula can establish a 
well-characterized mutualism with nitrogen-fixing rhizo-
bia. Signal exchanges between the host plant and bacte-
ria initiate intracellular infection of host cells, followed 
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by the development and colonization of root nodules [1]. 
Nodules provide a unique niche for the bacteria and fix 
nitrogen. Nodulating plants can grow with little to no 
outside sources of nitrogen and even build soil nitrogen 
levels for subsequent crops [2]. Hence, understanding 
symbiotic processes between legumes and rhizobia is 
extremely valuable for the productivity and sustainability 
of agricultural systems worldwide.

Symbiosis begins with compatible rhizobia detecting 
flavonoids and isoflavonoids produced by the legume 
host [3] and subsequent release of lipo-chitooligosaccha-
rides (LCOs) by the bacteria. The host plant perceives 
LCOs with LysM domain receptor-like kinases heter-
odimers, such as Nod factor perception (NFP) and LysM 
domain receptor-like kinase 3 (LYK3) in M. truncatula 
[4, 5]. LCO perception activates a signaling cascade, 
involving the plasma membrane-localized LRR-type 
receptor kinase doesn’t make infections 2/nodulation 
receptor kinase (MtDMI2/MtNORK), the calcium-reg-
ulated calcium channel (MtDMI1), cyclic nucleotide-
gated calcium channels, M. truncatula calcium ATPase 
8 (MtMCA8), and including the components of the 
nuclear pore complex [6–8]. The cascade results in oscil-
lations of nuclear calcium concentrations, detectable by 
the nucleus-localized calcium/calmodulin-dependent 
protein kinase (CCaMK, MtDMI3 in M. truncatula) [9]. 
CCaMK activates the transcription factor (TF) interact-
ing protein of DMI3 (MtIPD3/CYCLOPS). Downstream, 
other TFs are activated, such as nodulation-signaling 
pathway 1 and 2 (NSP1 and NSP2), Nodule INception 
(NIN), ethylene response factor required for nodulation 
1, 2, and 3 (ERN1, 2, and 3), and nuclear factor YA-1 and 
YB-1 (NF-YA1 and NF-YB-1) [10, 11].

The coordinated activity of these TFs triggers tran-
scriptional changes [12] essential for infection of the 
root hair cells (in M. truncatula), nodule organogenesis, 
and infection of the nodule cortex [10]. These processes 
require changes in chromatin accessibility [13] on a con-
tinuum from closed to open, which are important for cell 
function [14]. Chromatin reorganization has been shown 
to regulate a number of processes in plants including 

photomorphogenesis and flowering [15, 16]. For exam-
ple, active DNA demethylation by DEMETER (DME) is 
critical for gene expression reprogramming during nod-
ule differentiation in M. truncatula and the acquisition 
of organ identity [13]. Also, in M. truncatula, the gene 
expression level of nodule-specific cysteine-rich genes 
(NCR) across root nodule zones are correlated with chro-
matin accessibility [17].

The extent of chromatin accessibility change and 
impact on transcriptional regulation in rhizobial infec-
tion, colonization, and nodule development, remains 
unknown. Thus, we measured temporal changes in the 
transcriptome (RNA-seq—ribonucleic acid sequenc-
ing) and genome-wide chromatin accessibility (ATAC-
seq—assay for transposase-accessible chromatin using 
sequencing) in response to Sinorhizobium meliloti LCOs 
in M. truncatula roots (Fig. 1A). To characterize the role 
of chromatin accessibility and consequent impact on 
transcriptional dynamics, we applied a novel algorithm, 
dynamic regulatory module networks (DRMN) [18], to 
predict gene expression as a function of chromatin acces-
sibility profiles of cis-regulatory features. DRMN results 
suggest that chromatin accessibility and specific TFs play 
a critical role in regulating the transcriptional dynamics 
in response to LCOs.

Results
Root transcriptome response to LCOs involves genes 
activated by rhizobia and early nodule development 
in Medicago
We profiled the global transcriptomic changes of rhizo-
bium LCO signaling with RNA-seq in M. truncatula 
using the Jemalong A17 genotype, treated with LCOs 
purified from S. meliloti. An LCO concentration of 10−8 
M was used, as in previous studies [19, 20]. Samples were 
analyzed for control (t = 0 h) and seven time-point con-
ditions after treatment (15 and 30 min; 1, 2, 4, 8, and 24 
h). Principal component analysis (PCA) showed cluster-
ing of biological replicates and time-dependent order-
ing, the first component explaining ~36% of variation 
(Fig.  1B, Additional file  1: Figure S1). Comparison of 

Fig. 1  Overview of study. A Medicago roots were subjected to LCO treatment, followed by time course profiling of ATAC-seq and RNA-seq 
measurements. The data were analyzed using computational tools for differential gene expression analysis (DE analysis), time course gene 
expression analysis (ESCAROLE), and integrative analysis of RNA-seq and ATAC-seq time course (DRMN). Outputs from these tools were used to find 
gene modules, transitioning genes, TF-target interactions, and prioritize regulators. B Principal component analysis (PCA) of expression time course 
showing grouping and ordering of the (3) biological replicates per time point. Principal components 1, 2, and 3 explain ~50% of the variation. C 
Similarity scores (F-score) between the differentially expressed genes (DEG) set obtained in this study (LCO treatment) and DEG sets identified from 
previously published time-course data under rhizobium treatment from Larrainzar et al. For the latter data, DEGs were called with respect to control 
for each time course (rows and columns corresponding to WT, nfp, lyk3, skl) and with respect to WT at each time point for each mutant strain (rows 
and columns with “vs. WT” labels). D Expression patterns of known nodulation and symbiosis genes (NIN, CRE1, ENOD11, RPG, and ERN1) in our 
dataset (LCO treatment) and in the four rhizobia treatment time courses from Larrainzar et al. (WT, nfp, lyk3, skl). The systematic names for the shown 
genes are MtrunA17Chr5g0448621 (NIN), MtrunA17Chr8g0392301 (CRE1), MtrunA17Chr3g0082991 (ENOD11), MtrunA17Chr1g0197491 (RPG), and 
MtrunA17Chr7g0253421 (RPG)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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expression levels at each time point (relative to control, t 
= 0 h) revealed 12,839 differentially expressed (DE) genes 
with significant change in expression (adjusted-P < 0.05), 
including 7540 and 7051 upregulated and downregulated 
at one time point relative to control, respectively (Addi-
tional file  1:  Figure S2A). When comparing any pair of 
time-points we identified 17,391 DE genes in total (Addi-
tional file 1: Figure S2A). Both the statistics (Additional 
file 1: Figure S2B) and heat-maps of DE genes (Additional 
file 1: Figure S2C, D) present clear patterns of temporal 
change.

To corroborate these results with previous work on 
transcriptome dynamics of symbiosis, the identified 
DEGs were compared to DEGs identified from a pub-
lished time course data of M. truncatula roots inoculated 
with rhizobium from Larrainzar et al. [12] (see Additional 
file  1: Figure E-G). Comparisons were made to DEGs 
in the following genotypes: Jemalong A17 wild type, 
LCO-insensitive nfp mutant, infection lyk3 mutant, and 
LCO-hypersensitive skl mutant. The highest similarity, 
measured by F-score, to our DEG set was for the mutant 
genotype most sensitive to LCOs, skl (0.53), and the wild-
type (WT) strain (0.40). Marker genes for rhizobium-
induced nodulation were upregulated (compared to t = 
0 h), including NIN (nodule inception, induced after 15 
min, with a maximum induction at t = 1 h), CRE1 (cyto-
kinin response 1, at 4 h, 8 h, and 24 h), ENOD11 (early 
nodulin 11, highly induced at 8 and 24 h), RPG (rhizo-
bium-directed polar growth, at 4 h), and ERN1 (ethylene 
responsive factor required for nodulation 1, induced as 
early as t = 15 min, Fig. 1D). The similarity was lowest for 
the lyk3 (0.26) and nfp (0.17) mutants (Fig. 1C, see Addi-
tional file 1: Figure S2E, F). Furthermore, when compar-
ing individual time points, DE gene sets are most similar 
for the later time points (Additional file  1: Figure S2G). 
While our DEGs had the greatest overlap with the skl 
genotype DEGs, we detected more DEGs compared to 
Larrainzar et al, likely due to differences in growth condi-
tions (aeroponics versus agar plates) and treatment (puri-
fied LCOs versus Sinorhizobium medicae), both inducing 
a strong LCO response.

To examine more complex transcriptome dynam-
ics beyond pairwise DE analysis associated with LCO 
response, we applied ESCAROLE, a probabilistic clus-
tering algorithm designed for non-stationary time series 
[21]. The expression data were clustered into seven 
modules at each time point (very low, low, medium-low, 
medium, medium-high, high and very high expression, 
Fig.  2A). Seven modules maximized the log-likelihood 
and silhouette index (Additional file  1: Figure S3A, B). 
Next, 12,261 transitioning genes (those changing module 
assignment over time) were identified, including several 
implicated in symbiosis (Additional file  1: Figure S3C). 

Transitioning genes with similar dynamics were clus-
tered using hierarchical clustering, identifying 112 clus-
ters (> = 10 genes each) (Fig. 2B) including 11,612 genes 
(Methods). Among clusters representing downregulation 
of expression over time, several were enriched for Gene 
Ontology (GO) processes implicated in defense responses 
to bacterium (cluster 293, downregulated from 2–4 h), 
and the biosynthesis of plant hormones involved in the 
suppression of nodulation (Fig. 2C). For instance, cluster 
299 (downregulated after 2 h) is enriched (hypergeomet-
ric test q  < = 0.05) for jasmonic acid (JA) biosynthesis 
and JA response genes, including Coronatine insensitive 
1 (COI1), which forms part of the JA co-receptor com-
plex for the perception of the JA-signal [22]. Among the 
gene clusters upregulated over time, several are impli-
cated in early stages of symbiosis and nodule develop-
ment. For instance, cluster 186 (induced 2–4 h after LCO 
treatment; Fig. 2C) is enriched in genes implicated in the 
regulation of meristem growth, including an Arabidopsis 
trithorax 3 (ATX3) homolog (MtrunA17Chr4g0005621) 
and a lateral organ boundaries domain (LBD) transcrip-
tion factor (MtrunA17Chr4g0043421). ATX3 encodes an 
H3K4 methyltransferase [23], and LBD proteins are char-
acterized by a conserved lateral organ boundaries (LOB) 
domain and are critical regulators of plant organ develop-
ment [24], including lateral roots and nodules [25]. This 
cluster also contains EPP1 and the cytokinin receptor 
CRE1, both positive regulators of early nodule symbiosis 
and development [26, 27]. Other essential regulators of 
LCO signaling are also found in clusters exhibiting induc-
tion under LCO treatment (Additional file 1: Figure S3D), 
such as DMI1 (cluster 197, Fig.  2C), NIN (cluster 205), 
NF-YA1 (cluster 177), and the marker of LCO perception 
ENOD11 (cluster 296). Together, the DE and ESCAROLE 
analysis showed that M. truncatula response to LCOs is 
characterized by complex expression dynamics recapitu-
lating several known molecular features of this process.

LCO treatment causes genome‑wide changes in chromatin 
accessibility
To study chromatin accessibility changes in a genome-
wide manner in response to LCOs, we performed ATAC-
seq on samples at all time points matching our RNA-seq 
time course. Overall, 54–235 million paired-end reads 
were obtained for each sample, with 46–75% mappable 
to the (v5) reference genome (Additional file  1: Figure 
S4). Moreover fragment distributions in ± 1 kbp of the 
transcription start site (TSS) were examined (Additional 
file 1: Figure S5, see Methods) and favorably compared to 
previously published M. truncatula ATAC-seq data [28] 
(Additional file 1: Figure S6).

We next evaluated aggregated chromatin accessibil-
ity in gene promoter regions, defined as ± 2 kbp around 
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the TSS, across time. To quantify promoter accessibility, 
we obtained the mean per base pair (per-bp) read cov-
erage within each region, for each time point. For each 
time-point, the log-ratio of per-bp read coverage in each 
promoter was taken relative to the global mean of per-
bp coverage, quantile normalized across time points. 
High consistency was found between promoter signals 
between technical replicates from each time point based 
on Pearson’s correlation (Additional file  1: Figure S7, 
(Pearson correlation 0.965–0.990)) and PCA (Additional 
file  1: Figure S8A). We partitioned the resulting 51,007 
gene promoter accessibility profiles into six characteris-
tic patterns (clusters) using k-means clustering (Fig. 3A, 
Additional file 1: Figure S8B). Clusters 1 (14,338 genes) 
and 6 (13,083 genes) exhibit general patterns of decrease 
and increase in accessibility, respectively, whereas clus-
ters 2–5 (5460–6377 genes) present more transient 

variation. The correlation of accessibility between time 
points suggests an overall reorganization of promoter 
accessibility 1–2 h after the treatment (Additional file 1: 
Figure S8C). The temporal change in accessibility is 
evident for the promoters of several nodulation genes, 
including CRE1, CYCLOPS, and EIN2 (Fig.  3B, Addi-
tional file  1: Figure S8D, E; prepared with the Integra-
tive Genome Viewer—IGV) [29]. PCA of the promoter 
signals showed time-dependent variation (Fig.  3C, 
Additional file 1: Figure S8A), with the first component 
explaining > 50% of the variance.

We called peaks for each time point using the Model-
based Analysis of ChIP-Seq version 2 (MACS2) algo-
rithm [30] (Additional file  1: Figure S9A) and merged 
peaks across time points with at least 90% overlap into 
universal peaks (Additional file  1: Figure S9B). Chro-
matin accessibility peaks showed a similar genomic 

Fig. 2  Transcriptome dynamics in response to LCOs. A ESCAROLE results for seven modules, based on transcript abundance data. Each heatmap 
includes genes assigned to that module at that time point, and the height of each heatmap corresponds to the number of genes (inset numbers). 
B The module assignment heatmap depicting typical gene expression trends obtained by hierarchical clustering of gene module profiles into 
transitioning gene sets. Shown are the mean module assignments, number of genes in each set, and expression levels at each time point for each 
cluster. Arrows indicate two example trends of expression change. C Examples of transitioning gene sets showing gene expression upregulation 
or downregulation, enriched for genes implicated in nodulation such as defense response to bacterium (cluster 293) and meristem growth 
(cluster 186)
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distribution across time points, with 32.1% of peaks 
located within 2 kbp upstream and 100 bp downstream 
of a gene TSS (Additional file 1: Figure S9A-C) and span-
ning 50.4 Mbp (11.7%) of the M. truncatula (v5) genome. 
As with the promoter accessibility, clustering accessibil-
ity profiles of universal peaks identified distinct patterns 
of temporal change (Additional file  1: Figure S9D, E). 

Several of the clusters were associated with known TF 
motifs (Additional file  1: Figure S9F) and specific types 
of genomic regions. For example, clusters 1, 2, and 7 had 
higher proportions of intergenic peaks (hypergeomet-
ric test P  < 0.05, Additional file  1: Figure S9G). Genes 
mapped to peaks associated with cluster 2 were enriched 
for photosynthesis and protein-chromophore linkage 

Fig. 3  Chromatin accessibility data exploratory analysis. A Clustering of promoter accessibility profiles in the LCO treatment time course. B IGV 
track and profiles of coverage for the promoter regions (± 2 kbp of TSS) of genes involved in root nodulation, representative of each cluster (upper 
panel). Gene annotation track (top) denotes the gene of interest (black) and neighboring genes (gray). C PCA results for the same promoter 
accessibility data. D Distribution of genomic regions for the universal ATAC-seq peaks
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(hypergeometric test q < 0.05). Collectively, these results 
suggest that LCO treatment had a genome-wide impact 
on chromatin accessibility, prospectively associated with 
simultaneous change in gene expression.

Chromatin accessibility is correlated with transcriptional 
dynamics of nodulation genes
We evaluated the relationship between gene expression 
and promoter chromatin accessibility ± 2 kbp around 
the TSS and universal peaks within 10 kbp upstream and 
1 kbp downstream of a gene TSS. Correlating promoter 
accessibility and gene expression profiles identified 6429 
genes with significant correlation (Fig. 4A, P < 0.05 relative 
to random permutation): 4777 with positive correlation 
and 1652 with negative correlation (Fig. 4B), representing 
17.2% of the 37,356 genes analyzed. Among these were 
36 genes with known roles in symbiosis (Additional file 1: 
Figure S8D), including ERN1, CRE1, LYK10/EPR3, SKL/
EIN2, and IDP3/CYCLOPS with positive correlation, and 
LYK8, ERN2, CAMTA3, and CAMTA4 with negative cor-
relation. We next examined significantly correlated genes 
(Fig. 4A) and visualized those expression and accessibility 
profiles as ordered by the promoter accessibility clusters 
(Fig. 3A), separately for positive and negative correlation 

(Fig 4B). This revealed robust patterns of consistency 
between promoter accessibility and expression.

Correlating accessibility of universal peaks cen-
tered within 10 kbp upstream to 1 kbp downstream of 
gene TSSs identified 100,722 peak-gene mappings (out 
of a total 125,140) associated with 28,803 (of 37,536) 
expressed genes (Fig.  4C, Additional file  1: Figure S9C 
and G). Peak accessibility was significantly correlated 
with gene expression in 15.7% of these pairings (Fig. 4C), 
comparable to the 17.2% (6429) genes with significant 
correlation between expression and gene TSS accessibil-
ity. When considering each gene and only the most cor-
related peak (28,803 selected pairs), 34.4% (9912 genes) 
were significantly correlated, including 56 nodulation 
genes (Fig.  4D). Of these 9912 genes presenting signifi-
cant correlation, 5735 (57.9%) do not present significant 
correlation with the corresponding promoter accessibil-
ity, indicating a prominent role for distal regulation (> 2 
kbp of gene TSS) for these genes. Such peaks were in 
general more distal from TSS sites than those that pre-
sented significant correlation with corresponding TSS 
accessibility (Kolmogorov-Smirnov/KS test P < 0.05).

Finally, the ESCAROLE-defined transitioning 
gene clusters exhibited coordinated trends between 

Fig. 4  Correlation between chromatin accessibility and gene expression. A Histogram of Pearson’s correlation of all (blue) and significantly 
correlated (orange) promoter accessibility and gene expression pairs. The number of pairs are indicated with inset numbers. B Clusters of promoter 
accessibility and gene expression for significant (P<0.05) (i) positive and (ii) negative correlation relative to random. C Histograms of correlation for 
all (blue) and significantly correlated peak and gene pairs (orange) and associated statistics. The upper histogram includes all mapped peak-gene 
pairs, while the lower includes only the maximally correlated peak for each gene (below). D Clustered peak accessibility and corresponding 
expression profiles for significantly positively (i) or negatively (ii) correlated gene-peak mappings
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promoter accessibility and gene expression (Fig.  2B, 
Additional file 1: Figure S3D). Two thousand five hun-
dred one of the 11,612 (21.5%) transitioning genes 
that could be clustered exhibited significant correla-
tion between their profiles of expression and pro-
moter chromatin accessibility. These results suggest 
that chromatin accessibility is an important regula-
tory mechanism in transcriptional response to LCOs.

DRMN integration of ATAC‑seq and RNA‑seq data identifies 
key regulators that determine gene expression dynamics 
in response to LCOs
To better understand how chromatin accessibility con-
tributes to transcriptional changes in rhizobia-plant sym-
biosis, we applied dynamic regulatory module networks 
(DRMN) [18] to integrate the RNA-seq and ATAC-
seq time course data. DRMN extends the ESCAROLE 

analysis (which examined only the transcriptome) by 
modeling the relationship between variation in accessibil-
ity and gene expression. DRMN predicts gene expression 
as a function of regulatory features [31] by first grouping 
genes into modules based on expression levels (similar 
to ESCAROLE) and then learning a regulatory program 
for each module. DRMN uses regularized regression and 
multi-task learning to incorporate the temporal nature of 
a data set [32] to simultaneously learn regression models 
for each module in each time point.

We applied DRMN with seven expression modules 
using two types of features (Fig.  5A, Additional file  2: 
Tables S1-S4): (1) the aggregated signal of ATAC-seq 
reads in gene promoters (± 2 kbp of the TSS) and (2) 
the ATAC-seq signal in genomic coordinates of known 
motifs within − 10 kbp and + 1 kbp of the TSS. Both fea-
ture types represent chromatin accessibility, but the first 

Fig. 5  Dynamic regulatory module network (DRMN) analysis. A Heatmap of DRMN inferred expression modules across the time course. Each 
heatmap corresponds to an expression module for each time point, the size of the heatmap indicating the number of genes assigned to that 
module (listed on top). B Scatter plots of actual and predicted expression values. C F-score similarity of DRMN modules across time points. D 
DRMN transitioning gene sets. Shown are the mean DRMN module assignment, number of genes, mean expression levels, and mean promoter 
accessibility levels for each transitioning gene set (rows) across time (columns)
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is independent of the presence of known motifs, whereas 
the second captures the accessibility of motif sites. Motif 
features were based on the CisBP v1.2 database for M. 
truncatula [33] and curated motifs of several known 
regulators of root nodulation, including CYCLOPS, 
NSP1, NIN, and the nitrate response cis-element (NRE). 
Hyper-parameters for DRMN were selected using a grid 
search and quality of inferred modules (Additional file 1: 
Figure S10A). The DRMN modules represent statisti-
cally different expression levels (Additional file 1: Figure 
S10B, Kolmogorov-Smirnov test P < 10−300). To assess 
the extent to which DRMN captures variation in expres-
sion, we correlated predicted and measured expression 
levels (Fig.  5B, Additional file  1: Figure S10A, C). The 
mean Pearson correlation of predicted and measured 
values per module was 0.26–0.46 (Additional file 1: Fig-
ure S10C) across all modules and time points, the least 
expressed module being most difficult to predict. Com-
paring the genes in each module showed that the mod-
ules are more similar (F-score 0.88–0.94, Fig. 5C) before 
and after 2 h, than across this time point (F-score < 0.80), 
suggesting a significant module reorganization at ~2 
h. This is consistent with the general reorganization of 
promoter accessibility ~1–2 h after the treatment and 
global expression correlation around 2 h (Additional 
file  1: Figure S8C). We additionally tested the modules 
for enrichment of known motifs (Additional file  1: Fig-
ure S11, Additional file 2: Table S3) and Gene Ontology 
(GO) processes (Additional file  1: Figure S12). Several 
regulators (e.g., KNOX and EDN transcription factor 
family members) and processes relevant to symbiosis 
were identified, including nodule morphogenesis, root-
hair elongation, and the MAPK cascade, as well as others 
relating to gene regulation and chromatin organization. 
Finally, we used the DRMN module assignments to 
define transitioning gene sets (Fig. 5D, Additional file 1: 
Figure S13A), similar to those from ESCAROLE (Fig. 2B, 
Additional file 1: Figure S13B). We identified 79 transi-
tioning gene clusters including 10,176 genes, of which 
5332 (>50%) were differentially expressed with DESeq 
(hypergeometric-test overlap adjusted-P  < 0.05), and 
(8398) 77% were identified in ESCAROLE, indicating 
consistency between the analyses.

We used the DRMN results to prioritize regulators 
that shape transcriptional response to LCOs. Specifically, 
we identified regulators whose regression coefficient 
changed significantly (T-test P  < 0.05) between 0–2 and 

4–24 h, corresponding to the reorganization of expres-
sion modules (Fig. 5C). According to this criterion chro-
matin accessibility of gene promoters was an important 
predictor of expression for highly expressed genes (“Pro-
moter ATAC-seq” for modules 5 and 6, Fig. 6A). We also 
identified the TFs IBM1 (increase in BONSAI meth-
ylation 1), ERF1 (ethylene response factor 1), EDN1-3 
(ERF differentially regulated during nodulation 1, 2, and 
3), EIN3 (ethylene insensitive 3), SHY2 (short hypoco-
tyl 2), ABI4-5 (abscisic acid-insensitive 4 and 5), MTF1 
(MAD-box transcription factor 1), and MtRRB15 (type-B 
response regulator 15), as well as several markers of mer-
istem cells, KNOX and PLT (PLETHORA) protein fami-
lies as important regulators (Fig.  6B, Additional file  1: 
Figure S11).

Identification of the targets of DRMN‑prioritized regulators
DRMN identified regulators of gene expression dynam-
ics in response to LCOs. Next, we aimed to identify their 
gene targets. Expression-based network inference is com-
monly used to define regulator-gene relationships [34] 
but is challenging with only 8 time-points. To address 
this, we used the DRMN transitioning gene sets and 
regulatory motifs selected by a regularized regression 
method, multi-task group LASSO (MTG-LASSO, where 
LASSO stands for least absolute shrinkage and selection 
operator) to define the targets of a gene (Methods). This 
approach modeled the variation in expression of each of 
the 79 transitioning gene clusters using a structured spar-
sity approach, multi-task group LASSO (MTG-LASSO) 
(SLEP v4.1 package [35], Fig.  7A, Additional file  2: 
Table S4) to identify regulators (motifs/TFs) for each of 
the transitioning gene clusters. Here, the same feature 
data from the DRMN analysis was used. We determined 
MTG-LASSO parameter settings for all 79 transitioning 
gene sets, identifying 33 with significant regulatory motif 
associations (Additional file  1: Figure S14). This gener-
ated 122,245 regulatory edges connecting 126 regulatory 
motifs to 5978 genes (Fig. 7B). Several gene sets exhibit 
consistent downregulation of expression and correspond-
ing reduction in accessibility of predicted regulatory 
motifs between 0–2 and 4–24 h (Fig. 7C). For example, 
gene set 214 (57 genes) shows downregulation of gene 
expression and reduced motif accessibility (after 4 h) for 
multiple TFs: MTF1 and BHLH (Fig. 7C). Similarly, gene 
set 182 was predicted to be regulated by EDN3, MTF1, 
EIN3, and NF-Box motif and exhibited correlated trends 

(See figure on next page.)
Fig. 6  Regulator prioritization results. A DRMN regulator regression weights that meet a T-test criterion of significant change (P < 0.05) between 
0–1 h and 2–24 h. CisBP motif IDs mapped to > = 3 common names (*) are summarized separately (bottom center). B Regulators prioritized based 
on the frequency with which they are selected across modules with the T-test criteria. Labels of motifs mapped to IBM1, EDN3, MTF1, and EIN3 
discussed in the text are in bold in both panels
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Fig. 6  (See legend on previous page.)
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between gene expression and regulatory feature acces-
sibility (Fig. 7C). We prioritized regulators based on the 
number of targets they were predicted to regulate and 
found several known and novel regulators in the top-
ranking set), such as ERF1 (ethylene response factor 1), 
EDN1-3 (ERF differentially regulated during nodulation 
1, 2, and 3), EIN3 (ethylene insensitive 3), SHY2 (short 
hypocotyl 2), and MTF1 (MAD-box transcription factor 
1) (Fig. 7D).

EIN3 and ERF1 are important regulators of root nodule 
symbiosis in M. truncatula
To experimentally test the involvement of DRMN pri-
oritized transcription factors in root nodule symbiosis, 
we selected three TFs, EIN3, ERF1, and IAA4-5 which 
were among the DRMN selected regulators (Fig.  7D). 
We knocked down the expression of the correspond-
ing genes by RNAi and examined the nodulation phe-
notype in composite M. truncatula plants (Methods). 
Knockdown of MtrunA17Chr5g0440591 (EIN3) and 
MtrunA17Chr1g0186741 (ERF1) significantly lowered 
the number of nodules produced on the RNAi roots 
(Fig.  8A, Additional file  1: Figure S15A, P<0.05 from 
an ANOVA test followed by Tukey’s HSD test post 
hoc). Knockdown of MtrunA17Chr1g0166011 (IAA4-
5) did not alter nodulation relative to the empty vector 
(EV) control (Additional file 1: Figure S15B, Additional 
file 2: Table S5). These nodules were all colonized by S. 
meliloti (Fig.  8B). Together, these results validate the 
role of MtrunA17Chr5g0440591 (EIN3) and Mtrun-
A17Chr1g0186741 (ERF1) in rhizobium-legume symbio-
sis, as predicted by DRMN.

Discussion
The enormous economic and environmental cost of 
plant nitrogen fertilization motivates efforts towards 
identifying molecular mechanisms underlying legume 
perception of nitrogen-fixing bacteria and nodule devel-
opment. We dissected the gene regulatory network in 
M. truncatula roots in response to S. meliloti LCOs by 
jointly profiling the temporal changes in the transcrip-
tome and chromatin accessibility and integrating these 

data computationally. Extensive changes in the tran-
scriptome are known to occur in Medicago roots in 
response to rhizobia signals, and we show these changes 
are accompanied and facilitated by extensive chroma-
tin remodeling. While the overall percentage of accessi-
ble chromatin regions remained similar across our time 
course experiment, regions of accessibility underwent 
a dramatic shift 1–2 h after treatment. This remodeling 
appears to anticipate the development of root nodules, 
which requires stringent temporal and spatial control of 
gene expression. Chromatin accessibility of gene promot-
ers notably also emerged as a significant predictor of gene 
expression (Fig.  6). These changes in chromatin acces-
sibility enable and enhance the transcriptional changes 
required for nodule development by providing regula-
tors access to promoters that may be inactive in other 
stages of plant development. Correlation was additionally 
observed between gene expression and promoter chro-
matin accessibility profiles of several essential regulators 
of nodulation, including ERN1, CRE1, SKL/EIN2, IDP3/
CYCLOPS, and ERN2. Close coordination between chro-
matin accessibility and gene expression in LCO response 
is likely essential for root nodule development.

We applied novel methods for time-series analy-
sis, ESCAROLE and DRMN [36], to model temporal 
changes in gene expression and chromatin accessibility. 
ESCAROLE enabled us to characterize the transcrip-
tional dynamics beyond pairwise differential expres-
sion analysis, while DRMN allowed us to jointly analyze 
transcriptome and chromatin dynamics and predict 
which transcription factors (TFs) are most important 
for expression dynamics. Consistent with the theme 
of chromatin reorganization under LCO treatment 
response, DRMN identified IBM1 as a critical regula-
tor. IBM1 encodes a JmjC domain-containing histone 
demethylase that catalyzes the removal of H3K9 meth-
ylation and di-methylation in Arabidopsis [37]. DRMN 
also identified regulatory genes involved in hormone 
responses in the early steps of symbiosis and nod-
ule formation such as ethylene (ERF1, EDN1-3, and 
EIN3) and ABA (ABI4-5). EIN3 is a transcription fac-
tor mediating ethylene-regulated gene expression and 

Fig. 7  Multi-task group LASSO (MTG-LASSO) to predict regulators of transitioning genes. A MTG-LASSO was applied to infer significant regulatory 
features for each transitioning gene set. Shown is a model of predicting expression (Y) for a set of genes using the predictor features (X) of 
the genes and coefficients (B). Each gene (column of Y) is a task and each row of B corresponds to the regression of a predictor for all genes. 
MTG-LASSO picks the same regulators for all genes in a set but allows for different regression weights. The regression weights for a regulator (row) 
is a group. B Visualization of the top 1000 predicted TF-gene network edges, ranked by regression weight magnitude from MTG-LASSO. C Example 
transitioning gene sets showing corresponding gene expression and motif accessibility profiles for regulators of interest (IBM1, MTF1, EIN3, EDN3). 
For each cluster, we show genes with significant change in accessibility between 0–2 and 4–24 h (T-test P-value < 0.05) for at least one regulatory 
feature per cluster. D Ranking of all regulators selected in the MTG-LASSO-based regulatory network. Regulators are ranked by the number of 
predicted targets. The motifs that were mapped to a common name are shown. The ranking highlights regulators identified at the DRMN module 
level (Fig. 6) and additional regulators like TIFY and CYCLOPS

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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morphological responses in Arabidopsis. The role of 
EIN3 in rhizobium-legume symbiosis or LCOs signaling 
remains uncharacterized, but sickle (skl) mutants for an 
EIN2 ortholog develop more infection threads and nod-
ules and respond more to LCOs than wild-type plants, 
and ethylene treatment inhibits LCO signaling and nod-
ule formation [38]. ABI4 and ABI5, basic leucine zipper 
transcription factors implicated in several plant func-
tions, coordinate LCO and cytokinin signaling during 
nodulation in M. truncatula [39]. DRMN also identi-
fied regulators associated with the hormones involved 
in the nodule initiation, auxin (SHY2), and cytokinin 
(MtRRB15). SHY2, a member of the Aux/IAA family, 
plays a critical role in cell differentiation at root apical 
meristem and is activated by cytokinin [40, 41]. SHY2 
was proposed as a candidate for nodule meristem regu-
lation and differentiation after showing a very localized 
expression pattern in the nodule meristematic region 
[42]. Also related to nodule meristem initiation, KNOX 
TF-family members and PLT1-5 were predicted as regu-
lators of gene expression in response to LCOs. MtPLT 

genes (MtPLT1-5) are part of the root developmental 
program recruited from root formation and control 
meristem formation and maintenance for root and nod-
ule organogenesis [43]. We experimentally validated 
two of our regulators EIN3 and ERF1 using RNAi in M. 
truncatula and showed a significant effect in nodule 
formation. Prior work of Asamizu et  al. [44] indepen-
dently supports the observation of the ERF1 ortholog 
as an effector of nodule development in L. japonicus, 
where the number of nodules was likewise reduced in 
a similar RNAi experiment. Their findings suggest ERF1 
is induced by rhizobium on a 3 to 24 h time scale, echo-
ing the observed time scale of chromatin reorganiza-
tion in M. truncatula in our work. Recent work of Reid 
et al. [45] emphasizes an early, positive role of ethylene 
in rhizobium-legume symbiosis in L. japonicus, which 
supports why we observe ethylene-related TFs having 
a positive impact on nodulation, unlike the ethylene 
insensitive skl mutation [38]. The exact mechanisms by 
which these genes regulate rhizobium-legume symbio-
sis can be explored in future research.

Fig. 8  RNAi knockdown of EIN3 and ERF1 reduced the number of nodules on M. truncatula plants. A Data for empty vector control, and EIN3 
and ERF1 knock down roots (n = 20, 16, and 13 replicates respectively) were analyzed by ANOVA followed by Tukey’s HSD test for multiple 
comparisons. Box plots not connected by the same letter are significantly different (P < 0.05). One extreme outlier (29 nodules) was excluded in the 
MtrunA17Chrg0186741 (ERF1) experiment. B Images of nodules on subtending root supporting the effectiveness of RNAi. Blue color (top) indicates 
the rhizobial infection (S. meliloti constitutively expressing lacZ), and the red fluorescence marker (bottom) identifies transgenic roots (white scale 
bar = 1 mm)
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Our analysis predicted genome-wide targets for tran-
scription factors, including novel regulators identified by 
DRMN and previously known regulators of root nodu-
lation, such as NIN, NF-YA1/NF-YB1, and CYCLOPS. 
For example, MTG-LASSO analysis predicted NIN as a 
direct target of SHY2 and MTF1, and FLOT4, required 
for infection thread formation, as a target of IBM1 [46]. 
Among known regulators, MTG-LASSO indicated that 
ARF16a and SPK1 are targets of NF-Y TFs. ARF16a and 
SPK1 control infection initiation and nodule formation 
[1]. Several NF-Y genes (NF-YA5 and NF-YB17) were 
identified as regulated by CYCLOPS. These predicted 
regulatory relationships can be tested with future valida-
tion experiments and uncover key mechanisms underly-
ing the regulation of gene expression in LCO response

Conclusions
The regulatory mechanisms underlying plant-microbe 
symbiotic relationships remain poorly characterized. 
Here, we present a novel dataset that profiles the con-
current changes in transcriptome and chromatin acces-
sibility in the model legume, Medicago truncatula, in 
response to rhizobia signal that trigger nodule formation. 
We have jointly modeled the chromatin and transcrip-
tome time series data to predict the most critical regu-
lators of the response to these signals and that underlie 
molecular pathways driving nodule formation. Our tran-
scriptomic and accessibility datasets and computational 
framework to integrate these datasets provide a valuable 
resource for identifying key regulators for the establish-
ment of root nodulation symbiosis in M. truncatula that 
could inform engineering of nodulation in species unable 
to establish that symbiosis naturally.

Methods
Plant material and treatment
Seeds of wild-type Medicago truncatula Jemalong 
A17 strain (available through the USDA Germplasm 
Resources Information Network (GRIN)) were steri-
lized and germinated in 1% agar plates, including 1μM 
GA3. Plates were stored at 4 °C for 3 days in the dark and 
placed at room temperature overnight for germination. 
Seedlings were grown vertically for 5  days on a modi-
fied Fahraeus medium with no nitrogen [47], in a growth 
chamber (24  °C, 16 h light/8h dark cycle, 70 μmol m−2 
s−1 photosynthetic photon flux). LCOs were purified 
from S. meliloti strain 2011 as described previously [48]. 
Next, seedling roots were immersed in a solution of puri-
fied LCOs (10−8 M) or 0.005% ethanol solution (control) 
for 1 h. Roots were cut and immediately used for nuclei 
extraction and generation of ATAC-seq libraries (see 
below) or snap-frozen in liquid nitrogen for posterior 

RNA isolation and sequencing. Roots were collected at 
0 h (control), 15, 30 min, 1, 2, 4, 8, and 24 h after LCO 
treatment. Roots from seven plants were pooled for each 
of three biological replicates used in RNA sequencing, 
while roots from 15 plants were pooled for one replicate 
used in ATAC-seq, in each time point of the experiment.

ATAC‑seq library preparation and sequencing
For ATAC-seq library preparation, we followed the 
protocol described previously [49] with modifications. 
Before nuclei isolation, all materials were precooled to 
4  °C. Briefly, roots were chopped for 2 min in 1 ml of 
pre-chilled lysis buffer (15 mM Tris-HCl pH7.5, 2mM 
EDTA, 20 mM NaCl, 80 mM KCl, 0.5 mM spermine, 
15 mM 2-ME, 0.15 % TritonX-100) in a cold room. 
This step was repeated four times with a 1 min inter-
val between repetitions. The homogenate was filtered 
through one layer of pre-wetted Miracloth, loaded 
on the surface of a 2 mL dense sucrose buffer (1.7 M 
sucrose, 10 mM Tris-HCl pH8.0, 2 mM MgCl2, 5 mM 
2-ME, 1 mM EDTA, 0.15 % Triton X100), and centri-
fuged (2400 g, 20 min at 4  °C). The supernatant was 
removed, and the nuclei were resuspended in 500 μl of 
lysis buffer and then filtered in 70 μm and 40 μm filters 
consecutively. The nuclei were then collected by cen-
trifuging the solution at 1000g for 5 min at 4 °C. After 
washing with 950 μl 1×TAPS buffer (10 mM TAPS-
NaOH, pH8.0, 5 mM MgCl2), the samples were centri-
fuged again at 1000g for 5 min at 4 °C. The supernatant 
was removed, leaving the nuclei suspended in approxi-
mately 10 μl of solution. Next, 1.5 μl of Tn5 trans-
posase (Illumina FC-121-1030), 15 μl of Tagmentation 
buffer, and 13.5 μl of ddH20 were added to the solu-
tion. The reaction was incubated at 37  °C for 30 min. 
The product was purified using a QIAGEN MinElute 
PCR Purification kit and then amplified using Phusion 
DNA polymerase. One microliter of the product was 
used in 10 μl qPCR cocktail with Sybr Green. Cycle 
number X was determined as the cycle were the ¼ of 
the maximum signal was reached. Then, we ampli-
fied the rest of the product in a Phusion (NEB) PCR 
system with X-2 cycles (10 to 15 cycles, 50 μl of reac-
tion). Amplified libraries were purified with AMPure 
beads (Beckman Coulter), and library concentrations 
were determined using a Qubit. Sequencing was car-
ried out in an Illumina HiSeqX (2 × 150 cycles) at the 
HudsonAlpha Institute for Biotechnology (Huntsville, 
AL, USA).

RNA‑seq library preparation and sequencing
For each RNA extraction, roots from 7 plants were 
pooled and ground while keeping the sample frozen. 
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RNA extraction was performed as described previously 
[50]. Libraries were prepared using 1 μg of RNA in the 
NEBNext® Ultra™ Directional RNA Library Prep Kit fol-
lowing the supplier’s instructions (New England Biolabs, 
Ipswich, MA, USA). Sequencing was carried out with an 
Illumina HiSeq3000 (2 × 100 cycles) at the Interdiscipli-
nary Center for Biotechnology Research at the University 
of Florida (Gainesville, FL, USA).

RNA‑seq data pre‑processing and quality control
Between 8.7 and 17.9 million, 2 × 100 bp reads were 
obtained after sequencing the 24 RNA-seq libraries. 
Reads were aligned with Kallisto [51] to the M. trunca-
tula transcriptome (v5, [52], Additional file 1: Figure S1). 
The average of the alignment rates across time points 
was 87–95%. A total of 37,536 genes were detected with 
non-zero expression at any of the time points. The data 
were processed with SLEUTH [53] for further analysis. 
Finally, TPM expression values were quantile-normalized 
and log-transformed before being used as input for fur-
ther analysis. Principle component analysis was applied 
to these data in MATLAB (Fig.  1A). For comparative 
purposes, transcriptome time course data related to 
root nodulation [12] obtained from the M. truncatula 
wild-type reference accession Jemalong A17 and three 
mutants (lyk3, nfp, and skl/ein2), were analyzed using the 
same Kallisto/SLEUTH approach. The 144 samples char-
acterized in that experiment presented alignment rates of 
91–96%, except four outliers with rates of 73–88%. Anal-
ysis of this data set detected 40,988 genes with non-zero 
expression, of which 36,298 were in common with the 
37,536 identified in the present LCO-treatment experi-
ment (Additional file 1: Figure S1).

Differential expression analysis of RNA‑seq time course 
and comparison with existing data
DESeq [54] was applied to both the data generated in the 
present work and previously published data sets for four 
rhizobial treatment [12]. The expected count matrices of 
each data set were used as input to the DESeq algorithm, 
used in a default manner per the author recommenda-
tions. For each of the five time-course experiments, we 
assessed differential expression relative to control (time 
0 h) for each later time point (Additional file  1: Figure 
S2A and S2E, left) as well as between pairs of time points 
(Additional file  1: Figure S2E). An adjusted P thresh-
old of 0.05 was applied to select differentially expressed 
(DE) genes for each time point in each experiment. Sta-
tistics (Additional file  1: Figure S2B) and heat-maps for 
genes DE relative to control and between (all) time points 
(Additional file  1: Figure S2C and D) present clear pat-
terns of temporal change.

For the Larrainzar et al. data set [12], we also identi-
fied differentially expressed genes between the three 
mutants (lyk3, nfp, and skl/ein2) relative to the wild-
type reference (Jemalong A17) for matched time points 
(Additional file 1: Fig S2E, right). As in the first analysis 
the union of genes identified at any time point defined 
the set of differentially expressed genes for the dataset.

The union of differentially expressed genes across 
time points was used for comparisons between data-
sets. We quantified the degree of overlap between DE 
gene sets with an F-score, or harmonic mean, of the 
fraction of overlapping genes in each set using the 
union across all time points (Fig. 1C, Additional file 1: 
Figure S2F) as well as individual pairs of time points 
(Additional file  1: Figure S2G). For two sets of N1 and 
N2 genes, respectively, and NO in common between the 
two, the F-score is defined as:

Expression clustering analysis with ESCAROLE
We analyzed the LCO-treatment time course data with 
ESCAROLE [21] to characterize the temporal changes in 
the transcriptome. We included 37,536 genes with at least 
one non-zero count in at least one of the 24 experiments 
(3 replicates × 8 time points). Transcriptome data from 
each time point were grouped by k-means clustering and 
used as an input module assignment for the ESCAROLE 
algorithm (Fig.  3). The algorithm was run for 100 itera-
tions with non-fixed covariance Gaussian mixture model 
(GMM) clustering, and k = 7 modules. The selection of 
k = 7 was determined by the mean silhouette index per 
time point and overall BIC-corrected likelihood score 
(Additional file 1: Figure S3A, B). From ESCAROLE, we 
obtain a module assignment for each gene at each time 
point and identified sets of genes that transition in their 
module assignment across the eight time points (Fig. 2B).

We define transitioning gene sets from ESCAROLE 
results by grouping genes with a similar module transi-
tion profile with agglomerative hierarchical clustering 
(Fig. 3C, Additional file 1: Figure S3D). The pairwise dis-
tance between genes used for this clustering approach 
was the fraction of mismatches in the module assignment 
across the (8 point) time course. The distance threshold 
(to determine the cut on the dendrogram for the hierar-
chical clustering) and the minimum number of genes in 
a cluster were the input parameters to define the transi-
tioning gene clusters in this approach. In choosing set-
tings for these parameters, we tested different pairwise 
distance threshold values (those corresponding to 0-4 
mismatches between module assignment profiles) and 
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examined the resulting cluster sets for their size, over-
lap with differentially expressed genes, and enrichments 
of Gene Ontology (GO) and motif terms (see also the 
“Integrative analysis of RNA-seq and ATAC-seq time 
course data using the dynamic regulatory module net-
works algorithm” section). We chose a pairwise distance 
threshold of 0.26 in the hierarchical clustering analysis 
(corresponding to two mismatches across the 8-point 
time course) based on these results and used those clus-
ters with 10 or more genes to define the 112 transitioning 
gene sets from the ESCAROLE results.

Exploratory analysis of ATAC‑seq data

Data pre‑processing
Each of the eight ATAC-seq libraries was paired-end 
sequenced twice, and 54 to 235 million reads were 
obtained from each sequencing library (Additional file 1: 
Figure S4A and B). The data were aligned with Bowtie 2 
[55] to the M. truncatula v5 genome, with 46–75% of the 
data found mappable (alignable) to the reference genome. 
Properly paired fragments with a quality score of 3 or 
greater were then obtained with “samtools view -Sb 
-q3 -f2,” (Properly paired, Additional file  1: Figure S4A, 
B) and duplicate-removal was applied with “samtools 
rmdup” [56] to define the final library data sets utilized 
(Selected, Additional file 1: Fig S4A, B).

Fragment length distributions of each time-point data 
set (Additional file  1: Figure S4C) present the expected 
~10 bp DNA pitch but not nucleosome occupancy 
dependence first illustrated by Buenostro et al. [57]. This 
is consistent with previously published plant ATAC-seq 
data from Blajic et al. [58] (see Fig. 2A of that work). The 
absence of nucleosome occupancy dependence can be 
in part due to aspects of the ATAC-seq protocol imple-
mented in plants versus mammals. Another explanation 
could be the large proportion of our reads mapping to 
promoter regions, which tend to be nucleosome depleted 
further explaining the diminished nucleosome pitch. 
Moreover, TSS-centric (±1kbp) distributions of selected 
fragments for each time point were analyzed using the 
ATACSeqQC [59] pipeline and the ChIPpeakAnno [60] 
toolset’s featureAlignedHeatmap function and found to 
be both favorable (Additional file  1: Figure S5A and B) 
and comparable to results from the Maher et al. M. trun-
catula data (Additional file 1: Figure S6A and B) analyzed 
in the same way.

Peak calling was performed by applying MACS2 
[30] to ATAC-seq data from each time point using the 
command:

macs2 callpeak− t < bam file > −n < Name > −− format BAMPE−gsize = 3.4e8

We mapped these peaks to genes if the center of 
a peak was within 10 kbp upstream and 1 kbp down-
stream of a gene transcription start site (TSS). Peaks 
called at each time point were merged across time 
points to generate a set of “universal peaks” using cus-
tom scripts [61] (Additional file  1: Figure S9A and B) 
based on two criteria: (1) peaks from two different time 
points had a Jaccard score overlap of 0.9 or higher, and 
(2) the peak from one time point was contained within 
the peak detected in another time point. FriP values of 
the peaks called in each time point were found to be 
favorable [62] (Additional file 1: Figure S9A), i.e., > 0.30 
for all time points in accordance with ENCODE con-
sortium standards for ATAC-seq peak-calling results. 
Annotations of the universal peak set (Fig.  3D, Addi-
tional file  1: Figure S9C and G) were generated in 
three steps: (1) annotating all peaks centered within 2 
kbp upstream and 100 kbp downstream a gene TSS as 
“Promoter” peaks, (2) annotating any remaining peaks 
centered within 2–10 kbp upstream of a gene TSS 
as “Upstream”, and (3) using the results of the Homer 
annotatePeaks.pl tool [63] for all remaining peaks. The 
proportion of universal peaks mapped to “Promoter” 
regions under this definition is 32.1%.

Correlation and clustering analysis
To enable quantitative comparison of the chroma-
tin accessibility profiles across time, we aggregated the 
ATAC-seq read counts in two sets of genomic regions: 
(1) gene promoter regions (defined as 2 kbp upstream 
to 2 kbp downstream of a given gene TSS) and (2) uni-
versal peaks described above using custom scripts [64]. 
Briefly, we first generated the per base pair (per-bp) cov-
erage of fragments for each time point data set with Bed-
tools [65] using the command bedtools genomecov <bam 
file> -bp -pc. For each ± 2 kbp gene promoter region, the 
average coverage per-bp was estimated, and log-ratio 
transformed relative to the global genome-wide average 
per-bp coverage in the respective time point data set. 
The genome-wide average per-bp coverage was obtained 
by dividing the total coverage on any base pair by the 
length of the genome. The signals aggregated to the pro-
moter were used for downstream principal component 
analysis (Fig. 3C). The Pearson correlation of aggregated 
promoter signals for replicate data sets was 0.965–0.990 
across time-points (Additional file 1: Figure S7), indicat-
ing high consistency, also indicated by the similarity of 
PCA results for the replicate data sets (Additional file 1: 
Figure S8A).
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The signal for the universal peaks was similarly quan-
tified by the log-ratio of the mean per-bp coverage of 
the respective peak region relative to the global average 
per-bp coverage. For both data sets, this was followed by 
quantile normalization across time points, providing a 
continuous measure of the accessibility of gene promoter 
and peak regions.

To evaluate the relationship between gene expres-
sion and either promoter or universal peak accessibil-
ity, we first performed a zero-mean transformation of 
each gene’s expression profile and the corresponding 
accessibility profiles. Next, a Pearson’s correlation was 
estimated. To assess the significance  of correlation, we 
generated a null distribution of correlations from 1000 
random permutations of the time points. We computed 
a P-value that estimates the probability of observing 
a correlation in the permuted data more significant 
in magnitude than an observed correlation,  treating 
positive and negative correlations separately. For the 
eight time points in this data set Pearson’s correlations 
were typically significant (P  < = 0.05) when > 0.50 or 
< − 0.50. The zero-meaned promoter and universal 
peak accessibility profiles were clustered with k-means 
clustering, and the optimal settings for k were deter-
mined separately for each data set. In both cases, the 
silhouette index (computed with correlation distance 
metric) was used to select the optimal k. Here, k  = 6 
clusters were chosen for the promoter accessibility data 
(Fig. 3A, Additional file 1: Figure S8B). For the universal 
peak accessibility profile clusters, we additionally used 
enrichments for motifs within the clusters of peaks to 
determine the optimal setting of k = 9 clusters (Addi-
tional file 1: Figure S9D, E). The clusters were enriched 
for motif instances of several known regulators (Addi-
tional file  1: Figure S9F). Furthermore, the peaks in 
clusters 1 and 2 were more likely to be annotated as 
intergenic regions than peaks in any other cluster 
(Additional file 1: Figure S9G).

Integrative analysis of RNA‑seq and ATAC‑seq time course 
data using the dynamic regulatory module networks 
algorithm
We applied a novel algorithm, dynamic regulatory mod-
ule networks (DRMN) [18, 66, 67], to our RNA-seq and 
ATAC-seq time course data set to identify cis-regulatory 
elements and transcription factors associated with genes 
that exhibit dynamic behavior. The inputs to this algo-
rithm are the RNA-seq time series data, the number of 
expression modules, and regulatory features for each 
time point derived from the ATAC-seq time course by 
examining the genomic region around a gene’s TSS. The 
algorithm outputs gene expression modules (states) for 
each time point and their associated regulatory programs 

comprising the cis-regulatory elements that best predict 
gene expression of a particular module.

To obtain the cis-regulatory features for each gene, we 
used 333 M. truncatula motif position weight matrices 
from the CisBP v1.02 database [33] and seven curated 
motifs of interest (including those for NIN, CYCLOPS 
(CYC-RE), and NSP1 and other binding motifs). ATAC-
seq activity was aggregated for those known motif 
instances in the manner described above for promoter 
and universal peak regions. Motif finding was done for 
each of the associated position weight matrices using 
the pwmmatch.exact.r script (from the PIQ pipeline 
[68]) using the default log-likelihood score threshold of 
5. Motifs mapped to 10 kbp upstream to 1 kbp down-
stream of gene TSSs were assigned as potential features 
describing the corresponding gene’s expression. This 
distance cutoff was motivated by the experimental vali-
dation of the daphne mutation for the NIN (NODULE 
INCEPTION) gene in Lotus japonicus by Yoro et al. [69], 
which is an insertion in a regulatory site ~7 kbp from 
this gene and affects its expression. Moreover, Liu et al. 
[70] have likewise validated similar regulatory interac-
tions between sites ~5 kbp upstream of the NIN gene in 
M. truncatula. For each gene, the accessibility of multi-
ple instances of the same motif mapped to that gene was 
summed. Finally, the aggregated motif accessibility fea-
ture data were merged across the time course and quan-
tile normalized [64]. The normalized accessibility data for 
±2 kbp promoter regions were also included as a predic-
tive feature of gene expression.

The DRMN algorithm takes as input the number of 
modules, k and uses a regularized regression model, 
Fused Lasso [71], to learn regression models for each 
module, k, for all time points jointly. This has the follow-
ing objective:

Here, Xc,k is the nk  X  1 vector of expression levels for 
nk genes in modules k for time point c, Yc, k  is  nk X p 
motif-accessibility feature matrix corresponding to the 
same genes, �T

c,k , are the regression coefficients which 
represent the quantified association of gene expres-
sion with individual regulatory motif features. Here, Θk 
is the matrix of coefficients across time points. The sum 
over c, c′ represents the sum over pairs of consecutive 
time points. Specifically, here, ‖.‖1 is the l1 norm (sum of 
absolute values), ‖.‖2 is the l2 norm (square-root of the 
sum of each value), and ‖.‖2, 1 is the l1,2 norm, i.e., the 
sum of the l2 norm of the columns of the given matrix. 
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Furthermore, ρ1, ρ2, and ρ3 are hyper-parameters of the 
model that need to be tuned for optimal training and 
inference of DRMNs. These parameters represent (1) a 
sparsity penalty, (2) enforcing similarity of features for 
consecutive time points, and (3) enforcing an overall 
similarity of feature selection across all time points. We 
used several criteria to determine these hyper-parameter 
settings. The most important is the Pearson correlation 
of actual and predicted expression in threefold cross-vali-
dation settings to assess the resulting predictive power of 
models inferred for varied settings of the hyperparame-
ters. Additionally, the quality of the clustering (silhouette 
index scores), the BIC-corrected likelihood score, and 
stability of predictive power in threefold cross-validation 
(Additional file 1: Figure S10A, C) were considered. We 
first varied ρ1 (values of 1, 5–60 in increments of 5, and 
75 and 100) and ρ2 (values of 0–60 in increments of 5, 
and 75 and 100) independently and assessed the result-
ing predictive power for all models inferred. Predictive 
power generally monotonically decreased with increasing 
values of either parameter for values of ρ1>10, while for 
ρ2< = 25, the clustering was unstable. A choice was made 
for ρ1 = 5 over ρ1 = 1, since predictive power correlation 
was marginally higher for ρ2 = 30–60.

With the ρ1 parameter fixed to 5, a second independ-
ent scan of ρ2 and ρ3 was performed, with (1) ρ2 varied 
from 25–60 in increments of 5, 75, and 100, and (2) ρ3 
scanned for values of 0–60 in increments of 5, 75, and 
100. For settings of ρ3 = 5–20, there tended to be unstable 
predictive power of the least expressed module, recover-
ing comparable but not greater performance compared 
to results for ρ3 = 0 or ρ3 > 20, indicating no advantage 
for setting ρ3 > 0. We considered the cross-validation pre-
dictive power, silhouette index of modules, and similar-
ity to ESCAROLE modules, in determining a setting for 
ρ2 (Additional file  1: Figure S10A). Comparable perfor-
mance was found for ρ2 = 30–60, but ρ2 = 45 and 50 max-
imized the mean threefold cross-validation performance. 
We selected ρ2 = 45, as it was the lower of the two settings 
to avoid unnecessarily high values for a hyperparameter. 
Based on this assessment results for the hyperparameter 
settings of ρ1 = 5, ρ2 = 45, and ρ3 = 0 were chosen.

We ran DRMN on our time-course data set for k = 7 
input modules, based on the optimal numbers of mod-
ules determined in the ESCAROLE analysis. Each mod-
ule (Additional file  2: Table  S1) was predicted to have 
multiple regulators based on DRMN’s fused regression 
model. To allow initial interpretation of the regulators, 
we filtered them as follows: (1) the magnitude of regula-
tor-module edge-weights (Additional file 2: Table S2) in 
at least one time point being greater than 0.02 and (2) 
the regulatory motif being enriched in the module (FDR 
corrected q-value from hyper-geometric test, q < 0.05) 

for all time points (Additional file  1: Figure S11, Addi-
tional file  2: Table  S3). The modules was also tested for 
enrichment of GO terms, using an FDR corrected hyper-
geometric test (q < 0.05) to define significant enrichment 
(Additional file 1: Figure S12, Additional file 2: Table S3).

To identify module network edges that were signifi-
cantly varying in time we first merged module network 
edge weights across time points per module and identi-
fied those edge weights that were significantly varying 
(t-test P < 0.05 as implemented in MATLAB with the 
ttest2() function) across the 0–1 and 2–24 h portions of 
the time course. The choice to compare across the 1–> 2 
h time point transition was motivated by the observation 
of module reorganization at this time window (Fig. 5C). 
Those regulatory edges found to be significantly varying 
are likely important at the module level of organization 
(Fig. 6).

To identify gene sets that transition in their expression 
due to changes in their predictive regulatory programs, 
we grouped genes that changed their DRMN inferred 
module assignment across time points using the same 
agglomerative hierarchical clustering approach applied 
in the ESCAROLE transitioning gene clustering analysis. 
We performed GO and motif enrichment on these gene 
sets as well to assess the optimal threshold for cutting the 
dendrogram (Additional file 1: Figure S13A). In total, we 
identified 79 gene sets spanning 10,176 genes. These gene 
sets were further analyzed using a regularized regres-
sion approach (described below) to identify regulators for 
each gene set.

Inferring fine‑grained regulator‑target interactions
We identified fine-grained regulator gene interactions by 
predicting regulators for individual genes in transition-
ing gene sets using a structured sparsity approach called 
multi-task group lasso (MTG-LASSO, Fig.  7A). MTG-
LASSO is a type of multi-task learning framework, where 
one performs a regression for multiple tasks simultane-
ously to share information among the tasks. Here, each 
gene in the gene set is a task, and MTG-LASSO enables 
us to select the same regulator (motif ) for all genes in the 
set but with different regression parameters. The regula-
tor identity defines the “group” in MTG-LASSO which 
includes the regression weights for the regulator for all 
genes in the set. MTG-LASSO selects or unselects entire 
groups of regression weights. The MTG-LASSO objec-
tive for each gene set is:

Here, Xg is the expression profile over time for gene g, 
and Ym, g is the vector of motif accessibility features for 
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motif m and gene g over time. The parameters Θm, g are 
the regression coefficients for predicting the expression 
of g using the feature data for motif m. This second term 
denotes the ‖.‖1/2 norm defined as 

∑

m

∑

g �
2
m,g and is 

used for (1) penalizing the number selected motif fea-
tures according to the l1 norm and (2) enforcing smooth-
ness of the regression coefficients across genes according 
to the l2 norm. λ is the hyper-parameter for controlling 
the group structure.

For each of the 79 transitioning gene sets, MTG-
LASSO was applied (using the SLEP v4.1 package [35] 
in MATLAB [72]) to infer the most predictive regula-
tory features of gene expression over time from the same 
motif accessibility features used in the DRMN analysis. 
For each gene set, we applied MTG-LASSO in a leave-
one-out testing mode (Additional file  1: Figure S14), 
where each of the eight time points was left out one at a 
time, a model was fit on the remaining seven, and predic-
tive power (Pearson’s correlation) was computed on the 
left-out time point. For each regulator, we calculated a 
P-value to assess the significance of the frequency with 
which a given regulator was selected relative to random. 
This was achieved by randomizing the data 40 times and 
estimating a null distribution for the rate with which that 
regulator was selected across folds. A Z-test P-value was 
then obtained for the result relative to random.

We called a regulator significant if it was selected at 
least 6 of 8 time-point folds, and the number of times it 
was selected was significantly higher (t test P < 0.05) rela-
tive to random for the frequency of selection across folds. 
MTG-LASSO’s hyper-parameter, λ, was determined for 
each transitioning gene set from the range 0.20–0.99 (in 
intervals 0.10) based on (1) the mean Pearson’s correla-
tion (predictive power) of the inferred regulatory fea-
tures and (2) the number of regulators (5–15 for most 
gene sets) identified as significant such that the ratio of 
the number of identified regulators to number of target 
genes being close to 0.05 (Additional file 1: Figure S14). 
This approach identified 33 gene sets (of the original 79) 
with predicted regulators. For the remaining transition-
ing gene sets, significant regulators were not found either 
because the available predictive features were not good 
descriptions of the respective gene expression profiles or 
regulators were obtained for only one or two settings of 
λ, hindering an appropriate assessment of results.

For each of the 33 gene sets for which we identified 
regulators using MTG-LASSO (Additional file  1: Figure 
S14), we created regulator-target predictions between the 
significant regulatory features and member genes, defin-
ing 122,245 regulatory edges spanning 126 motifs for 
5978 target genes (from 10,176 genes aggregated among 
the 79 transitioning gene clusters). Of the 126 motifs, 

we mapped 53 motifs to 278 M. truncatula regulator 
genes, including 31 well-studied regulators (specifically 
with common names in the v5 genome annotations). The 
remaining 73 motifs were assigned to 261 M. truncatula 
genes in the v5 genome assembly that were additionally 
identified as transcription factors (TFs). The relatively 
high number of motif to gene name mappings is because 
TF names were provided in CisBP v1.2 as systematic gene 
names from the v3/v3.5 M. truncatula genome assem-
blies rather than v5. We used a 70% BLAST similarity 
score to define mappings from M. truncatula v3/v3.5 
genome systematic gene names to v5 genome systematic 
gene names.

Validation of predicted regulators of nodulation with RNAi
We used RNAi to validate three predicted regulators 
from our DRMN analysis, EIN3, ERF1, and IAA4-5. 
104 bp region in the CDS specific to the gene of inter-
est was amplified with 5′-CACC and inserted into 
pENTR™/D-TOPO® using directional TOPO® cloning 
and further recombined in  vitro with the destination 
vector pK7GW1WG2(II)-RedRoot (https://​gatew​ayvec​
tors.​vib.​be/​colle​ction/​pk7gw​iwg2ii-​redro​ot) using Gate-
way® LR Clonase® II enzyme mix using manufacturer’s 
instructions.

To validate RNAi, total RNA was extracted from 
transformed roots of each genotype using Qiagen RNe-
asy® Plant Mini kit and genomic DNA removed using 
TURBO DNA-free™ Kit (Ambion). First-strand cDNA 
was synthesized using RevertAid RT Reverse Transcrip-
tion Kit (Thermo Scientific™). Quantitative RT-PCR 
was performed using BIORAD SsoAdvanced Universal 
SYBR Green Supermix on BIORAD CFX96™ Real-time 
system; C1000 Touch™ Thermal cycler. The HEL and 
UBC9 genes were used as endogenous controls. Two 
(EIN3—MtrunA17Chr5g0440591) or three (ERF1—
MtrunA17Chr1g0186741) technical replicates were used. 
A BLAST was performed for all primers against the M. 
truncatula v5 genome to ensure specificity. The primers 
chosen for the validation of RNAi do not overlap with the 
RNAi regions (utilized primers provided in Additional 
file 1: Table S1).

The RNAi expression clones were introduced into 
Agrobacterium rhizogenes MSU440 with electroporation. 
Composite M. truncatula plants were generated as pre-
viously described [73]. Three weeks after transformation 
with A. rhizogenes MSU440, the roots were screened for 
red fluorescence of tdTomato, and the composite plants 
with red roots were transferred to growth pouches con-
taining modified nodulation medium (MNM) [74]. The 
plants were acclimated for 4 days and inoculated with S. 
meliloti 1021 harboring pXLGD4 [75]. Two weeks post 

https://gatewayvectors.vib.be/collection/pk7gwiwg2ii-redroot
https://gatewayvectors.vib.be/collection/pk7gwiwg2ii-redroot
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inoculation, live seedlings were stained for lacZ (5 mM 
potassium ferrocyanide, 5 mM potassium ferricyanide, 
and 0.08% X-gal in 0.1 M PIPES, pH 7) overnight at 37 °C. 
Roots were rinsed in distilled water, and nodules were 
visualized and counted under a Leica fluorescence ster-
eomicroscope (Fig. 8B, Additional file 2: Table S5).
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