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The microbiome’s fiber degradation profile 
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Abstract 

Background:  The relationship between the gut microbiome and diet has been the focus of numerous recent 
studies. Such studies aim to characterize the impact of diet on the composition of the microbiome, as well as the 
microbiome’s ability to utilize various compounds in the diet and produce metabolites that may be beneficial for the 
host. Consumption of dietary fibers (DFs)—polysaccharides that cannot be broken down by the host’s endogenous 
enzymes and are degraded primarily by members of the microbiome—is known to have a profound effect on the 
microbiome. Yet, a comprehensive characterization of microbiome compositional and functional shifts in response to 
the consumption of specific DFs is still lacking.

Results:  Here, we introduce a computational framework, coupling metagenomic sequencing with careful annota-
tion of polysaccharide degrading enzymes and DF structures, for inferring the metabolic ability of a given microbiome 
sample to utilize a broad catalog of DFs. We demonstrate that the inferred fiber degradation profile (IFDP) generated 
by our framework accurately reflects the dietary habits of various hosts across four independent datasets. We fur-
ther demonstrate that IFDPs are more tightly linked to the host diet than commonly used taxonomic and functional 
microbiome-based profiles. Finally, applying our framework to a set of ~700 metagenomes that represents large 
human population cohorts from 9 different countries, we highlight intriguing global patterns linking DF consumption 
habits with microbiome capacities.

Conclusions:  Combined, our findings serve as a proof-of-concept for the use of DF-specific analysis for providing 
important complementary information for better understanding the relationship between dietary habits and the gut 
microbiome.
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Background
The gut microbiome, the ensemble of microorganisms 
that inhabits the gastrointestinal tract, has a tight rela-
tionship with various dietary habits and with the con-
sumption of a variety of food items [1–3]. Variation in 
the host diet, and even changes in dietary regimes, is 
known to affect the composition of the gut microbiome 
by modulating the availability of essential nutrients that 

selectively promote the growth of specific commensal 
bacteria [1, 2, 4–6]. On the other hand, gut bacteria can 
degrade and ferment consumed nutrients and produce 
important secondary metabolites (most notably, short-
chain fatty acids (SCFA)) that benefit the host [7–11]. 
Indeed, many studies have shown that certain bacteria 
in the gut can ferment food items, such as dietary fibers 
(DFs); grow; and produce useful SCFA both in vitro and 
in mice models [12–17]. Yet, a comprehensive characteri-
zation of which bacteria can thrive in response to various 
diets, and which food items (and specifically which DFs) 
each bacteria can degrade, ferment, and utilize, is still 
lacking [3, 5].
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DFs are polysaccharides, mostly of plant origin, that 
cannot be degraded by the endogenous human enzymes, 
but only by the organisms residing in our gut [4]. They 
are commonly divided into two broad classes: soluble 
and insoluble, with each class containing various types 
of DFs. DFs differ from one another in the main sugar 
component of which they are composed, the chemical 
bonds linking their main chain, the side chains they may 
include, the degree of polymorphism, and several addi-
tional attributes. As DFs can only be degraded by the 
microbiome and serve as an important nutrient source 
for microbiome members, specific shifts in bacterial 
population can be observed in response to consump-
tion of distinct fibers in a variety of clinical trials [18–23]. 
Moreover, clinical studies have identified changes in the 
production of SCFA and in their beneficial contribution 
to specific disease states in response to DF supplementa-
tion [19, 24, 25]. Such effects and interactions with spe-
cific bacteria, however, were shown only for a handful 
of DFs, and a more comprehensive characterization of 
microbiome compositional changes in response to differ-
ent DFs consumption is not yet available [26, 27].

To address this challenge and to systematically map 
the relationship between various microbial species and 
DFs, several attempts have been made to elucidate the 
functional capacity of the microbiome in respect to pol-
ysaccharide degradation. These efforts predominantly 
focused on annotation of gene families involved in gly-
coside hydrolysis (GH)—a process that breaks bonds by 
the insertion of a water molecule, and polysaccharide 
lyase (PL), which cleave complex carbohydrates using 
an elimination mechanism [4, 28–30]. While useful, the 
classification of GH and PL gene families is relatively 
broad and based primarily on sequence similarity, gener-
ally failing to link specific gene families with the degra-
dation of specific polysaccharides. Additional efforts to 
model the functional ability of microbial species to utilize 
complex polysaccharides have further focused on identi-
fying clusters of genes termed polysaccharide utilization 
loci (PUL) [31–33] in bacterial genomes. Such efforts aim 
to detect clusters of genes encoding GH and PL enzymes 
surrounded by genes encoding for proteins and enzymes 
such as transporters, phosphatases, esterases, mem-
brane-bound binding proteins, and transcription factors, 
thus hinting toward a specific complex polysaccharide 
degradation capacity. Yet, despite these extensive studies, 
the ability to pinpoint and, more importantly, to quantify 
the ability to degrade specific DFs remains elusive. More-
over, the approaches above are suitable primarily for 
genomic-based studies and are limited in their ability to 
generate meaningful insights directly from metagenom-
ics data or to infer the DF degradation capacity of mixed 
bacterial communities.

An earlier, and the most successful to date, attempt to 
address this challenge was able to offer an outlook into 
the capability of each genome to degrade glycans by 
constructing a computational pipeline based on manual 
annotation of GH and PL enzymes and the set of spe-
cific bonds they could break [34]. This impressive frame-
work, termed GlyDeR, then predicted the ability of each 
bacterial species to degrade glycans, distinguishing, for 
example, between plant-based and animal-based glycans. 
Yet, while some analysis of whole-shotgun metagenomic 
samples was performed, GlyDer focused primarily on the 
genomic capacity of bacterial species to degrade glycans 
and on relatively broad glycan classifications, rather than 
on comprehensive quantification of the ability of a given 
metagenome to degrade specific DFs and to link such 
abilities to specific dietary habits.

Here, inspired by GlyDeR and utilizing some of the 
approaches it introduced, we present a simple yet power-
ful framework for inferring the metabolic potential of a 
given microbiome to degrade a large set of DFs, by cou-
pling metagenomics sequencing with careful annotation 
of DFs’ chemical structures and polysaccharide degrad-
ing enzymes. We validate the obtained “inferred fiber 
degradation profiles” by demonstrating their associations 
with various food items consumed by the host and their 
distinct fiber content, utilizing multiple metagenomic 
cohorts. Furthermore, we show that such fiber degrada-
tion profiles are more strongly linked to the host’s dietary 
habits than taxonomic or functional profiles. Finally, we 
demonstrate that our framework can be applied to large 
metagenomics cohorts, revealing novel insights about 
these cohorts and detecting shared metabolic patterns 
among distinct populations with similar DF consumption 
habits.

Results
Inferring fiber degradation profile from metagenomic 
samples
In this study, we focus on the capacity of different micro-
biomes to degrade DFs, directly inferring this capacity 
from shotgun metagenomic data. Extending previous 
approaches [34], we specifically aim to couple metagen-
omic data with carefully annotated enzyme, fiber, and 
protein entities, ultimately calculating an inferred fiber 
degradation profile (IFDP) for each metagenomic sample. 
We wish to show that this analytical framework can pro-
vide accurate information into the differences and simi-
larities in fiber degradation capacities across microbiome 
samples and provide intriguing insights into the relation-
ship between the microbiome fiber degradation capacity 
and the host’s diet.

To calculate the IFDP, we first constructed a catalog 
of all the enzymes that have the capacity to catalyze the 
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degradation of polysaccharides, including primarily all 
glycoside hydrolysis (GH) and polysaccharide lyase (PL) 
enzymes, based on enzyme commission numbers (see 
the “Methods” section). We chose to build this database 
using the UniProt database, rather than the Carbohy-
drate-Active Enzymes (CAZy) database [31] (which 
represents a vast source of knowledge on hydrolysis 
enzymes), since CAZy often categorizes enzyme entries 
as broad non-fiber-specific GH and PL families, thus 
lacking a specific chemical reaction which is crucial for 
our analysis. We then generated and manually curated a 
dataset of fiber-enzyme interactions by first cataloging 
the chemical bonds that each GH and PL enzyme can 
break (relying largely on a previously introduced anno-
tation system [34]) and then cataloging the set of chem-
ical bonds included in each dietary fiber (Fig.  1A, B, 
Additional files 1 and 2). Combining these two catalogs, 
we constructed an enzyme-fiber interaction matrix, in 
which each entry Mij denotes whether enzyme i has 
the capacity to break down a bond present in dietary 
fiber j (Fig.  1C). We additionally downloaded all GH 
and PL protein sequences from the UniProt database 
[35], using both Swiss-prot (manually annotated and 
reviewed sequences) and Trembl (automatically anno-
tated sequences), and used these sequences to build 
a reference database of all fiber-degrading enzyme 

sequences (Fig.  1D). Additional information can be 
found in the “Methods” section.

Given a metagenomic sample, we then carefully 
mapped all shotgun reads to the reference protein data-
base described above to obtain the abundance of each 
enzymatic gene of interest. We refer to these abundances 
as the functional fiber-specific profile (FFP) of the metage-
nome, describing the set and abundances of fiber-degrad-
ing enzymes in the community (Fig.  1E). Finally, we 
multiplied the obtained FFP by the enzyme-fiber inter-
action matrix, to obtain the IFDP, describing the relative 
capacity of the metagenome to degrade each DF (Fig. 1F).

While this framework is aimed to be primarily applied 
to metagenomic data, as a simple test case for its con-
struction and accuracy of our annotation process, we 
first applied it to a large set (>1000) of Prevotella copri 
genomes (see the “Methods” section). Specifically, 
we used our framework to calculate the IFDP of each 
genome, clustered the genomes based solely on their 
IFDP, and compared the resulting clusters to those pre-
viously reported based on a set of 400 universal marker 
genes [36]. As seen in Fig.  S1A, IFDP-based clusters 
successfully mirror the four distinct marker gene-based 
clades, highlighting our framework’s ability to accurately 
capture genomic metabolic properties. Moreover, we 
compared this IFDP-based clustering to the clustering 
obtained using the FFP (GH/PL enzyme-based) profile, 

Fig. 1  A schematic illustration of our framework. A Annotation of GH and PL enzymes, indicating the glycoside bonds each enzyme can break 
down. B Annotation of dietary fibers, indicating the set of glycoside bonds each enzyme includes. C A matrix representation of the links between 
dietary fibers and GH/PL enzymes. A red cell indicates that the enzyme in this column is capable of operating on one of the bonds included in the 
dietary fiber in this row. D, E Mapping of metagenomic reads to a database of GH and PL sequences, resulting in a matrix describing the abundance 
of each GH/PL enzyme in each sample. This profile is further referred to in our work as the functional fiber-specific profile (FFP). F The inferred fiber 
degradation profile (IFDP) can be obtained by multiplying the DF-enzyme matrix by the FFP
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by applying a principal component analysis to the P. copri 
genomes using each of these two representations. We 
found that the various clusters are easily noticeable in 
both representations (with IFDP in fact explaining more 
of the variance; Fig.  S1B-C) and that the first principal 
component strongly correlates across the two represen-
tations (Spearman r=0.64, p<1e−125; Fig.  S1D). These 
findings suggest that while the IFDP summarizes mostly 
the metabolic potential to degrade a specific set of fibers, 
its ability to distinguish these genomes is comparable to a 
representation based on GH/PL enzyme distribution.

Finally, to provide a more rigorous, experimentally 
based validation, we have obtained data from an in vitro 
experiment study [37], where multiple Prevotella copri 
strains that represent the clusters above were isolated 
from human donors and grown on various plants derived 
dietary fibers. Comparing the predicted IFDP of each 
cluster to these experiments, we found overall good 
agreement. For example, the IFDP of cluster B genomes 
suggests that they lack the ability to degrade arabinoxy-
lan, arabinan, and glucomannan (Fig.  S1A), and indeed 
strains from this cluster were not able to grow on these 
dietary fibers as a sole carbon source. Similarly, strains 
from clade C could not degrade beta-glucan, xyloglucan, 
and glucomannan, and the strain representing clade D 
was not able to grow on fructans (i.e., inulin and levan), 
as also suggested by the IFDP of the genomes from these 
clades. Strains from clade A presented a range of degra-
dation capacities in the experiment, as reflected also by 
their IFDP profiles. We also noticed some discrepancies; 
for example, strains from cluster C were able to degrade 
rhamnogalacturonan, which was not predicted by our 
profile. In total, out of the 15 cases in which the in vitro 
assay suggested that a given clade cannot grow on a cer-
tain fiber, in 8 cases, the clade had the lowest IFDP score 
for that fiber, and in 4, the second lowest score (12 cases 
overall; p<0.0005, permutation-based test; see the “Meth-
ods” section). Similarly, out of the 16 cases in which the 
in vitro assay suggested that a given clade can grow well 
on a certain fiber, in 7, the clade had the highest IFDP 
score for that fiber, and in 5, the second highest score (12 
cases overall; p<0.035, permutation-based test).

Overall, however, these experimental results pro-
vide further validation for the ability of the IFDP to 
capture functional properties concerning dietary fiber 
degradation.

IFDP is tightly linked to the host diet
Given the framework described above, we set out to 
investigate the relationship between the IFDP and the 
host diet. We hypothesize that the degradation capacity 
(as quantified by the IFDP) of DFs commonly consumed 
by a given group of hosts will be higher compared to 

hosts who more rarely or never consume these DFs. To 
test this hypothesis, we analyzed data from four different 
metagenomics-based studies, each characterizing micro-
biome samples from different groups of hosts with dis-
tinct fiber consumption regime. The first study examined 
the microbiomes of mouse pups whose mothers were fed 
one of several distinct diets [38]. The second study exam-
ined the microbiome of a diverse group of non-human 
primates, specifically focusing on the potential differ-
ence between folivores and non-folivores [39]. The last 
two studies examined the microbiome of specific human 
populations: one characterized the microbiome of the 
Hadza tribe across different seasons (and accordingly dif-
ferent dietary regimes) [40], and the other focused on the 
microbiome of two distinct Peruvian tribes with differ-
ent dietary preferences. We used the framework above to 
calculate the IFDP profile of each sample in these data-
sets and compared the obtained IFDP from the various 
groups in each study and their relationship to known 
information about dietary differences between groups.

Focusing initially on the mouse dataset allowed us to 
examine our hypothesis in a simple, well-characterized, 
and well-controlled setting. In this study, mothers were 
partitioned into three groups, each fed a different diet: 
the first group was fed a control diet consisting of 10% 
fat, 20% protein, and 70% carbohydrate; the second was 
fed a high-fat diet (HFD) with 45% fat, 20% protein, and 
35% carbohydrate; and the third was fed a high-fat diet 
with supplementation of 10% inulin (iHFD). The micro-
biome of the offspring (n=15, five per group) was sam-
pled at weaning. Our hypothesis therefore predicts that 
the microbiomes of mice whose mothers were fed inulin 
would exhibit an increased inulin degradation capacity. 
Indeed, examining the calculated IFDP for each sam-
ple, we found a significantly higher inulin degradation 
capacity in the iHFD group compared to the control 
group (p<0.05, Mann-Whitney test; Fig. 2A). A similarly 
increased capacity was also observed in comparison to 
the HFD group, but did not reach our significance thresh-
old (p=0.07), potentially due to the small sample size.

To test our hypothesis in a more systematic manner 
and in more complex and natural settings, we turned 
to the primate dataset. This dataset describes the gut 
microbiomes of 89 non-human primates, spanning 18 
primates’ species, of which 44 are folivores (i.e., whose 
diet is composed primarily of leaves) and 45 are non-
folivores (whose diet includes mostly fruits and insects). 
Focusing on the microbiomes of folivores vs. non-foli-
vores, our hypothesis would accordingly predict that the 
calculated IFDP of folivores will indicate an increased 
capacity to degrade cellulose and xyloglucan—the two 
main structural components of the primary cell wall of 
leaves [41, 42], compared to the IFDP of non-folivores. 



Page 5 of 14Cohen and Borenstein ﻿BMC Biology          (2022) 20:266 	

Indeed, comparing the calculated IFDPs across samples 
in this dataset clearly demonstrated this pattern, with a 
higher capacity to degrade these two main structural leaf 
components (as well as beta-glucan) in the IFDP of foli-
vores (p<0.05, Mann-Whitney test; Figs. 2B and S2A-B). 
Moreover, this analysis has also demonstrated that the 
capacity to utilize a variety of other fibers, especially the 
fructans, inulin and levan (Figs. 2B and S2C-D), as well as 
glucomannan, galactomannan, and dextran, was higher 
in the IFDP of non-folivores, potentially reflecting an 
adaptation of the microbiome to a more diverse diet with 
a higher variety of fibers.

The third dataset, obtained from the Hadza population 
in Tanzania (n=35), contains samples collected in two 
seasons, the dry season and the wet season, with sam-
ples from the dry season collected in two consecutive 
years. Importantly, the Hadza diet is based on available 
resources in their environment and includes five main 
components: tubers, berries, meat, baobab, and honey 

[43]. While tubers and honey are available all year long, 
meat and baobab fruits are consumed more frequently 
during the dry season, whereas berries are consumed 
mostly during the wet season [40, 44]. Notably, the fiber 
content of baobab fruits differs considerably from that of 
berries, with pectin constituting the large portion of the 
baobab fruits’ fiber content [45] and fructans (fructose-
containing DFs such as inulin and levan) constituting a 
large portion of berries’ fiber content [40]. The calcu-
lated IFDPs clearly mirrored this pattern, demonstrating 
a higher capacity to ferment and ultimately break down 
pectin in the dry season and inulin in the wet season 
(Fig. 2C). Furthermore, the IFDP suggested that the gut 
microbiome’s ability to utilize pectin and additional ara-
binose containing fibers (such as rhamnogalacturonan 
and arabinan) were noticeably higher in the dry season, 
possibly due to the effect of pectin on changes in the 
enzymatic ability to break arabinose bonds. To further 
confirm that the capacity to degrade inulin and pectin is 

Fig. 2  Differences in the degradation capacity of various DFs, as indicated by the IFDP, across populations with different dietary habits. A A bar 
plot describing inulin degradation capacity (as indicated by the IFDP) in mice from different diet groups (the asterisk symbol indicates p<0.05). 
B–D Volcano plots describing differences in degradation capacity of different DFs between B folivore and non-folivore primates, C Hadza tribe 
population in dry and wet seasons, and D two distinct Peruvian tribes. The X-axis represents the log fold change of the fiber degradation ability. p 
values are corrected for multiple hypotheses. The dashed line at ~−1.3 y-axis (−log10 of the p value) denotes the 0.05 p value significance threshold. 
Dietary fiber abbreviations: Inu, inulin; Lev, levan; BG, beta-glucan; Cel, cellulose; Xyl, xylan; GluM, glucomannan; GalM, galactomannan; Man, 
mannan; AX, arabinoxylan; Gal, galactan; Ara, arabinan; AG, arabinogalactan; Dex, dextran; Chi, chitin; RH, rhamnogalacturonan; Pec, pectin; Car, 
carrageenan; GalGluM, galactoglucomannan; Alg, alginate; Xan, xanthan; Xyl, xloglucan; Lam, laminaran; Gel, gellan; RS, resistant starch
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indeed distinctly different between dry and wet seasons, 
we repeated the analysis treating the dry season cohorts 
of each year separately (also avoiding biases of different 
group sizes). Confirming our hypothesis, we again found 
that the ability to degrade inulin was significantly higher 
in the wet season compared to either of the two dry sea-
sons (Fig.  S2E), while the ability to utilize pectin, ara-
binan, and rhamnogalacturonan was significantly lower 
in the wet season compared to either of the two dry sea-
sons (Fig. S2F-H).

Finally, we examined the fourth dataset, obtained from 
a study on the differences between urban and industrial-
ized microbiome profiles, using samples from the Peru-
vian tribes Matses and Tunapuco (n=36) [46]. These 
two tribes have substantially different diets, with Matses 
primarily consuming cassava, plantain, and fish as their 
main nutritional source, whereas Tunapuco diet is based 
primarily on potatoes, corn, tubers, rice, a wide variety 
of fruits, and meat [46]. Examining the IFDPs calculated 
for the different samples in this dataset, we observed a 
few significant and intriguing patterns (Fig.  2D). First, 
the abilities to breakdown the bonds in arabinoxylan 
and xylan were both significantly higher in the IFDP of 
individuals from the Tunapuco tribe (see also Fig.  S2I-
J). This is in agreement with the high consumption of 
rice and corn, both of which are rich sources of arabi-
noxylan [47]. In addition, an increased capacity to utilize 
pectin was observed in this tribe, potentially reflecting 
the consumption of a variety of fruits such as oranges, 
apples, and mangos that have high concentrations of 
pectin (Fig. S2K). In the Matses tribe, the capacity to uti-
lize resistant starch and carrageenan, a marine dietary 
fiber, was significantly higher, again successfully mirror-
ing this tribe’s dietary consumption of plantain and fish 
(Fig. S2L-M).

Combined, these findings highlight the extremely tight 
link between the host’s diet and the functional capabili-
ties of its microbiome in terms of the microbiome’s abil-
ity to degrade and utilize energy encompassed in dietary 
fibers. Notably, this link was evident in all the datasets 
we analyzed above, including both links that reflect the 
impact of short-term dietary regimes (such as in the 
mice and Hadza studies) and links that mirror the life-
long dietary habits (such as in the primate and Peruvian 
datasets).

IFDP reflects the host diet better than other 
microbiome‑based profiles
Given the strong association demonstrated above 
between the host’s diet and IFDP, we set out to com-
pare this association with those that may exist between 
the host’s diet and more commonly used microbiome-
based taxonomic and functional profiles. Specifically, 

we analyzed samples from both the primates and the 
Hadza datasets described above, this time, quantifying 
the taxonomic profile of each sample using metaphlan2. 
We examined the obtained taxonomic profiles both at the 
genus level (referring to these as taxonomic genus pro-
files or TGP) and at the species level (referring to these 
as taxonomic species profiles or TSP). We additionally 
examined functional profiles for each sample, including 
its functional fiber-specific profile (FFP) describe above, 
as well as its functional complete profile (FCP), describ-
ing the complete set of functional capacities (i.e., not only 
those related to DF degradation as in the FFP), obtained 
by mapping reads in the sample to all bacterial proteins 
in UniProt (see the “Methods” section).

We first examined the relationships of the various pro-
files, to determine whether different profiles capture the 
same information about a given sample. Since each pro-
file has a different dimension, we used a principal com-
ponent analysis of the primates dataset and examined the 
correlation of the first principal component across pro-
files. This analysis suggested that the IFDP is relatively 
unique and shares little of the explained variance with 
other profiles (Fig.  S3). Below, we further compare the 
association between diet and each of these profiles to the 
link between diet and IFDP.

Focusing on the primate dataset, we examined the 
Shannon alpha diversity index for each profile, evaluating 
potential differences between folivores and non-folivores. 
Perhaps not surprisingly, folivore primates exhibited 
significantly lower diversity compared to non-folivores 
across all microbiome profiles, including the IFDP, likely 
reflecting the limited diversity of their diets (Fig. 3A). We 
then set out to examine the beta diversity between sam-
ples using a principal component analysis and applying 
a permutational multivariate analysis of variance (PER-
MANOVA; see the “Methods” section) to assess how well 
each profile distinguishes between folivores and non-
folivores (Fig.  3B). This analysis clearly demonstrated 
that IFDP separated the folivore and non-folivore diet 
groups better than all other profiles (PERMANOVA p 
= 0.016, 0.037. 0.08, 0.02, and 0.001 for TGP, TSP, FCP, 
FFP, and IFDP, respectively). Since animal phylogeny 
class has been shown to have a higher contribution and 
a stronger impact on shaping the gut microbiome than 
diet [39] (specifically in the dataset we are using here), we 
decided to control for the phylogeny class in our analysis. 
Notably, IFDP remained the profile that best separated 
folivore and non-folivore primates (and the only one that 
remained significant) even when controlling for the phy-
logenetic class of the various primates (PERMANOVA 
p = 0.26, 0.44, 0.24, 0.1, and 0.014 for TGP, TSP, FCP, 
FFP, and IFDP, respectively; see the “Methods” section). 
Overall, these findings highlight the ability of the IFDP 
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to detect the effect of diet on gut microbiome features, 
despite the stronger phylogeny signal.

Interestingly, extending our alpha diversity analysis to 
the Peruvian datasets, and comparing the alpha diversity 
of the two tribes described above to a non-rural group 
obtained from the same study (for which detailed fiber 
consumption data are lacking), we find that the Matses 
tribe exhibits significantly decreased FFP and FCP diver-
sity compared to the other groups but comparable IFDP 
diversity (Fig. S4A-C). This may suggest that the restric-
tive consumption of food items by the rural Matses tribe 
leads to specific enzymes from specific bacteria to be 
more dominant in the microbiome, yet their fiber degra-
dation profile, while unique, has comparable diversity to 
the other groups.

Given the information captured by the IFDP about 
the host diet in the primate dataset, we next examined 
whether similar information may be captured in human 
IFDPs and whether this information can be used to 
infer the host dietary habits more accurately than other 
microbiome-based profiles. To this end, we again ana-
lyzed the Hadza dataset, calculating the five different 
profiles described above (namely, TGP, TSP, FCP, FFP, 
and IFDP) for each sample. We then tested how accu-
rately we can predict (using a random forest classification 
with cross-validation) whether a sample was collected 

in the dry or wet season, based on each of these profiles 
(see the “Methods” section). We found that predictor 
models based on IFDP outperformed predictors based 
on any other profile (Fig. 4A, B). Specifically, the IFDP-
based predictor achieved the highest mean ROC AUC 
score (0.92) compared to taxonomy- and function-based 
predictors (mean ROC AUC 0.87, 0.9, 0.85, and 0.82 for 
TGP, TSP, FCP, and FFP, respectively).

These results convincingly show that the IFDP can 
serve as a key marker for the host diet, providing impor-
tant and powerful information regarding the host micro-
biome functional abilities in relation to dietary habits.

Exploring the IFDP in large‑scale metagenomic cohorts
Following our analysis above and the tight link between 
IFDP and the host’s diet observed in well-character-
ized and carefully studied cohorts, we finally turned to 
explore the IFDP of microbiomes from very large cohorts 
of human metagenomes from across the globe. Our main 
focus was using our framework to discover global signa-
tures of DF degradation capacities and relating them to 
unique dietary habits. To this end, we carefully collected 
~700 human gut metagenomes, obtained from nine dif-
ferent countries and three different continents, including 
Austria, Netherlands, and Spain (Europe); Ghana, Ethio-
pia, and Tanzania (Africa); and China, Mongolia, and 

Fig. 3  Comparing the link of the IFDP and of other microbiome-based profiles to the host diet. A Box plots comparing the Shannon diversity 
index between folivore and non-folivore primates of various microbiome-based profiles. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. B Principal 
component analysis (PCA) plots, colored by folivore vs non-folivore primates, based on various microbiome-based profiles
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India (Asia). Importantly, while all samples were obtained 
from healthy individuals (as defined by each of the vari-
ous studies), comprehensive metadata regarding these 
samples are not available, and it is reasonable to assume 
that multiple factors, including diet, but also lifestyle and 
other factors (e.g., industrialized vs. non-industrialized), 
contribute to variation in their microbiomes. With that in 
mind, the following analysis is primarily meant to serve 
as an intriguing and potentially speculative proof of con-
cept, demonstrating that it may be possible to detect diet-
related signals even without comprehensive knowledge 
about population-level samples. Specifically, we applied 
the pipeline above to each sample to quantify its IFDP, 
with several small adjustments to better control for dif-
ferences between sample sets (see the “Methods” sec-
tion). We hypothesized that similarities and differences 
in the cuisines of different countries may be reflected in 
the IFDPs calculated for samples obtained from these 
countries.

We examined the overall variation in IFDP, using 
t-SNE—a dimensionality reduction algorithm. This 
analysis demonstrated notable variation in the IFDPs of 
samples from different continents, with samples from 
the African cohorts, for example, clustering together and 
away from samples from European cohorts (Fig.  5A). 
Moreover, in agreement with the main food item con-
sumed in each country [48–51], it could also be seen, for 
example, that samples from Austria clustered closer to 
samples from the Netherlands than to those from Spain.

Next, we concentrated our efforts on examining the 
relationships between the degradation capacities of spe-
cific DFs in certain countries and these fibers’ consump-
tion habits in these counties. To this end, for each DF, 

we compared the DF degradation capacity in each coun-
try to its degradation capacity in all other countries (as 
measured by the IFDP) using a t-test (with Bonferroni 
correction). In total, we tested the 24 distinct dietary fib-
ers for each of the nine countries, identifying on average 
13.2 DFs for which each country exhibited significantly 
increased degradation capacities in comparison to other 
countries (Fig. 5B). Hierarchal clustering of the obtained 
t-statistic demonstrated, as above, substantial similar-
ity between the IFDPs of African countries, as well as 
between the IFDPs of Austria and Netherlands, though 
interestingly, China and Mongolia exhibited marked dif-
ferences in IFDPs for some DFs. Moreover, examining 
which fibers were associated with increased degrada-
tion capacities in different countries, further mirrored 
patterns in these countries’ cuisines. For example, both 
Austria and Netherlands had the highest degradation 
capacity for galactan, resistant starch, and inulin, poten-
tially reflecting the relatively high consumption of dairy 
products and potatoes (rich sources of galactan and 
resistant starch) in these countries [48–51]. Similarly, the 
increased capacity to degrade arabinoxylan, which is pre-
sent in all major cereal grains and most notably in rice 
[47], in China, Mongolia, and India, may reflect the use 
of rice as a staple food in these countries [52, 53]. And 
finally, the increased capacity to degrade pectin—a DF 
present in peel portion of citrus fruits [54], in China, 
India, and Spain, may be linked to these countries being 
among the leading citrus fruit-producing countries [55].

Unfortunately, since comprehensive dietary informa-
tion and especially, information about specific fiber con-
tent in each diet, is challenging to obtain, we could not 
explain all patterns observed in these global data. These 

Fig. 4  Predicting wet vs. dry season in the Hadza dataset using various microbiome-based profiles. A ROC curves describing five random forest 
classifier performances. B Box plot of the ROC AUC score obtained using each microbiome-based profile across all cross-validation iterations in each 
predictor. ****p<0.0001
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include, for example, the Mongolia cohort’s ability to 
degrade xylan and chitin, the India cohort’s high poten-
tial to utilize levan, and Tanzania and Ghana cohorts’ 
ability to utilize galactomannan, dextran, and carregenan. 
Overall, however, this exploratory analysis demonstrated 
again how our framework and the calculated IFDP can 
be used to obtain intriguing insights into the relation-
ship between dietary habits and DF consumption and the 
functional capacity of the microbiome on a large scale, 
even when relatively little complementary metadata are 
available.

Discussion
Overall, we presented a new outlook into the functional 
capacities of the gut microbiome, focusing on the micro-
biome’s ability to degrade different types of DFs and 
introducing a computational framework for extracting 
the microbiome’s fiber degradation profile directly from 
metagenomics data. We have further shown that this 
profile is closely linked with the dietary habits of the host, 
both across different host species and human cohorts. 
Moreover, we demonstrated that this calculated profile 
can be useful for inferring various properties concerning 
the host’s diet, beyond those that can be obtained from 
the commonly used functional and taxonomic microbi-
ome profiles.

Notably, the unique perspective on the microbiome’s 
functional capacity facilitated by our framework provides 

information about the host diet across a wide range of 
environmental and physiological settings. This frame-
work could accordingly serve as a complementary and 
valuable microbiome analysis technique in complex study 
designs, where multiple factors, both biological and tech-
nical, might influence the obtained microbiomes’ compo-
sitions. Furthermore, the IFDP could provide information 
about potential interactions between the host diet and 
microbial functional capacities, even when dietary infor-
mation is poor or not available.

It is also worth noting that in contrast to taxonomic 
profiling, and to some extent even to standard functional 
profiling, the fiber degradation profile generated by our 
framework encapsulates relevant mechanistic informa-
tion, for example, about the types of chemical bonds each 
enzyme can break and the types of bonds present in each 
DF. We believe that this mechanism-based approach is 
one of the strengths of our framework, and primarily, 
that it contributes greatly to the interpretability of our 
findings. It is, nonetheless, interesting to align changes 
in the IFDP with taxonomic shifts, studying, for exam-
ple, how ecological shifts in the microbiome that occur 
in response to dietary interventions might be driven by 
(and in turn drive) changes in the microbiome capacity to 
utilize available fibers from the diet [56, 57]. Such analy-
ses may allow us to test whether the increased ability to 
degrade dietary fibers by some bacteria might impact 
changes in microbiome composition. Indeed, our analysis 

Fig. 5  Comparing IFDPs across large-scale global metagenomic cohorts. A t-SNE plots based on the IFDPs of ~700 metagenomes from different 
countries colored and marked by continent and country. B Hierarchical clustering performed on a matrix containing t-statistics, describing the 
ability of each countries’ population (rows) to degrade a specific DF (columns) compared to all other populations. The color bar legend denotes the 
t-statistic of each country for each fiber
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above has demonstrated several potential cases of such 
functional plasticity, including, for example, seasonal 
changes in the microbiome of the Hadza tribe that follow 
the fiber content of available foods.

Importantly, this fiber-centric approach may also have 
intriguing translational applications. Specifically, DFs are 
known to offer many health benefits, some due to their 
physiological and functional properties, but others solely 
via the degradation of the various fibers by the micro-
biome. Our framework could serve as a key component 
in designing a tool for a personalized fiber-specific rec-
ommendation system, aiming to optimize DF-based 
health benefits in accordance with the host’s specific 
microbiome composition. Such applications, however, 
will likely require moving from the cohort to the indi-
vidual level when analyzing IFDPs. Similarly, while many 
studies have demonstrated how prebiotics can modu-
late the microbiome, relatively few DF-based interven-
tions have been clinically tested to carefully characterize 
their impact on the microbiome. Our framework can 
provide an estimation for the degree at which a dietary 
fiber could be utilized by the microbiome, highlighting 
the potential for microbiome modulation using specific 
DF interventions. Moreover, our approach can be used 
for predicting the effect size of such intervention stud-
ies, and combined with additional genomic data, might 
pinpoint the most appropriate intervention mechanism 
to directly modulate the microbiome composition in a 
specific direction.

Notably, however, our framework (and its current 
implementation) has several caveats. First, while our 
analysis has demonstrated that the IFDP is tightly linked 
to the host diet, we did not fully explore potential rela-
tionship and association with additional confounding 
factors, such as age, BMI, food diversity, and overall 
industrialized or non-industrialized food consumption, 
mostly due to lack of available shotgun sequencing data 
from DFs intervention trials. Second, our pipeline and 
the pertaining enzyme, gene, and fiber catalogs were 
obtained by manually searching, curating, and anno-
tating available data, and following a relatively naïve 
approach. Accordingly, for example, our current fiber 
catalog does not cover all known DFs, partly due to the 
complex definition of DFs in the literature. We also did 
not consider or handle different polymerization degrees 
of DFs or enzymes that are integral members of the fiber 
degradation pathway, such as phosphatases, esterases, 
transporters, and glycan-binding proteins. Adding such 
elements in the future may improve our framework’s abil-
ity and resolution in describing the host fiber degrada-
tion profile, but may also increase its complexity, making 

it more challenging to draw clear insights and to interpret 
obtained profiles. Finally, in its current form, our frame-
work handles only whole-shotgun sequencing data and 
not 16S amplicon sequencing. In principle, functional 
profiles, and specifically EC abundances, can be inferred 
from 16S data using PICRUSt [58] and then incorporated 
into our framework. Yet, given the potential inaccuracy 
in such mapping, in this first proof-of-concept work, we 
opted for a simpler and more straightforward model, 
focusing on a prominent set of dietary fibers and their 
degradation as inferred directly from high-resolution 
shotgun data.

Conclusions
Our framework sheds new light not only on the micro-
biome’s ability to degrade complex carbohydrates in the 
form of DFs, but also on our ability to extract such infor-
mation from metagenomics data. We show the impor-
tance of treating DFs as distinct entities, offering novel 
insights into the connection between microbiome and 
dietary habits. It is our hope that this framework will 
serve as a stepping stone toward additional in-depth 
analyses of the microbiome, DF consumption, and their 
interactions.

Methods
Shotgun metagenomics data
Metagenomic samples were downloaded from the ENA 
database using the following project accession numbers 
PRJNA552163 (mice, n=15), PRJNA39711 (primates, 
n=89), PRJNA392180 (Hadza, n=35), PRJNA268964 (Peru, 
n=36), PRJEB7774 (Austria, n=33), PRJNA422434 (China, 
n=144), PRJEB5224 (Spain, n=109), PRJNA397112 (India, 
n=46), PRJNA328899 (Mongolia, n=107), PRJNA319574 
(Netherlands, n=150), SRR8791405 (Ghana, n=40), 
PRJNA529400 (Tanzania, n=55), and PRJNA504891 (Ethi-
opia, n=40). All samples were processed in the same man-
ner. We subsampled each sample to a depth of 4 × 106 
sequences using seqtk and discarded samples with sequenc-
ing depth below this threshold. Five samples were discarded 
from the primate’s dataset, as they were obtained from a 
grass-eating animal (Theropithecus gelada) and not from 
folivore/non-folivore primates.

Prevotella copri genomes were downloaded directly 
from the Segata lab’s website (http://​segat​alab.​cibio.​
unitn.​it/​data/​Pcopri_​Tett_​et_​al.​html).

Taxonomic annotation
MetaPhlAn2 [59] was used to obtain genus and species 
taxonomic profiles. Bacterial taxa whose abundance was 
< 0.01% in > 90% of the samples were filtered out.

http://segatalab.cibio.unitn.it/data/Pcopri_Tett_et_al.html
http://segatalab.cibio.unitn.it/data/Pcopri_Tett_et_al.html
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Fiber selection and structures, enzyme annotation, 
and enzyme‑fiber interaction matrix
DFs were selected according to the metacyc compound 
annotation system. Specifically, we obtained all dietary 
fibers that were classified under polysaccharides in the 
annotation system and that their structure could be 
derived distinctly using metacyc (as some DFs’ struc-
ture was not detailed or was ambiguous).

Following DF selection, we carefully annotated the set 
of chemical bonds that are present in each DF, accord-
ing to the structure described by metacyc. DFs with 
the same higher classification but different bonds were 
categorized under the same annotation. For example, 
galactooligosaccharides (GOS) with b1-3, b1-4, or b1-6 
bonds were all categorized under GOS with no distinc-
tion between them.

The annotation of enzymes relied heavily upon the 
GlyDeR annotation system [34] and was extended to 
include all GH and PL enzymes, as denoted by their EC 
number (3.2.1.*, 4.2.2.*).

Combining the manual curation of both enzymes 
and DFs, we constructed an enzyme-fiber interac-
tion matrix, in which each entry Mi,j denotes whether 
enzyme i has the capacity to break down a bond pre-
sent in dietary fiber j.

Building functional databases
We downloaded all GH and PL protein sequences from 
the UniProt database, denoting the 3.2.1.* and 4.2.2.* 
EC numbers, using both Swiss-prot sequences (manu-
ally annotated and reviewed sequences) and Trembl 
sequences (automatically annotated). We then used 
their amino acid sequences to build a reference data-
base of all the fiber-degrading enzymes using Diamond. 
We also downloaded all the protein sequences with an 
annotation to an EC number and built an additional 
database using Diamond which was used to obtain the 
functional complete profile.

Creating functional profiles
In order to generate the functional profiles described 
in this paper (FCP and FFP), we mapped the subsam-
pled metagenomic samples to the functional databases 
described above. Diamond translated search was used 
to align the metagenomic reads to each database, and 
the best match detected was selected with default 
parameters (i.e., e-value < 10). We grouped the matched 
proteins, detected by diamond, by their EC annotation 
to create a vector of enzymes’ counts for each sample. 
If a single protein sequence had more than one annota-
tion for an EC, all hits associated with it were discarded 

to avoid ambiguity, resulting in a total of ~1% of the 
hits lost.

In addition, we have performed a false discovery rate 
estimation for our EC mapping, using a simulation-based 
analysis. Specifically, we downloaded 30 prominent 
gut bacterial genomes and identified all the GH and PL 
enzymes in their genomes. These identified sequences 
were then masked from the original genomes, which were 
used to simulate 10M shotgun metagenomic reads using 
InSilicoSeq [60] and Hiseq as the error model. Mapping 
the obtained 10M reads to our GH and PL curated data-
base has resulted in only 216 hits. In contrast, perform-
ing the same simulation analysis without masking GH 
and PL enzymes resulted in 186,610 hits. This suggests 
that our mapping is very specific with a negligible false 
discovery rate of ~0.1%.

Finally, similar to the taxonomic annotation, we dis-
carded enzymes whose abundances were lower than 
0.01% of the overall sample abundance in 90% of the 
samples to receive the final functional profiles (FCP and 
FFP). To generate the IFDP, we multiplied the filtered FFP 
matrix (with samples as rows and enzymes as columns) 
by the enzyme-fiber interaction matrix (enzymes as rows 
and DFs as columns), resulting in an aggregation of hits 
for all the enzymes that can breakdown, degrade, or fer-
ment part of the DF for all the DFs.

Abundance normalization using MUSICC
Metagenomes were normalized using MUSICC [61]. To 
this end, we obtained the sequences of 76 universally 
single copy genes from the original paper [61] and built 
a database using Diamond. For each sample, we mapped 
the entire metagenome content to this database, with the 
same parameters we used for the creation of the IFDP. 
We used the median of the counts of the universally sin-
gle copy mapped genes as the normalization variable. 
Next, we obtained the counts of PL and GH enzymes in 
each metagenome, corrected them for the length of the 
genes, computed the relative abundance of each gene, 
and divided by the normalization variable calculated 
above. The obtained profile was then multiplied by the 
enzyme-fiber interaction matrix (Fig.  1C), resulting in 
the MUSICC-corrected IFDP.

Statistical analysis
To quantitatively compare our predictions to the results 
of the in  vitro bacterial growth assay, we recorded all 
cases in which this assay suggested that a certain clade 
can grow on a given fiber (“+” in Table  S3 in ref. [37]), 
and all the cases in which this assay suggested that it can-
not grow (“-” in the same table). We similarly ranked the 
clades according to their inferred ability to degrade each 
fiber as suggested by the IFDP. We then compared the 
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observed capacity from the in  vitro assay to the ranked 
inferred degradation capacity, measuring the agreement 
between lack of growth capacity in the assay and low 
IFDP scores (lowest or second lowest score for that fiber) 
and likewise the agreement between growth capacity in 
the assay and high IFDP scores (highest or second high-
est score for that fiber). To determine the significance of 
the calculated agreement, we shuffled the IFDP scores 
for each fiber among the different clades 2000 times, 
repeated the analysis above, and quantified the probabil-
ity of observing such agreement by chance.

For the analysis of the primate dataset, we used PER-
MANOVA with two different stratifications for the ran-
domization of labels (a technique often described as 
cluster sampling). For the first stratification, we switched 
labels among all the samples, considering the species 
of the host and allocating all the samples from this spe-
cies to the same label. For the second stratification, we 
stratified samples based on their phylogeny class. We 
calculated the PERMANOVA statistics on the Euclidean 
distances of the principal components for the various 
profiles.

For the Hadza dataset analysis, a random forest classi-
fier was trained for 500 iterations. In each iteration, the 
data was split into a train and a validation set, with 40% 
of the data used as the validation set, balanced among the 
two groups. Default parameters were used for the model 
with a different random seed for each iteration.

The Mann-Whitney U test was used for all univariate 
testing. All p values displayed in the text are corrected for 
multiple hypotheses.

Code for statistical testing and figure generation was 
written in python. Skbio was used to calculate alpha 
diversity; scipy was used for statistical testing; sklearn 
was used to implement and test random forest models, 
PCA, and distance calculations; matplotlib, seaborn, and 
add_stat_anot were used to generate plots; and pandas 
and numpy were used for data manipulations.
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