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Abstract 

Background  Protein solubility is a precondition for efficient heterologous protein expression at the basis of most 
industrial applications and for functional interpretation in basic research. However, recurrent formation of inclusion 
bodies is still an inevitable roadblock in protein science and industry, where only nearly a quarter of proteins can 
be successfully expressed in soluble form. Despite numerous solubility prediction models having been developed 
over time, their performance remains unsatisfactory in the context of the current strong increase in available protein 
sequences. Hence, it is imperative to develop novel and highly accurate predictors that enable the prioritization of 
highly soluble proteins to reduce the cost of actual experimental work.

Results  In this study, we developed a novel tool, DeepSoluE, which predicts protein solubility using a long-short-
term memory (LSTM) network with hybrid features composed of physicochemical patterns and distributed represen-
tation of amino acids. Comparison results showed that the proposed model achieved more accurate and balanced 
performance than existing tools. Furthermore, we explored specific features that have a dominant impact on the 
model performance as well as their interaction effects.

Conclusions  DeepSoluE is suitable for the prediction of protein solubility in E. coli; it serves as a bioinformatics tool 
for prescreening of potentially soluble targets to reduce the cost of wet-experimental studies. The publicly available 
webserver is freely accessible at http://​lab.​malab.​cn/​~wangc​hao/​softs/​DeepS​oluE/.
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Background
Protein solubility is a critical prerequisite for success-
ful heterologous protein expression in host cells, such as 
Escherichia coli (E. coli) [1]. Solubility deficits result in 

protein aggregates, which affect protein biological activ-
ity, cause recombinant protein pipelines to fail, hamper 
protein-based drug development [2, 3], and cause more 
than forty diseases [4]. Unfortunately, in most cases, het-
erologous expression fails due to the formation of inclu-
sion bodies, as solubility depends not only on protein 
physicochemical properties [5] but also on host type and 
the strict internal cellular environment, such as pH, ionic 
strength, and temperature [6, 7]. Furthermore, growth 
media, gene expression level [1], molecular chaperones, 
and solubility-enhancing tags also have a strong influ-
ence on protein solubility [8]. To date, solubility is still 
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an inevitable barrier in protein science and industry, 
where only nearly a quarter of proteins can be success-
fully expressed in soluble form (http://​targe​tdb.​rcsb.​org/​
metri​cs/).

In view of the low success rate for heterologous pro-
tein expression and the explosive growth of protein 
sequences, prescreening of potentially soluble targets is 
urgently needed before wet experiments. Over the past 
decades, several solubility prediction models have been 
developed based on intrinsic protein properties. Addi-
tional file  1: Table  S1 summarizes the existing tools for 
solubility prediction and covers a wide range of aspects, 
including training and evaluation datasets, feature 
descriptors and classifiers, evaluation methods, and tool 
availability. According to the operating algorithm, these 
methods were roughly grouped into three categories: (i) 
statistical-based models (e.g., statistical correlation and 
arithmetic mean), such as the revised Wilknson-Harri-
son model (rWH) [1, 9], ccSOL omics [10], and SWI [5]; 
(ii) conventional machine learning (e.g., support vec-
tor machines and naïve Bayes)-based models, such as 
PROSO [8] and SoluPort [11]; and (iii) neural network-
based models, such as DeepSol [12] and SKADE [13].

Although these in silico bioinformatics models have 
greatly contributed to protein science studies, the perfor-
mances achieved by existing predictors are still far from 
satisfactory. The purpose of this study is to address this 
problem. We developed a novel tool, DeepSoluE, for pro-
tein solubility prediction. The physicochemical features 
and distributed amino acid representative information 
were combined to uncover sequence patterns in multi-
ple aspects, and a genetic algorithm was used for opti-
mal feature subset selection. Then, LSTM networks were 
applied to integrate feature information and to perform 
classification. We demonstrate that the proposed predic-
tor DeepSoluE outperforms the existing methods in pro-
tein solubility prediction.

Results and discussion
Descriptor parameter optimization and feature selection
The feature vector dimensions of two of the five phys-
icochemical descriptors, i.e., QSorder and APAAC, are 
dependent on the algorithm parameters. To make each 
type of feature as informative as possible, the related 
parameters were optimized before they were used for 
feature optimization. The parameter search range and 
the optimal value are listed in Additional file 1: Table S2. 
After the parameter value is determined, the combined 
feature dimension generated by the five physicochemi-
cal-based descriptors is 523D. To reduce the computing 
complexity and avoid the overfitting issue of the machine 
learning model, the genetic algorithm was applied to 
choose the optimal feature subset from the combined 

features. The number of populations was set to 200, and 
the chromosome length and the number of generations 
were set to 100 and 500, respectively (refer to the “Meth-
ods” section for details). To evaluate the effectiveness of 
the genetic algorithm for informative feature identifica-
tion, four other widely used two-step feature selection 
strategies were used for comparison. In the first step, four 
types of feature importance values, calculated by random 
forest (RF), light gradient boosting machine (LGB) [14], 
F-score, and MRMD [15], were calculated to yield four 
descending order lists. In the second step, for each fea-
ture list, the optimal feature subsets were selected using 
the sequential forward search (SFS) method [16]. Finally, 
the feature subset leading to the model with the highest 
AUC value is retained as the optimal feature subset.

The results of the above five feature selection strategies 
are presented in Fig.  1. Of note, the feature dimension 
of the genetic algorithm is fixed to 100D as the demand 
of the algorithm structure, while the dimensions of the 
remaining four feature importance-based SVM mod-
els linearly increase with the number of iterations from 
1 to 200. Generally, the five metric values are gradu-
ally increased, and the maximum scores are obtained at 
approximately 100 iterations. Specifically, among the five 
feature selection strategies, the genetic algorithm resulted 
in the best performance when evaluated by ACC, SN, 
SP, MCC, and AUC. LGB (importance_type=’gain’) and 
RF importance-based methods are ranked at the second 
level, and MRMD- and F-score-based feature selection 
methods are proven to be the least effective strategies. It 
can be observed from Fis. 1A–E that the changing trend 
of the five metrics is not completely synchronized, so the 
AUC value is used to choose the best feature subset. As 
shown in Fig.  1E, the maximum AUC reached 0.6949 
at the 117th iteration; therefore, the genes, namely, the 
features, retained in the 117th generation were kept as 
the optimal feature subset of the five physicochemical 
descriptors. The feature dimensions corresponding to 
the maximum AUC of the above five feature optimiza-
tion methods are shown in Fig. 1F, where the LGB (96D) 
and genetic algorithm (100D) methods exhibited the low-
est dimensions. Considering the model performance and 
feature dimension, it can be concluded that the genetic 
algorithm-based feature selection strategy outperformed 
the other four methods.

Distributed representation of amino acid fragments
All training protein sequences were divided into a k-mer 
corpus, and each k-mer was embedded into a 100-dimen-
sional feature using word2vec with a skip-gram model. In 
this process, two critical parameters, namely, the sliding 
window (length k of the k-mer) and the number of sur-
rounding words (window size w from word2vec), were 
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optimized. The k value was varied from 2 to 6, and the w 
value was varied from 1 to 7. The ACC values for all pos-
sible combinations of k and w are depicted in Additional 
file 2: Fig. S1. We observed that the ACC values gradually 
decreased with the value of k, while the w value had less 
impact on the ACC value. Taken together, the parameters 
resulting in the maximum ACC value were adopted for 
the final skip-gram model, which is based on a k-mer 
length of 3 and a window size of 2.

DeepSoluE model
In DeepSoluE, prediction features were combined by 
the 100D features optimized from the five physicochem-
ical feature descriptors using a genetic algorithm, 100D 
embedded semantic features, and 19D features related 
to sequence identity and special physicochemical char-
acters (refer to Methods for details). The combined 
219D features were fed into the DeepSoluE architecture. 
To avoid overfitting, an early stopping strategy based on 
the validation loss is applied when training the LSTM 
model. Then, the model was validated. Independent 
test data were used to test the model that showed the 
best performance on the validation data. As shown in 

Table 1, the training and validation processes are meas-
ured on the metric ACC, and the independent testing 
results are measured on all the five metrics. For the ten 

Fig. 1  Comparison of different feature selection methods. A–E Metrices value and feature dimensions based on five feature selection strategies. F 
Feature dimensions of optimal feature subsets based on the metric AUC of the five feature optimization methods. GA: genetic algorithm.

Table 1  Individual and ensemble model performance on 
training and testing data

a  Metrics average value for Model 1 to Model 10, b metrics value for the 
ensemble model

Model Training 
ACC​

Validation 
ACC​

Test ACC​ Test MCC Test AUC​

Model 1 0.6477 0.6407 0.6006 0.2014 0.6254
Model 2 0.6456 0.6434 0.5903 0.1821 0.6195
Model 3 0.6394 0.6381 0.5861 0.1724 0.6223
Model 4 0.6386 0.6329 0.5723 0.1480 0.6184
Model 5 0.6550 0.6521 0.5858 0.1717 0.6163
Model 6 0.6574 0.6442 0.5932 0.1865 0.6168
Model 7 0.6494 0.6203 0.5952 0.1905 0.6191
Model 8 0.6437 0.6317 0.5858 0.1727 0.6205
Model 9 0.6404 0.6640 0.5877 0.1756 0.6201
Model 10 0.6457 0.6334 0.5874 0.1749 0.6189
Averagea 0.6463 0.6401 0.5885 0.1776 0.6197
Ensembleb - - 0.5952 0.1904 0.6259
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trained models, the maximum ACC was achieved on 
Model 6 (0.6574), and the minimum ACC was obtained 
on Model 4 (0.6386). Then, the trained models were 
evaluated on the independent test dataset. Model 1 
resulted in the best MCC (0.2101) and AUC (0.6254), 
while Model 5 ranked last on MCC (0.1931) and AUC 
(0.6163). For the sake of convenience and compari-
son, the average values of the ten models were used to 
measure the performance of DeepSoluE. Based on that, 
DeepSoluE achieved an average training ACC of 0.6463 
and an average validation ACC of 0.6401. On independ-
ent test data, DeepSoluE achieved an average ACC of 
0.5885, SN of 0.6108, SP of 0.5661, MCC of 0.1776, and 
AUC of 0.6197.

As described in methods, each trained model takes 9 of 
the ten folds of the complete training dataset as input. To 
give full play to the advantages of ensemble learning, an 
ensemble method (soft voting, threshold = 0.4) is applied 
to build an integration model. As shown in Table 1, the 
integrated model achieved better performance than the 
individual model, indicating that the ensemble strategy is 
effective for model performance improvement.

To further assess the efficacy of the LSTM architec-
ture, we compared DeepSoluE with 11 popular tra-
ditional machine learning algorithms, including the 
AdaBoost classifier (ADAB), bagging (BAG), decision 
tree (DT), k-nearest neighbor (KNN), light gradient 
boosting machine (LGB), logistic regression (LR), naïve 
Bayesian (NB), random forest (RF), stochastic gradi-
ent descent (SGD), support vector machine (SVM) and 
extreme gradient boosting (XGB) algorithms. Each of the 
11 models is trained on the training dataset and evalu-
ated on the independent test dataset (refer to Additional 

file 1: Table S3 for model hyperparameter optimization). 
Figure 2 presents the values of the five metrics, in which 
DeepSoluE outperformed all the rest of the classifiers 
in terms of ACC, SP, MCC, and AUC (Additional file 3: 
Table  S4). For metric SN, the highest value is obtained 
on the NB classifier, followed by the RF and BAG classi-
fiers. DeepSoluE ranked fourth among the 12 models. It 
is worth noting that DeepSoluE achieved more balanced 
performance with |SN-SP|=2.65%, while the NB classi-
fier returned |SN-SP|=27.74%, the RF classifier returned 
|SN-SP|=15.68%, and the BAG classifier returned |SN-
SP|=16.45%. As indicated in Eqs. (2) and (3), SN and SP 
actually constrain each other as they measure a predic-
tor from two different angles [21, 34]. Maintaining a bal-
ance between SN and SP is crucial for an accurate model 
to provide an unbiased prediction. Overall, these results 
demonstrate that DeepSoluE is significantly superior and 
more robust than the traditional classifiers.

Feature contribution and dependency analysis
SHapley Additive exPlanation (SHAP) values [17] were 
applied to infer informative features of DeepSoluE. 
First, the top 20 most important features are calculated 
and depicted by the SHAP summary plot. As shown in 
Fig.  3A, physicochemical properties critical for protein 
solubility include protein isoelectric point, gravy, aroma-
ticity, flexibility, instability index, molecular weight, and 
fraction charge. Protein structure and motifs/patterns 
that are related to protein solution are composed of an aa 
turn, an aa helix, and lysine (K), a polar amino acid group 
(“KPDESNQT”) that is defined by hydrophobicity attrib-
ute PONP930101 and amino acids (“MHKFRYW”) that 

Fig. 2  Performance comparison of DeepSoluE and 11 conventional machine learning methods
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have a larger residual volume according to the definition 
of normalized van der Waals volume [18].

Furthermore, how the feature values affect the model 
prediction was explored. Figure  3B shows their corre-
sponding summary plots of the top 20 most important 
features, which illustrates how high and low feature 
values were related to the model output. For example, 

high values of isoelectric point are associated with 
positive impacts on protein solution, while low val-
ues have negative impacts. Similar feature value influ-
ences are also observed in the other 12 of the top 20 
features. Opposite changing trends are observed by the 
other 7 features; i.e., high values of identity weaken the 
model behavior, and low values of identity boost model 

Fig. 3  Feature contribution and dependency analysis. A The 20 most important features. B Summary plot for SHAP values. For each feature, one 
point corresponds to a single sample. The SHAP value along the x-axis represents the impact that feature had on the model’s output for that specific 
sample. Features in the higher position in the plot indicate the more important it is for the model. C–J SHAP dependence plots. These plots show 
the effect that a single feature has on the model predictions and the interaction effects across features. Each point corresponds to an individual 
sample, the value along the x-axis corresponds to the feature value, and the color represents the value of the interacting feature
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performance (Fig. 3B). In addition, SHAP values of sev-
eral decisive features, e.g., isoelectric point (−0.4 to 
0.6), identity (−1.25 to 0.75), AAS38 (−0.6 to 0.4), vary 
in a larger range than others, which suggests why they 
dominate the model’s behavior; the reverse situation 
explains why the aa helix (−0.15 to 0.1) and norm Waals 
volume. G3(CTDC) (−0.15 to 0.1) is less important 
than the others since changes in its value result in less 
influence on the corresponding SHAP values.

From the biological aspect, the pH of the solution 
affects the nature and the distribution of the protein’s 
net charge, and, generally, protein exhibits the least 
solubility at the isoelectric point [19]. Therefore, pro-
teins with a higher isoelectric point have a net nega-
tive or positive charge, and interact with more water, 
which may partly explain why isoelectric point was the 
most important feature and high value has a positive 
impact on protein solubility (Fig.  3AB). Similar, fea-
ture aa_turn related to three hydrophilic amino acids 
(G, N, and S), amino acids that have a larger flexibil-
ity present a larger contact area with the solvent, both 
of them contributed to protein solubility. Protein 
sequence that enriched with charged amino acids (R, 
K, D, E) are also beneficial for their solubility. Nota-
bly, several opposite situations are observed on our 
results, for example, higher polar amino acid content 
(PONP930101) showed a negative impact on protein 
solubility (Fig.  3B), this implies factors that influence 
protein solubility is far from clear and further study on 
this area is necessary.

Finally, SHAP dependence plots were used to pro-
vide meaningful insights into interaction effects across 
features. The dependence plots of the top 20 features 
are shown in Fig.  3C–J and Additional file  2: Fig. S2. 

Feature turning points can be visualized; for exam-
ple, the proposed DeepSoluE takes approximately 0.4 
as a turning point for the feature isoelectric point, 
and the feature values higher than that value contrib-
ute to performance boost (Fig.  3C). The turn point 
of feature identity is approximately 0.5, and values 
higher that value change SHAP values from negative 
to positive. For feature interactions, Fig.  3D shows 
that high identity values (range 0.4 to 1.0) with low 
AAs_TMHs values (0.1–0.2) have a negative impact 
on model behavior (SHAP values<0), while low val-
ues of AAs_TMHs show little impact. A high feature 
value of aromaticity (0.0–0.3) with a low feature value 
of N_in_cytop contributes to accurate model predic-
tion, while a low feature value of N_in_cytop has the 
opposite effect. Similar feature interaction patterns 
were observed in two other feature pairs (Fig. 3H and 
I). More feature interaction patterns can be seen in 
Fig. 3C–J and Additional file 2: Fig. S2.

Comparison with existing predictors
The independent testing set of this study is used to 
evaluate and compare DeepSoluE with 12 previously 
published tools. The recommended parameters, such 
as the model decision threshold (T), of each tool are 
adopted for result evaluation. Table  2 provides details 
of the comparative analysis results. DeepSoluE exhib-
ited the best performance when evaluated by the met-
rics ACC and MCC. Although the best SN and SP were 
achieved by the SWI and DeepSol models, respectively, 
the prediction results of the two models are seriously 
biased. SWI achieved an SN of 0.7781; however, the 
SP of this model was 0.3400, which resulted in |SN −
SP|=43.81%. This finding suggests that SWI tends to 

Table 2  Performance comparison of DeepSoluE with existing predictors in protein solubility prediction on independent test data

Performance values of most methods are adopted from [11]

Method T ACC​ SN SP |SN-SP|% MCC TP TN FP FN

RPSP 0.5 0.4980 0.3232 0.6735 35.0323 0.0000 501 1044 506 1049

ccSOL omics 0.5 0.5080 0.5703 0.4452 12.5161 0.0200 884 690 860 666

SKADE 0.5 0.4920 0.1026 0.8813 77.8710 -0.0300 159 1366 184 1391

SOLpro 0.5 0.5200 0.4219 0.6187 19.6774 0.0400 654 959 591 896

Protein-Sol 0.5 0.5160 0.6813 0.3510 33.0323 0.0300 1056 544 1006 494

DeepSol 0.5 0.5290 0.1484 0.9090 76.0645 0.0900 230 1409 141 1320

rWH 0.5 0.5400 0.4323 0.6484 21.6129 0.0800 670 1005 545 880

ESPRESSO 0.5 0.5380 0.6471 0.4284 21.8710 0.0800 1003 664 886 547

CamSol 1 0.5410 0.4361 0.6458 20.9677 0.0800 676 1001 549 874

SWI 0.5 0.5590 0.7781 0.3400 43.8065 0.1300 1206 527 1023 344

PROSO II 0.6 0.5800 0.4065 0.7529 34.6452 0.1700 630 1167 383 920

SoluProt 0.5 0.5850 0.6058 0.5632 4.25810 0.1700 939 873 677 611

DeepSoluE 0.4 0.5952 0.6084 0.5819 2.64520 0.1904 943 902 648 607
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predict a query protein as soluble. Similarly, DeepSol 
resulted in |SN −SP|=76.06%, which means that the 
prediction result of DeepSol is heavily skewed toward 
insoluble.

To further make a reasonable comparison, models 
that presented a |SN–SP| < 20% were filtered for fur-
ther analysis. Based on the preconditions, four models, 
ccSOL omics, SOLpro, SoluProt, and DeepSoluE, are 
retained. Among them, DeepSoluE shows the great-
est value on metrics ACC, TP, TN, SN, SP, and MCC, 
followed by SoluProt and SOLpro. Notably, while the 
datasets of DeepSoluE are homology reduced to 25% 
and the testing set is independent of the training set, 
other tools’ training sets might have a high sequence 
overlap with our test set. For example, the DeepSol 
and SKADE training sets presented a 74% overlap with 
our testing set, and SoLpro had an overlap of 15.5%. 
More information on the sequence identity of previous 
tools is presented in [11]. Of note, the model with high 
sequence redundancy between its training set and our 
testing set will benefit from the comparison results, as 
listed in Table 2. In conclusion, all these results dem-
onstrate that DeepSoluE outperformed the existing 
prediction algorithms for protein solubility prediction.

Conclusions
In this study, a deep learning predictor called Deep-
SoluE was developed to accurately predict protein 
solubility in E. coli. The hybrid features composed of 
physicochemical patterns and semantic information 
were used to represent sequence patterns. As a result, 
DeepSoluE outperforms the existing predictors for sol-
ubility prediction and achieves a more balanced per-
formance. Furthermore, SHAP values were employed 

for model explanation and investigation of the impact 
of specific features on the model predictions and their 
interaction effects. Although the proposed model 
achieves performance improvement, the accuracy 
of the currently available predictors is still less than 
60%, and there is still room for further improvement 
by using more advanced algorithms and incorporating 
more informative heterogeneous features. For exam-
ple, using the protein 3D structure information is a 
possible direction to further improve our work as the 
3D structure provides more geometric information of 
each amino acid residual, and several neural network-
based methods, such as Alphafold2 [20] and RGN2 
[22], can generate the predicted 3D structure informa-
tion of proteins. For convenience, a user-friendly web 
server has been made publicly available to implement 
DeepSoluE. We expect that DeepSoluE can be com-
plementary to hands-on experiments and facilitate our 
understanding of protein function.

Methods
Figure  4 illustrates the workflow of constructing the 
DeepSoluE model, which includes three main steps: (i) 
sequence preprocessing, (ii) sequence physicochemical 
feature extraction, distributed representation, and feature 
dimensionality reduction, and (iii) feature combination, 
neural network training and evaluation. More details 
regarding each step are described below.

Benchmarking datasets
Several benchmark datasets with different sequence 
numbers and identities have been used for protein solu-
bility modeling (Additional file  1: Table  S1). As listed 
in Table  S1, five of the 13 models, rWH, CCSOL [23], 
ESPRESSO [24], CamSol [25], and Protein-Sol [26], were 

Fig. 4  The DeepSoluE workflow. A Physicochemical feature encoding, feature optimization, and distributed representation of protein sequences. B 
Neural network architectures of DeepSoluE; FC, fully connected layer
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built on datasets extracted from specifically published 
research, and the five datasets were not considered for 
model training in our study because of their insufficient 
representation. The remaining eight predictors were 
built based on three comprehensive databases, namely, 
TargetDB [27], PepcDB [27], and TargetTrack [28]. Tar-
getDB collects protein target information from nine NIH 
Protein Structure Initiative (PSI) centers and ten other 
international structural genomics sites [27]. PepcDB is an 
extension of TargetDB and enriches the record informa-
tion, such as historical status and experimental details, 
for each trial [29]. TargetTrack, the latest and most 
widely used dataset, is merged by TargetDB and PepcDB 
[28]. This database integrates information from the PSI 
project and contains information related to almost 300 
thousand unique protein targets with the effort of doz-
ens of structural genomics centers across the world [30, 
31]. Therefore, the filtered TargetTrack database adopted 
in SoluProt [11] was used as the training dataset in this 
study. The original TargetTrack database was cleaned by 
several stringent filtering rules; see [11] for more details, 
and the sequence identity was reduced to 25%. Finally, 
11436 proteins (5718 soluble vs. 5718 insoluble) were 
used for model training. The SoluProt test data collected 
from the North East Structural Consortium (NESG) 
were applied for model-independent testing. The origi-
nal NESG was filtered using the same procedure as the 
training set, and sequences from the test set that had a 
global sequence identity above 25% with the training set 
were removed [11]. Finally, 3100 proteins (1550 soluble 
vs. 1550 insoluble) were retained for model independent 
testing and comparison.

Feature representation
Extracting strong discriminative features is crucial for 
building a reliable and superior model. In this study, two 
groups of feature-encoding algorithms were used to rep-
resent the protein sequences.

Sequence physicochemical‑based features
Five physicochemical feature descriptors were employed 
to formulate the protein sequences [18]. These fea-
tures are amino acid composition (AAC), amphiphilic 
pseudoamino acid composition (APAAC), di-peptide 
composition (DPC), composition (CTDC), and quasi-
sequence-order (QSOrder). They are described in detail 
in the Additional file  4. A brief introduction of these 
methods is as follows. AAC calculates the frequen-
cies of all 20 amino acids in a protein sequence [32, 33]. 
APAAC incorporates partial sequence-order effects and 
correlation functions by using the hydrophobicity and 
hydrophilicity properties of the constituent amino acids 
in a protein [35]. DPC computes the frequencies of all 

dipeptides [36]. CTDC calculates the transition frequen-
cies of three kinds of residue pairs that are categorized by 
their physicochemical properties [37], and thirteen types 
of physicochemical properties are used for CTDC (Addi-
tional file  5: Table  S5). QSOrder encodes the sequence 
order based on the Schneider–Wrede physicochemical 
distance matrix [38] and the Grantham chemical dis-
tance matrix [39]. In addition, nineteen physicochemi-
cal features calculated by Biopython (15 features) [40], 
TMHMM (3 features) [41], and USEARCH (1 feature) 
[42] were also used for sequence formulation (Additional 
file 5: Table S6) [43–46].

Word embedding‑based features
Word embedding techniques such as one hot encod-
ing have been widely used in the bioinformatics field. 
Recently, several efficient word embedding algorithms, 
e.g., word2vec [47], were proposed for distributed rep-
resentation of all kinds of biological sequences, such as 
proteins [48, 49], DNA [50], mRNA [51, 52], noncoding 
RNA [53, 54], and 16S/18S rRNA [55, 56]. In the frame-
work of word2vec, each word from a vocabulary is char-
acterized by its context and represented as a predefined 
n-dimensional numeric vector, where similar words have 
close vectors (Fig. 4A). The process is briefly described as 
follows. First, a protein sequence with n amino acids was 
regarded as a sentence, and the biocorpus was obtained 
in an overlapping manner by moving a window of size k 
(k < n) along the sequence with a stride length of 1. Given 
this biocorpus, each word was embedded into a fixed 
N-dimensional numeric vector using word2vec with 
a skip-gram model that attempts to predict the context 
words from the focus word. Thus, each word was pre-
sented as a numeric vector of size N, and each sequence 
was represented by the average of all corpora in the 
sequence, which is a vector of size N [52]. We used the 
Gensim library (https://​radim​rehur​ek.​com/​gensim/) to 
create a word2vec representation for the protein samples.

Feature selection using a genetic algorithm
The above five physicochemical-based descriptors 
generate a feature subset with 523D. Using all the fea-
tures for model training may cause information redun-
dancy, which, in turn, influences model performance 
and increases computing complexity and time. Hence, a 
genetic algorithm [57, 58] was employed to choose the 
optimal feature subsets from the original 523D features. 
The process is briefly described as follows. First, a genetic 
algorithm begins with a constant number of populations 
(chromosomes), namely, feature subsets, as ancestors. 
In this study, the number of chromosomes was set to 
200, and the gene number of each chromosome, i.e., the 
feature dimension of the feature subset, was set to 100. 

https://radimrehurek.com/gensim/
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During each iteration (generation), each chromosome is 
evaluated with a specified fitness function to maximize 
classification accuracy. Then, three genetic operators, 
selection, crossover, and mutation, are used to gener-
ate new populations (offspring) (Fig.  4A). A stochastic 
tournament selection operator was adopted to probabil-
istically select individuals from a population as parents 
for later breeding. A two-point crossover operation was 
performed to create offspring, and each individual had 
a probability of 0.0003 to mutate. The generation time is 
set to 500. For each generation, offspring will inherit the 
favorable characteristics of their parents.

Neural network architectures
The optimized physicochemical features and the embed-
ding features were concatenated into a vector and then 
fed into the LSTM network [59] for model construction 
and evaluation. We used TensorFlow v2.4 to implement 
the LSTM model. The main architecture of the network 
consisted of one LSTM layer and three fully connected 
layers (Fig. 4B). The combined features were first fed into 
the LSTM layer to extract potential feature patterns and 
capture the short-term and long-term order dependen-
cies among features. The output of the last LSTM cell 
served as the input of three fully connected layers. A 
dropout layer was connected before the last fully con-
nected layer. The ReLU function was used in the first two 
fully connected layers, and the softmax function was used 
for binary classification in the final output layer. During 
learning, four hyperparameters (the number of units of 
the LSTM layer, the number of units in the two fully con-
nected layers, and the learning rate) were optimized. A 
Kerastuner library (https://​keras.​io/​keras_​tuner/) was 
used to automatically turn the hyperparameters, as listed 
in Additional file 5: Table S7.

Model training and evaluation
The entire training dataset contains 11436 proteins (5718 
soluble vs. 5718 insoluble). It was divided into 10 folds, 
namely, Fold 1,…, Fold 10, using stratified sampling. 
Based on this split, 10 LSTM models, denoted as Model 
1,…, Model 10, were constructed. For Model k, Fold 
k acts as a validation set, and the remaining 9 folds act 
as the training sets. The training set was used to fit the 
model with the optimal parameters listed in Additional 
file 5: Table S7. The validation set was used to validate the 
performance of the model with the most suitable param-
eters. Finally, the independent testing dataset was used to 
provide an unbiased performance evaluation of the final 
model.

Five metrics were used to comprehensively measure 
the performance of the ensemble model: ACC, specificity 

(SP), sensitivity (SN), Matthews correlation coefficient 
(MCC), and area under curve (AUC). They were calcu-
lated as follows:

The metric AUC calculates the area under the receiver 
operating characteristic curve based on the false-positive 
rate (FPR) and the true positive rate (TPR) under vari-
ous thresholds. The TPR and the FPR were calculated as 
follows:

where TP = true positive, FP = false-positive, TN 
= true negative, and FN = false negative. SN and SP 
were employed to evaluate the model performance with 
respect to the positive and negative samples, respectively. 
The remaining three metrics are global prediction perfor-
mance indicators.
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