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Abstract 

Background  High-throughput sequencing (HTS) technologies completed by the bioinformatic analysis of the gener-
ated data are becoming an important detection technique for virus diagnostics. They have the potential to replace 
or complement the current PCR-based methods thanks to their improved inclusivity and analytical sensitivity, as well 
as their overall good repeatability and reproducibility. Cross-contamination is a well-known phenomenon in molecu-
lar diagnostics and corresponds to the exchange of genetic material between samples. Cross-contamination man-
agement was a key drawback during the development of PCR-based detection and is now adequately monitored 
in routine diagnostics. HTS technologies are facing similar difficulties due to their very high analytical sensitivity. As 
a single viral read could be detected in millions of sequencing reads, it is mandatory to fix a detection threshold 
that will be informed by estimated cross-contamination. Cross-contamination monitoring should therefore be a prior-
ity when detecting viruses by HTS technologies.

Results  We present Cont-ID, a bioinformatic tool designed to check for cross-contamination by analysing the rela-
tive abundance of virus sequencing reads identified in sequence metagenomic datasets and their duplication 
between samples. It can be applied when the samples in a sequencing batch have been processed in parallel 
in the laboratory and with at least one specific external control called Alien control. Using 273 real datasets, includ-
ing 68 virus species from different hosts (fruit tree, plant, human) and several library preparation protocols (Ribode-
pleted total RNA, small RNA and double-stranded RNA), we demonstrated that Cont-ID classifies with high accuracy 
(91%) viral species detection into (true) infection or (cross) contamination. This classification raises confidence 
in the detection and facilitates the downstream interpretation and confirmation of the results by prioritising the virus 
detections that should be confirmed.

Conclusions  Cross-contamination between samples when detecting viruses using HTS (Illumina technology) can be 
monitored and highlighted by Cont-ID (provided an alien control is present). Cont-ID is based on a flexible method-
ology relying on the output of bioinformatics analyses of the sequencing reads and considering the contamination 
pattern specific to each batch of samples. The Cont-ID method is adaptable so that each laboratory can optimise it 
before its validation and routine use.
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Background
The advent of high-throughput sequencing (HTS) tech-
nologies coupled with the development of powerful 
bioinformatics approaches has improved our ability to 
detect viruses in a non-targeted way from any sample 
collected from diverse sources. Noteworthy, detecting 
viruses by HTS technologies relies on many steps in the 
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laboratory: sampling, transport and storage, nucleic acid 
extraction, library preparation and sequencing [1]. Com-
pared to other molecular tests like (RT)-PCR, these steps 
are much more numerous and complex [2].

The analytical sensitivity, e.g. the ability to detect 
viral species at very low concentration in a sample, has 
been demonstrated to be similar to or even better than 
RT-PCR for animals [3] or plant viruses [4, 5]. In addi-
tion, the inclusivity of HTS technologies, e.g. the abil-
ity to detect all isolates from a species and all species 
whose nucleic acids are present in enough quantity in a 
nucleic acid extract, is particularly high compared to any 
other detection test [2, 6]. Consequently, the use of HTS 
technologies is currently expanding at a rapid pace in 
research and is also progressively used for the diagnostic 
of viruses threatening humans [7], including SARS-Cov-2 
[8], livestock [9] or plant health [10].

The broader application of HTS technologies for virus 
detection, with the simultaneous analysis of tens to hun-
dreds of samples, is raising a significant challenge that 
needs to be addressed: the management of cross-con-
tamination between samples. Scientists and diagnosti-
cians already faced such challenges decades ago during 
the development of PCR-based techniques for detecting 
plants [11, 12] or animal viruses [13, 14] and this phe-
nomenon might worsen with the use of HTS for virus 
detection [2]. The higher complexity of laboratory opera-
tions, the intrinsically very high inclusivity, and the very 
low limit of detection (few viral reads are enough to 
detect the virus) of HTS make cross-contamination a 
more pressing issue. This is a frequently observed but, 
until recently, rarely reported observation in many, if 
not all, laboratories that have tested these technologies 
for virus detection. In many cases, these problems are 
frequently limited to a low number of reads and are of 
little consequence. Still, the specifics of the diagnostics 
field, with the need to detect viruses that can be at very 
low titre in the sample, clearly give more impact to such 
potential contamination problems [2]. The occurrence 
of contamination is, therefore, a key element to consider 
when interpreting the viruses detected in HTS datasets.

The consequences of erroneous detection due to cross-
contamination between samples can be catastrophic, 
as described for tuberculosis prior to HTS [15] but also 
using HTS for human and plant viruses [16, 17].

So, even if the cross-contamination issue of HTS, and 
particularly with the widely adopted Illumina technol-
ogy, is long known and discussed in the scientific com-
munity, proper methodologies and dedicated algorithms 
to address it are still missing. Until now, the burden of 
detection confirmation relied on the virologist’s exper-
tise and the use of laboratory tests to independently con-
firm the presence of the virus in the sample, which is a 

fastidious, costly, and time-consuming task. To minimise 
the confirmation burden, arbitrary thresholds (like 5 or 
10 reads) [4, 18] have been proposed to consider a detec-
tion valid. Still, these thresholds are subjectively fixed 
based on the sequencing/detection tools or the scientist’s 
experience. In addition, it has been shown recently that 
the cross-sample contamination burden can be very vari-
able between sequencing batches and that an adaptative 
threshold is required [5]. Therefore, the need for formal 
bioinformatic pipelines for HTS-based data that consider 
the possible cross-contamination is growing [19].

To handle cross-contamination, several laboratory pro-
tocol improvements have been implemented over time: 
laboratory or reagent decontamination, alternate dual 
indexes, inter-run washing [20, 21] or, more recently, the 
use of a specific external control called alien control. An 
alien control is defined as “a matrix infected by a target 
(called alien target) which belongs to the same group as 
the target organism to be tested in the samples, but that 
cannot be present in the samples of interest” [22]. It is 
processed as external control alongside the sample to be 
analysed. It is preferably the same type of matrix as the 
analysed samples: plant tissue, water … Ideally, the alien 
target, in our case a virus, should be at a high concentra-
tion in the alien sample as it allows a better analysis of 
cross-contamination between samples. Indeed, the prob-
ability of detecting any virus at a low level due to cross-
contamination rises if this virus is very abundant in at 
least one of the processed samples. A high abundance 
of the alien virus will therefore allow better monitoring 
of contaminations, including for other viruses highly 
abundant in at least one tested sample. The presence of 
sequencing reads from the alien virus in any tested sam-
ple can be considered the consequence of contamination 
from the alien control to this sample. The concentration 
of the alien virus should nevertheless remain close to 
the highest expected concentration of the viruses to be 
detected to avoid overestimation of cross-contamination. 
Such information can be used to monitor the cross-con-
tamination level between samples within the sequencing 
batch.

Many generalist bioinformatic tools, such as 
Kraken [23] or BLAST [24], can detect the presence 
of viruses in HTS datasets with very high analytical 
sensitivity, as the detection is possible from a single 
viral read or contig. Some of them, like VirHunter 
[25], VirAnnot [26], or VirusDetect [27], have been 
specifically developed for that purpose. Nevertheless, 
they have not been designed to detect cross-con-
tamination in the input datasets. Instead, they will 
detect a virus, whatever its origin: virus infection in 
the biological sample or contamination from another 
sample. The risk of contamination is particularly 
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acute for viruses in very high abundance in one of 
the samples sequenced as a few contaminating reads 
can be detected by the bioinformatic tools in other 
samples prepared in parallel. The situation’s impact 
is growing, especially in the diagnostic field [2] as 
false-positive results due to contamination can lead 
to inaccurate data interpretation, which can cause 
tremendous health and trade issues.

According to EDAM ontology [28], tools that 
address cross-contamination issues should be labelled 
as “Sequence contamination filtering”. We used these 
EDAM terms along with usual ones (virus reads 
contamination, cross-contamination, …) to identify 
existing tools potentially useful to detect cross-con-
tamination in HTS viral diagnostic assays. Some tools 
address similar issues like contamination on bacte-
rial isolates (ConFindr [29]) or bacterial metagen-
ome (GUNC [30]). They both use methods relying on 
operon organisation of genes that are not applicable 
for viruses. Croco [31] uses an approach mainly based 
on bacterial quantitative data. Finally, DecontaMiner 
[32] can be applied to metagenome data, includ-
ing viruses but is based on a combination of detec-
tion methods (mainly mapping and Blast) that try to 
assign the dark matter (reads from unknown origin) 
more than formally detecting the cross-contamina-
tion material. To our knowledge, there is no tool spe-
cifically addressing cross-contamination during virus 
detection in metagenome datasets. It means that 
some risks of false-positive results remain unmoni-
tored for virologists, and the burden of confirma-
tion of detection in case of false positive is still not 
addressed.

To solve this issue, we present Cont-ID, a method 
designed to check sample cross-contamination for 
viruses previously identified in metagenomic datasets. 
It relies on a simple requirement: every sample in a 
sequencing batch should have been processed at the 
same time and followed the same steps in the labora-
tory with at least one alien control as external control. 
Cont-ID uses a voting system to classify every species 
prediction on each sample of the sequencing batch into 
(true) infection (true presence of the virus in the sam-
ple) or (cross) contamination. This tool will help the 
virologist to distinguish virus presence and virus cross-
contamination in HTS data generated by Illumina tech-
nology, improving the reliability of viral detection and 
the efficiency of downstream confirmation and charac-
terisation analyses. It can also help to improve feedback 
on upstream steps that might be linked to cross-con-
tamination events. Cont-ID is an open-source python 
(v3)-based script method freely available here: https://​
github.​com/​johro​llin/​viral_​conta​minat​ion.

Methods
Implementation
In viral metagenomics, detecting multiple viral species in 
the same sample is frequent, and a virus species can be 
seen with different confidence levels in several samples of 
the same sequencing batch. Therefore, Cont-ID aims to 
determine whether a given detected virus in a sample is 
likely to be a contaminant or not by comparing it to the 
results from the other samples of the same sequencing 
batch, e.g. samples processed in parallel and following 
the same laboratory steps.

Cont-ID does not require any development or mainte-
nance of database as it only relies on data generated by 
usual bioinformatics tools for Illumina dataset analyses 
and, most specifically, two elements: (i) the normalised 
abundance estimation (number of reads assigned per 
sample to each detected virus species, subtype—or any 
relevant taxonomical level) and (ii) the number of iden-
tical reads among pairs of samples (deduplication ratio). 
These input metrics are easy to obtain as the abundance 
estimation can be calculated by using any mapping tool 
like BWA [33] or a read classifier like Kraken/Bracken 
[23, 34], and the number of identical reads from a virus 
between two samples can be obtained by running any 
deduplication tool like BBduk [35]. A tabulated file con-
taining these numbers associated with the detected virus 
name and the unique ID for each batch sample is used 
as input for Cont-ID, as shown in Fig. 2. Each virus pre-
dicted on each batch sample is considered a distinct ele-
ment and corresponds to a line in the generated table. A 
separate table is generated for the alien virus.

Computing the two elements mentioned above into 
three different metrics for the alien virus and each 
detected virus, Cont-ID can predict through three rules 
if a given viral species detection is likely a cross-con-
taminant or not in the sequencing batch, as described in 
Fig. 1.

The three rules classify as contamination or infection 
each element according to the pattern of reads number 
observed among the samples and the alien control for 
the alien virus and the considered viral species. Rules one 
and two both use the (normalised) reads abundance esti-
mation, while rule three uses the assessment of unique 
(identical) reads. Rules are calculated after normalising 
the number of reads per sample and are described more 
precisely in Fig. 2.

The first rule uses the mapping ratio of each virus in 
each sample (corresponding to an element): the num-
ber of reads of each element is divided by the maximum 
number of reads of the corresponding virus in one of the 
samples. This first rule compares this mapping ratio for 
the element with the control 1 metrics calculated for the 
alien virus and corresponds to the average number of 

https://github.com/johrollin/viral_contamination
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reads mapped on the alien virus in the samples for which 
the alien is a cross-contaminant, plus three times the 
standard deviation of this average. The second rule relies 
on the number of reads of the element in the sample. The 
rule compares it with control 2, corresponding to the 

number of alien reads identified in the alien control. The 
third rule is based on each element’s deduplication ratio, 
which is compared with control 3. The average dedupli-
cation ratio of the alien virus reads between each tested 
sample and the alien control.

Fig. 1  Cross-contamination prediction with Cont-ID. Controls 1, 2 and 3 and rules 1, 2 and 3 are described in detail in Fig. 2. There are two input 
files, one for the alien data and one for the sample data. Alien file is used to calculate control thresholds which are then used along with the sample 
data to apply rules to a voting system (step 1). The votes are then counted to decide for each virus on each sample (element) either if it is a (cross)
contamination or an infection (step 2)
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We aimed to find the most reliable formula for 
threshold calculation on each rule while allowing a part 
of adaptability according to the biological system used. 

As the system variability can come from the labora-
tory using HTS, the host and type of sample (fruit tree, 
herbaceous plant, human, animal …), the type of virus 

Fig. 2  Cont-ID rules explanation. There are two input files, one for the alien data and one for the sample data. Alien file is used to calculate 
each alien control metric after normalisation (except control 3). The sample file is used to calculate each data metric after normalisation (except 
deduplication ratio) (the small “r” in table stands for “raw”). Each alien control metric is associated with a user (manually) designed adaptability metric 
(X, Y or Z) to compose each rule’s threshold. Finally, each data metric is compared to the corresponding threshold in order to obtain the three rules 
used in Cont-ID
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(integrated or non) or the extraction protocol used 
(dsRNA, total RNA, small RNA…), each rule includes 
a third number (represented by X, Y or Z) that is called 
adaptability metrics (see Fig. 2). The X will impact the 
first rule that considers the relative proportion of reads 
of a virus in this sample compared to the sample with 
the maximum read of this virus. This threshold is a 
refinement of the “alien threshold” described earlier [5]. 
The default value proposed is 2. The Y divides the num-
ber of reads from the alien virus in the alien control 
for comparing it to the number of reads of each virus 
in each sample. In this publication, a default value of 
1000 has been fixed for Y, and it was in the range of the 
expected (cross) contamination ratio (number of reads 
in the truly infected sample versus the number of reads 
in contamination one). The Z metric impacts control 3 
and the evaluation of the proportion of identical reads 
between different samples. The proportion of identical 
reads can be influenced by different factors (mutation 
rate, respective genome length …). The role of Z is to 
consider those different factors. A default value of 1.5 
is proposed.

Default values of the three adaptability metrics have 
been provided in this publication after their optimisation 
on the banana datasets and their evaluation of other data-
sets. Nevertheless, users can independently modify them 
during the evaluation or validation of Cont-ID applied 
to their datasets. A careful evaluation of the adaptabil-
ity metrics by the user is recommended to evaluate their 
impact on the diagnostic performance of the test. In 
addition, several sets of adaptability metrics can be run 
in parallel for further improvements in diagnostics per-
formance. The value given to the adaptability metrics and 
controls resulting is always recorded in an additional log 
file (see Additional file 1: Table S1). This log file helps to 
ensure traceability allowing the user to check the perti-
nence of the chosen numbers and to adapt them when 
needed. As each of the three rules has two possible deci-
sions (contamination or infection), a majority vote will 
be obtained with two or three votes. The decision of each 
vote is available in the generated result to support the 
result interpretation and let the user decide on the confi-
dence to give to each individual rule according to the bio-
logical system tested.

In addition, the proper quantitative comparison of 
sequencing reads datasets relies on normalising the num-
ber of reads per sample, for example, as always done for 
transcriptomic or microbiome studies. This assertion is 
also true for Cont-ID and corresponds to an adaptative 
parameter. To limit some bias due to the difference in 
sequencing depth between samples in the same batch, we 
also normalise by default to 5,000,000 reads in this publi-
cation. Still, it is manually changeable by the user.

Finally, Cont-ID also has another level of flexibility: the 
script is designed for easy change of rules in the code that 
can complete or replace the existing ones.

Conditions of application for Cont‑ID
Three main conditions are essential to run Cont-ID. First, 
an alien control should be used, alien control should con-
tain a high but realistic (close to the highest expected 
concentration of viruses in the analysed samples) con-
centration of the alien virus, so reads from that viral spe-
cies are more prone to be detected in other samples when 
cross-contamination occurs from the alien control to the 
other samples. Similarly, if another virus is found in the 
alien control sample, that is also an indication of poten-
tial contamination (although not used so far by Cont-ID). 
The alien control is bioinformatically processed exactly as 
the samples of interest to generate the alien metrics for 
each sample (in a separate tabulated file). In the absence 
of external alien control, it is still possible to analyse 
sequencing batches if they include samples from differ-
ent host species and some detected viruses, preferably 
at high abundance, are known to infect only some of the 
host species. In such a case, the alien file should be filled 
with the selected virus as if it were an alien (with the 
status of alien present/absent in the file). Nevertheless, 
the threshold set-up and the results will be less accurate 
and include fewer samples (the samples correspond-
ing to species that can be hosts for the virus could not 
be considered). In addition, a high degree of confidence 
is needed regarding the actual infection of the sample 
selected as alien control by the virus selected as an alien 
virus. Cont-ID always requires at least one (cross) con-
tamination in the alien file to be reported; otherwise, the 
threshold calculation will fail; in that case, the tool will 
state it.

The second application condition is related to the pro-
cessing of the samples and the alien control. The alien 
control and all the other samples in a given batch should 
have been processed together in parallel for all the labo-
ratory steps (RNA/DNA extraction, library preparation, 
sequencing) and bioinformatics (Reads cleaning, host 
removing …). This is a good diagnostic practice, but it 
is even more important here as the goal is to observe 
cross-contamination levels. The assumption is that the 
level seen with the alien represents what could have hap-
pened in samples of interest. Therefore, this assumption 
depends on processing all samples and control in parallel.

The third condition is that, once the user has fixed the 
adaptability metrics, the analysis should be carried out 
batch per batch. The calculation of sample and alien met-
rics is dynamically done for each batch as cross-contam-
ination patterns can strongly vary between batches, as 
recently shown for banana samples [5].
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Sequencing reads datasets
The first datasets (batches A to D) were generated in 
our laboratory by total RNA sequencing protocol with 
ribodepletion applied to RNA extracted from banana 
plants (belonging to the Musa genus) [5]. These data 
were generated to compare the test performance criteria 
of high throughput sequencing with classical virus test-
ing protocols that include ImmunoCapture (IC)-(RT)-
PCR and electron microscopy [36]. The alien control 
corresponded to wheat plants infected by two species of 
barley yellow dwarf virus (BYDV-PAS and BYDV-PAV) 
[5]. In total, four sequencing datasets (called A, B, C and 
D) composed respectively of 27, 20, 27 and 25 samples 
were generated independently. A fifth batch generated 
during this validation experiment using diluted samples 
for evaluating the limit of detection (analytical sensitiv-
ity) was not included in our analysis according to the 
recent guidelines proposed for statistical analysis of vali-
dation datasets for plant pest detection [22]. All samples 
used here have been tested with (RT)-PCR for all the 
possible virus known in Musa, making the viral status 
known for every sample [5] A total of 10 different viral 
species were infecting these samples, including banana 
mild mosaic virus (BanMMV), banana bract mosaic 
virus (BBrMV), banana bunchy top virus (BBTV), 
cucumber mosaic virus (CMV), and five species belong-
ing to the banana streak virus (BSV) species complex. In 
addition, two other sequencing protocols were applied 
to some banana plants, small RNA sequencing [5] start-
ing from the same RNA extract as total RNA sequencing 
(for 21 samples in a single batch) and double-stranded 
RNA (dsRNA) enrichment and sequencing protocol 
[37] applied from plant tissue of 13 samples in a single 
sequencing batch.

BSV is a species complex (genus: Badnavirus, family: 
Caulimoviridae) among which five species were included 
in our samples: banana streak CA virus (BSCAV), banana 
Goldfinger virus (BSGFV), banana streak IM virus 
(BSIMV), banana streak Mysore virus (BSMYV) and 
banana streak OL virus (BSOLV). Notably, some spe-
cies of this complex have their genome fully or partially 
integrated into the plant genome as endogenous viral ele-
ments (EVE), most specifically in B genomes originating 
from M. balbisiana. These EVE can be transcribed in the 
plant, and for some BSV species, they can even trigger an 
infection with viral particles of BSV in the plant [38]. It 
is well documented that BSGFV, BSIMV and BSOLV are 
constitutive of Musa balbisiana (B genome) but can be 
activated in some conditions [39]. In addition, BSMyV 
is also integrated into the Musa B genome, although the 
ability to produce infectious viral particles is not yet dem-
onstrated. This brings additional complexity as EVE can 
be transcribed without the presence of a viral particle. 

It has been recently demonstrated that the detection of 
BSV transcripts by a HTS test must be confirmed by an 
independent test such as immunocapture (IC)-PCR for 
confirming the presence of viral particles [5].

The other datasets used in this work came from pub-
licly available datasets listed in Table 1 and were already 
included in peer-review publications. They were selected 
because they fit two criteria: (i) having all virus presence 
checked in all the samples and (ii) having a virus species 
that could act like an alien control for the input file. First, 
another set generated to detect viruses from diverse plant 
samples by high throughput sequencing of total RNA 
extraction was kindly provided by Queensland University 
of Technology [17], corresponding to a total of 19 plant 
viruses and viroid in 5 samples. In addition, the datasets 
generated from human samples came from published 
data from 3 different sources, with a total of 129 samples 
containing 39 viral species [40–42]. These three human 
datasets allowed us to test Cont-ID with a large diver-
sity of viruses, with different extraction and sequencing 
methods listed in Additional file 2.

In total, ten sequencing batches, including 273 samples 
and the presence of 68 viral species, were used to test 
the potential impact of a different host, extraction, and 
sequencing method on Cont-ID performances. All the 
data generated are available with the link and procedure 
applied to obtain them described in Table  1; the index-
ing status of each virus in each sample is also available in 
Additional file 2.

Bioinformatic analyses
Quality control and mapping of sequencing reads
For all datasets, read quality control (quality trimming, 
reads deduplication) was performed using a standard 
procedure described in a previous publication: “The 
obtained sequence reads (FastQ file format) were qual-
ity controlled on both ends, using a minimal nucleotide 
Phred quality score of 25 and a minimal length of 35 bp 
with BBDuk [35] (v38.37). Then, the trimmed reads were 
merged and duplicated merged reads were removed using 
Dedupe [43] (v38.37) with kmer seed 31, the request 
of 100% identity and the option of eliminating shorter 
reads 100% identicals.” [5]. The cleaned reads were then 
mapped to a custom-built database (DB) containing all 
complete genome sequences from previously detected 
viruses in the datasets. For banana samples, all the com-
plete genome sequences of the viruses were downloaded 
from NCBI nt database on (12/12/2020) to serve as map-
ping DB, while the BYDV reference (KU170668—for the 
alien control) was selected as it was the closest sequence 
from our isolate. More information on the composition 
of each mapping DB is available elsewhere [5].
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The reads were mapped on the custom DB using 
Geneious mapper (Prime 2020.0.5, Biomatters). First, 
the profile parameters “Low sensitivity / Fastest” were 
selected (with 20% mismatch and a maximum of 3 nucle-
otides gap allowed). To improve the results by aligning 
reads to each other in addition to the reference sequence, 
the fine-tuning for mapping was set to “Iterate 2 times”. 
The “multiple best matches” option was set to “Ran-
domly” (no multiple best matches between two differ-
ent viruses were observed in any sample processed). In 
the “Result” section, we will refer to these parameters as 
“relax”. A second mapping referred to later on as “strict” 
was carried out using the same parameters except for 
the mismatch allowance that was lower than 10%. Only 
the second mapping was carried out for small RNA (20% 
mismatch is too much for small RNA). Indeed, using 
mismatches up to 20% should allow better inclusivity of 
the analysis by mapping reads from isolates that can be 
genetically distant from the reference sequences, espe-
cially if few reference genomes are available in the liter-
ature. Mapping with a strict parameter was done to use 
small RNA and confirm this hypothesis. The tolerance of 
mismatches of 20% is also close to many ICTV demarca-
tion criteria to distinguish two different species (although 
these criteria are often considered for only one or a few 
genes and might vary between families). Another test 
with more relaxed parameters would increase the risk 
of adding non-specific reads (i.e. not generated from the 
viral genomes) and was not considered.

Deduplication of identical reads between samples
To investigate cross-contamination between samples, 
additional deduplication of identical reads between sam-
ples was performed using dedupe V38.37 (from BBMap) 
embedded in Geneious (Prime 2020.0.5, Biomatters) 
and with the parameters kmer seed length, maximum 
edit, and maximum substitutions set as “31”, “0”, and “0”, 
respectively. For each virus and sample, the mapped reads 
from each tested sample and the sample with the high-
est number of mapped reads in the batch were grouped 
into a single pool (using “Group sequences into a list” in 
Geneious) and deduplicated. The deduplication percent-
age equalled the number of reads removed as duplicates 
divided by the lower number of reads between the two 
tested samples. The deduplication percentage was not 
calculated on samples if less than 5 reads from raw data 
were mapped to target viruses (as there might be higher 
random variation with few reads sequenced for a virus). 
For those samples, the rule (number three) automatically 
votes for contamination. While for the samples with the 
highest number of reads for a given virus, the deduplica-
tion ratio was set as reference (i.e. "RF"), and the vote for 
rule three is infection.

Confusion matrix and performance criteria calculation
We used a confusion matrix for each batch’s results to 
have standard metrics for comparing batches and sam-
ples. We compared the tool prediction for each element 
to the indexing status of the dataset assimilating infec-
tion as a positive result and contamination as a negative 
result, as explained in Table 2.

Based on the confusion matrix, we have four possibili-
ties after a prediction: false positive (FP) when the tool 
wrongly predicted an infection, true positive (TP) when 
the tool correctly predicted an infection, false negative 
(FN) when the tool wrongly predicted contamination 
and true negative (TN) when the tool correctly predicted 
contamination. In addition, we calculated and focused 
our analysis on the accuracy as described in Table 3. To 
calculate performance criteria automatically (accuracy as 
well as diagnostic sensitivity/specificity, false omission/
discovery rate), we used an automated script available on 
the same GitHub (https://​github.​com/​johro​llin/​Cont_​ID/​
tree/​master/​furth​er_​analy​sis).

Results
We used Cont-ID on ten metagenomic datasets, includ-
ing a total of 273 samples, as a proof of concept (see 
details in the “ Methods” section). These datasets covered 
a broad range of use for Cont-ID as they were generated 
from plant or human samples according to three library 
preparation protocols (8 for total RNA, 1 for small RNA 
and 1 for double stranded (ds) RNA). The sequencing 
reads were always paired 2 × 150 nt for total RNA and 
dsRNA while, for small RNA, the reads corresponded to 
1 × 50 nt (21–24 nt after adapter trimming [5]).

Set up adaptability metrics datasets on the banana 
datasets
When applying for the first time Cont-ID on banana 
datasets generated from reference samples with known 
viral status, the first objective was to determine the most 
appropriate values for the adaptability metrics (X, Y and 
Z), allowing to minimise both FP (over-prediction of 
infection) and FN (over-prediction of contamination). 
This was particularly complex as raising the value of an 
adaptability metric could lead to an over-prediction of 
either contamination or infection by the rule, while low-
ering it had the opposite effect.

During the set-up of the method, we looked for the 
most adapted set of values to balance our rule prediction 
on Musa datasets A, B and C. We tested several ranges of 
values aiming at limiting both wrong predictions (FP and 
FN). The optimised single set of values maintaining FP 
and FN low in the three datasets was not found. Indeed, 

https://github.com/johrollin/Cont_ID/tree/master/further_analysis
https://github.com/johrollin/Cont_ID/tree/master/further_analysis
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variability was observed between batches, as any set lim-
iting FP and FN in one or several batches was not optimal 
for the other batch(es).

Indeed, the uneven proportion and pattern of cross-
contaminations observed in different sequencing batches 
made it very difficult to decide on a unique set of values. 
Instead, it seemed more efficient to apply two different 
sets of values (called “case 1” and “case 2” further on) that 
favoured the prediction of either true infection (TP—
case 1) or true contamination (TN—case 2) from the 
same datasets. The combination of the prediction from 
both cases would give additional information for inter-
pretation. We proposed values that gave the best per-
formance criteria on our training datasets on bananas, 
and the purpose of the diagnostic test was to minimise 
the risk of false negatives (priority 1) while keeping the 
confirmation burden manageable (priority 2). Impor-
tantly, those sets of values can be manually adapted by 
the user to improve one or several performance criteria 
of the test, to better fit the purpose of the HTS tests car-
ried out and its associated risks (risk of false positive or 
false negative) or to limit the “grey zone” of inconclusive 
results (see under).

Therefore, we propose to run Cont-ID with two sets of 
adaptability metrics every time to compare the results 
so what a high level of confidence is reached for the ele-
ments with identical predictions between both cases. The 
combination can also highlight elements for which the 
prediction changed; they correspond to the “grey zone” 
with metrics of abundance and/or duplication close 
to thresholds. In such cases, the automated prediction 
might not be accurate. At this stage, it is mandatory to 
carry on additional verification, such as checking the con-
fidence (2 or 3 votes) for each prediction or comparing 

the threshold numbers (also provided in the result) with 
the sample metrics. Cont-ID provides the list of votes for 
each rule in each case to facilitate this additional verifi-
cation. Then according to the additional information 
and the test’s purpose, the user can decide on the sta-
tus (infection or contamination) or keep it inconclusive 
but decide to test the virus presence independently by 
another test. For the presentation of the result, the result 
is mentioned as “inconclusive” when both cases disagree.

Evaluation of the method accuracy on banana samples
Based on the results obtained with the two sets of adapt-
ability metrics, the tool predictions were compared with 
the biological status of each reference banana sample 
(batches A, B, C and D Additional file  2), allowing us 
to predict the cross-contamination on the four tested 
batches with an average accuracy of 90%, excluding 23% 
of elements classified as “inconclusive” (see Table 4 (A)).

The predictions with the three votes using default map-
ping parameters (“relax mapping”) are very trustworthy 
as the accuracy is higher than 86% and 95% for cases 1 
and 2, respectively. These promising results are obtained 
on the fraction of the elements representing 25–50% and 
48–84% for case 1 and case 2, respectively. The remaining 
elements are classified with two votes (more information 
is available in Additional file 3). The prediction accuracy 
with two votes is much lower, whatever the case. So, 
knowing the number of votes obtained by each element is 
crucial when the results need to be interpreted (and this 
number is always given in the report generated by Cont-
ID). For case 1, most elements were predicted with two 
votes meaning that one of the (three) rules had a conflict-
ing prediction, which might explain why the accuracy 
was lower, while for case 2, the majority of the elements 
were predicted with three votes. The explanation is prob-
ably in the “expected infection/contamination” row in 
Table 4 (A): for all batches, there is more contamination 
than infection (from 28 infections for 77 contamina-
tions—batch A to only 19 infections for 109 contamina-
tions—batch D). As stated above in the text and Fig.  3, 
case 2 is designed to favour contamination detection at 
the expense of infections occurring at a low concentra-
tion that tend to be considered contamination (FN). Nev-
ertheless, as a direct consequence, true contamination 

Table 2  Confusion matrix based on Cont-ID results

Cont-ID confusion matrix Prediction

Infection (positive) Contamination (negative)

Indexing status Infection True positive (TP) False negative (FN)

Contamination False positive (FP) True negative (TN)

Table 3  The formula used to calculate accuracy

Diagnostic sensitivity (DSE) TP/(TP + FN)

Diagnostic specificity (DSP) TN/(TN + FP)

False omission rate (FOR) FN/(FN + TN)

False discovery rate (FDR) FP/(FP + TP)

Accuracy (TP + TN)/
(TP + TN + FP + FN)
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(TN) detection is high (see confusion_matrix in Addi-
tional file 3).

Overall, case 2 presented a higher accuracy (85–91% 
relax mapping) than case 1 (66–85%), while the combina-
tion of the two cases reached a similar one (82–95% relax 
mapping). Those good results from combination accu-
racy mean that very few predictions are wrong (5–13) in 
both cases, but 16–33% of elements are not counted in 
the accuracy percentage because they are inconclusive. 
The combination’s importance relies on maintaining a 
high accuracy while highlighting the inconclusive predic-
tion to prioritise them for manual expertise.

The mapping parameters impacted the input files 
and the Cont‑ID performance
In Table 4, we explored the impact on the prediction of 
two levels of mismatch tolerance (20% and 10%) when 
mapping the sequencing reads on the viral genome 
DB. The goal was to explore if changing a parameter 
from the primary bioinformatics step delivering the 
input files of Cont-ID could have an impact on the pre-
diction. Strict mapping tends to lower the total num-
ber of elements tested due to a decrease in the number 

of samples for which we have very few reads mapped 
to a candidate virus (samples for which the number 
of reads was already very low with relaxed mapping). 
Cont-ID has more samples to process with a relaxed 
mapping, which should be better for threshold cal-
culation. Logically, the elements lost by the strict 
mapping parameter should be predicted as “contami-
nation” and present a relatively low number of reads. 
Indeed, those elements are most likely more distant 
reads (between 20 and 10% mismatch with the refer-
ence genome) mapped on the virus. They could corre-
spond to non-viral reads wrongly mapped in datasets 
from samples tested negative by classical indexing. 
For example, for batch B, on the 28 differential map-
ping results, the number of reads mapped ranged from 
1 to 10 (except for two). Of those 28 elements, 24 are 
classified as “contamination”, 2 as infection (the two 
that have more than 10 reads) and the two remaining 
are labelled inconclusive. In batch C, there are 50 dif-
ferential elements between the two parameters, with 
37 correct (13 from BSV), 11 inconclusive (10 from 
BSV) and 2 wrong (2 from BSV) classified elements. In 
total, 25 elements (on the 50—batch C) are from the 

Table 4  Percentage of the accuracy of case 1 and case 2 analysed alone or in combination on banana samples sequenced by 
ribodepleted totalRNA sequencing for each element (virus detected on each sample). Each case is presented with the proportion of 
correct or wrong predictions according to the number of votes obtained (2 or 3) by comparing Cont-ID prediction the the viral status 
(displayed in expected infection/contamination). The percentage is given by three votes confidence count only the result with three 
votes while the overall accuracy aggregates the 2 and 3 vote results. When combining results from both cases (described in Fig. 3), the 
percentage of inconclusive results and the number of correct or wrong predictions are stated. Two different mapping parameters were 
tested, allowing respectively 20% of mismatches (part A) or 10% of mismatches (part B)
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non-integrated virus, of which 24 are labelled con-
tamination (one inconclusive). The separation between 
integrated and non-integrated viruses is explained in 
Table 5 and another publication [5].

Using the relaxed mapping parameter seems beneficial 
for prediction as the accuracy is better (82–95% relax, 
78–90% strict). Moreover, thanks to the combination 
strategy, we can focus on the proportion of inconclu-
sive; it is uneven with an important increase, 5% (strict) 
to 23% (relax) for batch A, while in batch D, it decreases 
from 28 to 16%. However, when we look closely at the 
accuracy improvement, most comes from differential 
elements (present only with relax) that are “obvious” 
contamination with few reads. So, most of the accuracy 
improvement did not come from very informative ele-
ments, except in some rare occurrences where it helped 
classify well elements in relax parameters that were 
inconclusive with strict or classified inconclusive ele-
ments in relax that were wrong with strict parameters. As 
an example, in batch C, on the 24 elements for BanMMV, 
BBRMV, BBTV and CMV common in both conditions 
(relax and strict), element prediction is improved (from 

inconclusive [strict] to correct [relax]) for three of them 
(sample 3B1, 3B2 and 3B14 with BanMMV).

There is, therefore, a slight improvement with 
relaxed mapping parameters, and we set these parame-
ters by default to generate the input files. Indeed, with 
the relaxed parameters, the number of reads for each 
element (including alien) increases along the rise of 
the number of elements in the batch. This means that 
we change the rule’s value of the threshold (see Fig. 2), 
in a way that seems more representative of reality than 
strict mapping. In these batches, some element met-
rics are very close to the value used by the rules and 
slightly changing those metrics or the alien metrics 
(the alien control metrics are obviously changed by the 
mapping parameters) can modify the prediction.

As we did not know the divergence of the virus 
genomes between different samples and the reference 
genomes, it seemed more logical to use relaxed map-
ping parameters by default. According to the virus 
system the user is working on and the ICTV demarca-
tion criteria that go with it, these parameters should or 
could be adapted.

Fig. 3  Cont-ID prediction when using the two default cases



Page 14 of 20Rollin et al. BMC Biology          (2023) 21:217 

The virus biology can impact Cont‑ID performance: 
the case of virus integration in the host genome
To highlight the potential impact of the virus biology on 
the results of Cont-ID, the analysis of banana batches 
was split between integrated and non-integrated viruses. 
Indeed, several species of BSV are integrated into its host 
genome, which complicates the reliable detection of BSV 
infection from sequencing datasets. Consequently, it has 
been recommended to confirm any detection of BSV 
reads by an independent PCR test combined with immu-
nocapture of viral particles [5].

Table  5 shows better accuracy and a lower propor-
tion of inconclusive results for non-integrated viruses 
compared to BSV. More elements with contamination 
status are obtained when looking for BSV than non-
integrated viral species. This over-representation of 
contaminants might be caused by the transcription of 
integrated sequences of BSV even without viral parti-
cles, which will raise the number of detected reads. 
These are two points that reduced the efficiency of our 

method on BSV and, by extension, might also concern 
any other viral species integrated into the host genome 
and able to produce transcripts.

The global accuracy is lower for BSV species (79–
92%) compared to the other viruses (88–100%), even 
if the maximum accuracy obtained with batch C (92%) 
was high. In addition, the proportion of inconclusive 
results should also be considered, and this propor-
tion was much higher for BSV (23–45%) than for the 
other viruses (4–16%). So, the overall performance 
of Cont-ID is lower when applied to BSV and did not 
solve the issues of appropriate detection in sequencing 
data of viral infection from viruses integrated into the 
plant genome. Consequently, BSGFV, BSIMV, BSMYV 
and BSOLV, which correspond to different but closely 
related species of Banana streak virus (BSV) integrated 
into the Musa genome, were excluded from the calcu-
lation of performance criteria for the banana datasets. 
BSCAV was also excluded (despite not being inte-
grated) because of its similarity with other BSV species.

Table 5  Percentage of the accuracy of case 1 and case 2 analysed alone or in combination on banana samples sequenced by 
ribodepleted totalRNA sequencing with relaxed mapping parameters for each element (virus detected on each sample). Each case 
is presented with the proportion of correct or wrong predictions according to the number of votes obtained (2 or 3) by comparing 
Cont-ID prediction the the viral status (displayed in expected infection/contamination). The percentage given by three votes 
confidence count only the result with three votes while the overall accuracy aggregates the 2 and 3 vote results. When combining 
results from both cases (described in Fig. 3), the percentage of inconclusive results and the number of correct or wrong predictions are 
stated. Two types of viruses were tested, non-integrated virus (part A) or integrated virus (part B)
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Performance of Cont‑ID on diverse datasets
The performance of Cont-ID using the two cases was fur-
ther evaluated while diversifying the hosts (fruit trees, 
grasses, humans) and the sequencing protocols (total 
RNA, small RNA, dsRNA).

Table  6 shows the method’s accuracy on all data-
sets with relaxed mapping parameters (except for small 
RNA, see the “ Methods” section). Overall, the accuracy 
of Cont-ID was 94%, with 15% of inconclusive results. 
The sRNA dataset provides a poor accuracy (50%) with 
20% inconclusive; this can be explained by the (almost) 
absence of contamination (Expected Infection/Contami-
nation 19/1) by the low level of reads found (see Addi-
tional files 2 and 3 for more information). Apart from 
small RNA, the worst accuracy (88%) has been obtained 
from the batch B sequencing dataset of banana. Note-
worthy, this protocol was independently evaluated for 
virus testing in banana, but its performance for virus 
detection was much lower than total RNA sequenc-
ing [5]. The accuracy calculated from the single batch of 
dsRNA, with only 9 samples and 12 elements, was 100%. 
Even if not enough representative dataset was used for 
dsRNA, the method accuracy seems not too far from 
what we obtained in Total RNA, indicating that Cont-ID 

is independent of the extraction method. On Total RNA, 
for banana samples, the accuracy ranged from 88 to 
100%, with 4 to 15% of inconclusive results. The accuracy 
of the plant mix (G) was also very high (98%), with 8% 
of inconclusive results. On human datasets, the accuracy 
remained high (92–93%), but the inconclusive results 
reached up to 15–29%. Overall, the application of Cont-
ID on human datasets reached similar performance in 
accuracy; the slightly worse inconclusive metrics can be 
explained by the fact that the adaptability metrics might 
not be the best ones for the human dataset and under-
lined the importance to adapt metrics and parameters of 
Cont-ID to specific dataset types.

For most of the datasets, case 1 performed worse than 
case 2, probably due to the design of the case metrics (see 
Fig.  2), where case 1 values were determined to favour 
infection. The expected infection/contamination ratio 
showed that for all the datasets but E (small RNA), there 
was a lot more contamination than infection; therefore, 
case 1 overpredicted infection, lowering its accuracy. In 
the E dataset, case 1 (55%) performed better than case 2 
(45%) as expected; it is also the case for the human data-
set H (97% case 1, 96% case 2), even if the ratio (37/75) 
leans toward contamination.

Table 6  Percentage of the accuracy of case 1 and case 2 analysed alone or in combination from sequencing with relaxed mapping 
parameters (except for small RNA) for each element (virus detected on each sample). Each case is presented with the proportion of 
correct or wrong predictions according to the number of votes obtained (2 or 3) by comparing Cont-ID prediction the the viral status 
(displayed in expected infection/contamination). The percentage given by three votes confidence count only the result with three 
votes while the overall accuracy aggregates the 2 and 3 vote results. When combining results from both cases (described in Fig. 3), 
the percentage of inconclusive results and the number of correct or wrong predictions are stated. Several virus datasets were tested, 
banana samples (only non-BSV viruses are considered), a mix of plants, and human datasets
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Those results indicated that Cont-ID performed well in 
classifying cross-contamination in very different virus-
host systems, even if some adjustments may be needed 
in some cases in the future. The different levels of flexibil-
ity of Cont-ID made such adjustments possible. To pro-
vide an example of analysis, all the information regarding 
batch C from the input file to the analysis file (including 
raw results) is available in Additional file 3.

Discussion
Despite significant efforts to limit cross-contamination 
(dual indexes, inter-run washing …), this still represents 
a concern and the appropriate distinction between low-
level infection, and cross-sample contamination is crucial 
for the large-scale development of HTS technologies as 
a diagnostic test. Furthermore, it should be adequately 
managed because identifying and monitoring the cross-
contaminations improves the detection results’ reliability. 
In other words, it can help to find the source of contami-
nation in the laboratory, take appropriate measures to 
minimise it, and raise confidence in the detected viruses.

This publication improved a preliminary work on 
determining an adaptative contamination threshold for 
the detection of plant viruses [5] which uses the maxi-
mal number of alien virus reads contaminating a sample 
as the threshold of detection for each sequencing batch. 
So, instead of using a fixed number for the contamina-
tion threshold as done in the literature, the threshold is 
adapted to the level of contamination monitored in the 
batch thanks to the alien control. The former publication 
used a single threshold corresponding to the maximum 
number of alien virus reads in a sample. Some limitations 
of this previous threshold, for example, overestimating 
contamination when viral reads are in low number for a 
virus, underlined the need for improvements. This was 
achieved with Cont-ID through the definition of mul-
tiple formal rules, the automation of calculation and 
the ability to adapt the thresholds and rules by the user. 
The tool’s prediction relies on basic and usual informa-
tion generated by bioinformatics analysis of sequencing 
data (mapping and duplication numbers) and the use of 
external alien control. The criteria based on reads (rela-
tive) abundance of each virus in each sample and the 
(approximation of ) number of identical reads for a virus 
between samples performed well while being relatively 
easy to generate. Our objective with this tool was to show 
that exploring data generated by standard bioinformatic 
procedures can facilitate the identification of cross-con-
tamination between samples.

Cont-ID discriminated virus infection and cross-
contamination between samples within a sequencing 
batch with a global accuracy of 91% (median = 95%) on 
the diverse range of datasets included in its evaluation. 

The diversity of situations included viral species belong-
ing to diverse viral families with cellular hosts belonging 
to plant or animal kingdoms and three different library 
preparation protocols. Importantly, the default values 
of adaptability metrics determined from banana dataset 
predicted cross-contamination with high accuracy (96%, 
on banana excluding small RNA) and remain high even 
on human datasets (94%). Noteworthy, these additional 
datasets were carefully selected to check that they fit the 
Cont-ID requirements (alien control and samples pro-
cessed in parallel). To further help the user in the analy-
sis, we provide the detailed vote prediction in the result 
file (see Additional file 3). This is, therefore, a solid basis 
for the diagnostician to check the level of confidence in 
the generated results. Indeed, each prediction made by 
the method uses at least two rules to determine the clas-
sification of the element for each case. A prediction with 
three votes is more confident than with two votes. But all 
predictions with two votes do not provide the same con-
fidence as it depends on which rules predicted what. Of 
our three rules, two rely more or less directly on abun-
dance estimation, which means that when that metric 
is not obtainable in a reliable way, the tools’ predictions 
will be impacted, and predictions with those rules might 
be less confident. On the other hand, rule three (dedu-
plication ratio) is less effective when the read numbers 
are low. Depending on the scenario, users should con-
sider the relative confidence of each rule when trying 
to confirm Cont-ID prediction. This underlines again 
the importance of proper interpretation of the obtained 
results based on the virus biology.

The prediction quality is deeply impacted by the input 
data quality, meaning that the deduplication and map-
ping parameters are essential and should be carefully 
considered while evaluating their impact on the results. 
For example, some deduplication tools remove reads if 
a (small) read is contained in another (larger) read; hav-
ing that option active or not will significantly impact the 
deduplication ratio. For example, the inclusion of PCR 
amplification step in the library preparation protocol, the 
very high abundance of viral genomes in the sample or 
the low complexity of the library can impact this dedupli-
cation ratio and should be taken into account when set-
ting up the parameters for Cont-ID application.

As shown in the results, mismatch parameters are 
very impactful for the mapping. Considerations like 
ICTV demarcation criteria or what parameters the biol-
ogist would use to reconstruct the whole viral genome 
are helpful in deciding the ones to use for Cont-ID 
input. In that regard, testing and expertise in bioin-
formatics analysis are heavily beneficial. Here, the 20% 
mismatch parameter performed well; it might be differ-
ent in other datasets (viral composition) configurations 
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or when working with databases containing many refer-
ence genomes. Indeed, independently of the mismatch 
parameters used, using more genome references for 
each expected species could also improve the ability to 
detect sequences from distant isolates by better cover-
ing the genetic diversity of the virus.

The biology of the virus should also be considered, as 
shown by the results obtained with viruses with func-
tionally integrated genomes in the host, like BSV spe-
cies. Our conclusion is that they should be considered 
independently from the non-integrated viruses. It was 
challenging to extract a reliable metric for BSV as the 
differentiation between reads from integrated genomes 
and reads from viral particles is impossible. Indeed, the 
biology of viruses integrated into the host genome dif-
fers from non-integrated viruses, as viral genome tran-
scription can happen without viral particle production. 
We have not tested our method on species with dif-
ferent biological behaviour like viroids or phages. But 
optimisation of the adaptative metrics might likely be 
required in order to use Cont-ID with high accuracy. 
Viroid genomes are generally smaller than viruses, 
while the phage genomes tend to be much larger and 
have specific biological features. For example, a differ-
ent level of identical reads and abundance (calculation 
based on reads number) could be obtained between the 
different scales of genome size.

For these reasons, Cont-ID allows the evaluation of 
other values for adaptability metrics (X, Y, Z) by each 
user to adapt the tool and optimise its diagnostic perfor-
mance depending on the biological matrix, the protocol 
and the purpose of the test. Independently, the user can 
also adapt the metrics to reach the appropriate balance 
between FN and FP by deciding if, for the purpose of the 
test and the available resource for confirming detection, 
it is preferable to be overpredicting contamination to be 
confident that all the virus detection remaining are true 
infection or the opposite (overpredicting infection to be 
sure not to miss any).

In our tests, the analysis of the wrong predictions 
showed that none of the proposed rules (and adapt-
ability metrics values) allowed us to reach satisfactory 
accuracy with a proper balance between FN and FP (see 
Additional file 1). We have observed that using two sets 
of adaptability metrics (one to favour contamination and 
the other, infection prediction) gave a higher accuracy. In 
a real scenario (with infection status not known for the 
samples), it is difficult to know if HTS virus detection (at 
low concentration) is in the majority due to true infection 
or cross-contamination. The two-case strategy allows the 
biologist to predict both scenarios with at least one case 
accurately. Indeed, if the expected ratio of infection/con-
tamination is unknown, the relative performance of cases 

1 or 2 will be unknown, so it seems preferable to use the 
combination results instead of the individual.

If both cases agree, the assumption is that the predic-
tion is correct. Nevertheless, combining the results will 
provide a list of interesting inconclusive results. Each 
inconclusive result means that the two cases delivered 
opposite predictions. Therefore, the scientist should 
address those results when analysing Cont-ID predic-
tion by checking the number of rules for each prediction, 
for example, knowing if 2 or 3 rules agreed and checking 
the results of each rule: How close to the threshold was 
the read abundance/ratio and/or the duplication rate? 
Spotting the few errors that may occur requires excel-
lent manual expertise as the usual manual verification 
methods may also indicate the wrong decision (if there 
are many reads from cross-contamination, the mapping 
results can be wrongly positive and/or the (RT)-PCR can 
also be wrongly positive if the contamination occurred at 
an early stage and the (RT)-PCR was carried out on the 
same nucleic acids extract). Other information about the 
virus-plant interaction should be considered, like virus-
species-cultivar compatibility or geographical virus dis-
tribution (see investigation on unexpected viruses [5]).

Cont-ID also presents some limitations that need to be 
discussed. First, the number of identical reads estima-
tion comes from the deduplication procedure, which is 
an approximation, and that can be a problem because it 
can consider the non-specific reads (reads that are not 
coming from cross-contamination but that are identical 
to another sample from a common area of the genome) 
as identical to the probable source of contamination by 
mistake. Indeed, this can be the case if, for example, two 
samples are infected by the same virus isolate at very dif-
ferent concentrations. The presence of duplicated reads 
might suggest contamination instead of a low-level infec-
tion. The risk of such an extreme situation is limited 
using two other rules, although interpreting the data 
will require good expertise in virus genomic variability 
and detailed information on the sample origins and virus 
prevalence and diversity. External source of contamina-
tion (for example, foreign samples in sequencing facili-
ties) are not considered by Cont-ID and therefore can 
also be source of error if they involve the same virus spe-
cies as the one of interest.

Also, identification up to species subtype (like 
expected for Influenza A virus) was not considered 
during the testing phase. When considered relevant, 
such subspecies distinction could be used with care, 
ensuring the unequivocal assignation of the reads 
to its corresponding subspecies. In other words, the 
genomes of the subspecies need to be different enough 
and the mapping parameters adapted to avoid unspe-
cific mapping of reads between subtypes. In such 
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cases, thresholds used should be monitored carefully 
to unsure the integrity and reliability of the analysis. In 
addition, the duplication metric assumes that contami-
nation (if any) comes from the sample with the high-
est number of reads. This theory seems logical since 
the more reads in a sample, the higher the probability 
of detecting a few reads from it contaminating other 
samples (potential of contamination). Nevertheless, it 
can create a bias when a virus is highly abundant in two 
(or more) samples and detected with a low frequency 
in others. In that case, it is difficult to determine the 
true origin of cross-contamination. Such a case could 
be a fundamental limit of our current method. If sev-
eral samples with a very high abundance of reads are 
present in a batch, as developed here, Cont-ID should 
be applied as many times as the number of highly abun-
dant samples. Ideally, Cont-ID should include the read 
duplication comparison of each sample to all other 
samples for a virus, but this can raise additional issues 
(like contamination from several origins at the same 
time), and, at this stage, it was not implemented.

We must also keep in mind that the relative quantity of 
genetic material between samples might change because 
the biologist normalises the quantity of DNA/RNA at 
two steps of the process: before starting library prepa-
ration and during the pooling of the prepared libraries, 
meaning that the differential in genomic material con-
centration (potential of contamination of a sample) is 
resettled. If cross-contamination happens before that 
step, it can lower Cont-ID prediction accuracy. This bias 
in the estimation of abundance is another limitation of 
our method.

Using an (alien) control helps to know the expected 
level of contamination but is also impacted by the limit 
of detection inherent to the standard bioinformatic pro-
cedures. Indeed, working with very few reads for some 
viruses makes some analyses impossible when below 
their detection limit. For example, the calculation of the 
duplication rate below a minimal number of reads (in this 
study, we chose 5) of a virus did not make sense. The limit 
of calculation of the input metrics is another limitation of 
Cont-ID.

Cont-ID accuracy was high, but additional improve-
ments can probably be explored, for example, by 
exploiting the ability of other metrics generated dur-
ing bio-informatic analyses (like RKPM, genome cov-
erage percentage, relative coverage depth repartition, 
…) to help detect contamination. In fact, some of these 
metrics with several thresholds were tested for Cont-ID 
before selecting the three rules described in Fig.  2 that 
provided the highest accuracy (in both contamination 
and infection determination). Importantly, values leading 
to a perfect scenario were not identified, and a two-case 

classification system was set up (more information in 
Additional file 1).

Nevertheless, adding more metrics will also complexify 
the decision system. If more metrics are considered for 
cross-contamination prediction, other implementations 
(decision tree, machine learning …) might be envisioned 
to replace the current voting system. On the other hand, 
the detection in the alien control of sequencing reads of 
other viruses detected in the tested samples is also the 
consequence of contamination from one of the tested 
samples toward the alien control. This information is 
not used now but could also be considered for future 
improvements as it requires less complex modifications 
to implement. In addition, it might allow refinement of 
Cont-ID, potentially introducing an adaptation of thresh-
old per virus instead of a single threshold for all samples 
from the sequencing batch. The idea is that two viruses 
present in the same batch may have different relative 
abundance behaviour in the samples, so setting up a limit 
that can adapt for each virus should improve the tool’s 
ability to distinguish real infection from cross-contami-
nation. Finally, working with the combination of all/some 
viruses profile instead of each individually for contamina-
tion check (similarly to what is used in metabarcoding of 
bacteria) can also be considered. Indeed, when a sample 
contaminates another, it is expected that all the viruses 
(highly frequent) from the contaminating sample can be 
found in the contaminated samples. Monitoring the virus 
detection profile of samples can provide additional infor-
mation for cross-contamination (and ease the quest for 
contamination origin). Even if there is still improvement 
to be made, Cont-ID has already delivered an excellent 
ability to consider the level of contamination genuinely 
present in a batch.

In conclusion, detection of cross-contamination is 
complex; in the age of sequencing, the issue of cross-
contamination across samples is increasingly impor-
tant; therefore, Cont-ID will facilitate the interpretation 
of results by the virologist/diagnostician and reduces 
the confirmation burden. We demonstrated that simple 
metrics like relative abundance estimation and redun-
dancies of genetic material (reads duplicates) could help 
monitor contamination occurring in the laboratory. The 
method accurately distinguished cross-contamination 
from infection in very diverse HTS viral datasets gener-
ated by short reads Illumina technology. Our standard 
parameters allowed very good accuracy (median = 95%); 
in addition, Cont-ID has several levels of flexibility and 
can be adapted by each user to take into account the spe-
cificities of the detection test (purpose of the test, type 
of samples, viruses to be detected, laboratory work, avail-
able resources….). We believe this is the first significant 
step toward increasing the monitoring and management 
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of sample cross-contamination when using HTS technol-
ogies for virus detection.

Availability and requirements
Project name: Cont-ID.

Project home page: https://​github.​com/​johro​llin/​Cont_​ID
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